Skip to main content

New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling

  • Chapter
  • First Online:
Heart Failure: From Research to Clinical Practice

Part of the book series: Advances in Experimental Medicine and Biology ((AIM,volume 1067))

Abstract

Excitation-contraction (EC) coupling denotes the conversion of electric stimulus in mechanic output in contractile cells. Several studies have demonstrated that calcium (Ca2+) plays a pivotal role in this process. Here we present a comprehensive and updated description of the main systems involved in cardiac Ca2+ handling that ensure a functional EC coupling and their pathological alterations, mainly related to heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acsai K, Antoons G, Livshitz L, Rudy Y, Sipido KR (2011) Microdomain [ca(2)(+)] near ryanodine receptors as reported by L-type ca(2)(+) and Na+/ca(2)(+) exchange currents. J Physiol 589(10):2569–2583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen DG, Nichols CG, Smith GL (1988) The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol 406:359–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anthony DF, Beattie J, Paul A, Currie S (2007) Interaction of calcium/calmodulin-dependent protein kinase IIdeltaC with sorcin indirectly modulates ryanodine receptor function in cardiac myocytes. J Mol Cell Cardiol 43(4):492–503

    Article  PubMed  CAS  Google Scholar 

  • Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O'Rourke B, Kass DA et al (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292(3):H1607–H1618

    Article  PubMed  CAS  Google Scholar 

  • Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37(2):290–299

    Article  PubMed  CAS  Google Scholar 

  • Balshaw DM, Xu L, Yamaguchi N, Pasek DA, Meissner G (2001) Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 276(23):20144–20153

    Article  PubMed  CAS  Google Scholar 

  • Benitah JP, Gomez AM, Virsolvy A, Richard S (2003) New perspectives on the key role of calcium in the progression of heart disease. J Muscle Res Cell Motil 24(4-6):275–283

    PubMed  CAS  Google Scholar 

  • Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115(12):3306–3317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M et al (2017) BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546(7659):549–553

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brunello E, Caremani M, Melli L, Linari M, Fernandez-Martinez M, Narayanan T et al (2014) The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle. J Physiol 592(17):3881–3899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caremani M, Pinzauti F, Reconditi M, Piazzesi G, Stienen GJ, Lombardi V et al (2016) Size and speed of the working stroke of cardiac myosin in situ. Proc Natl Acad Sci U S A 113(13):3675–3680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Charles E, Hammadi M, Kischel P, Delcroix V, Demaurex N, Castelbou C et al (2017) The antidepressant fluoxetine induces necrosis by energy depletion and mitochondrial calcium overload. Oncotarget 8(2):3181–3196

    Article  PubMed  Google Scholar 

  • Chugun A, Sato O, Takeshima H, Ogawa Y (2007) Mg2+ activates the ryanodine receptor type 2 (RyR2) at intermediate Ca2+ concentrations. Am J Physiol Cell Physiol 292(1):C535–C544

    Article  PubMed  CAS  Google Scholar 

  • Clark RB, Tremblay A, Melnyk P, Allen BG, Giles WR, Fiset CT (2001) Tubule localization of the inward-rectifier K(+) channel in mouse ventricular myocytes: a role in K(+) accumulation. J Physiol 537(3):979–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins RO, Thomas RC (2001) The effect of calcium pump inhibitors on the response of intracellular calcium to caffeine in snail neurones. Cell Calcium 30(1):41–48

    Article  PubMed  CAS  Google Scholar 

  • Colomo F, Poggesi C, Tesi C (1994) Force responses to rapid length changes in single intact cells from frog heart. J Physiol 475(2):347–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Poggesi C et al (2016) T-tubular electrical defects contribute to blunted beta-adrenergic response in heart failure. Int J Mol Sci 17(9)

    Google Scholar 

  • Currie S, Smith GL (1999) Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 41(1):135–146

    Article  PubMed  CAS  Google Scholar 

  • de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396(6710):474–477

    Article  PubMed  CAS  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drago I, De Stefani D, Rizzuto R, Pozzan T (2012) Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci U S A 109(32):12986–12991

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebashi S, Ebashi F, Kodama A (1967) Troponin as the Ca++-receptive protein in the contractile system. J Biochem 62(1):137–138

    Article  PubMed  CAS  Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys 245(1):C1–14

    Article  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1975) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249(3):469–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabiato A, Fabiato F (1979) Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature 281(5727):146–148

    Article  PubMed  CAS  Google Scholar 

  • Fameli N, Ogunbayo OA, van Breemen C, Evans AM (2014) Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Res 3:93

    PubMed  PubMed Central  Google Scholar 

  • Fujioka Y, Komeda M, Matsuoka S (2000) Stoichiometry of Na+−Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol 523(2):339–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276(24):21425–21433

    Article  PubMed  CAS  Google Scholar 

  • Gambardella J, Sorriento D, Ciccarelli M, Del Giudice C, Fiordelisi A, Napolitano L et al (2017) Functional role of mitochondria in Arrhythmogenesis. Adv Exp Med Biol 982:191–202

    Article  PubMed  Google Scholar 

  • Gao L, Tripathy A, Lu X, Meissner G (1997) Evidence for a role of C-terminal amino acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. FEBS Lett 412(1):223–226

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Rodriguez P, Falcon D, Castro MJ, Urena J, Lopez-Barneo J, Castellano A (2015) Hypoxic induction of T-type Ca(2+) channels in rat cardiac myocytes: role of HIF-1alpha and RhoA/ROCK signalling. J Physiol 593(21):4729–4745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Granatiero V, De Stefani D, Rizzuto R (2017) Mitochondrial calcium handling in physiology and disease. Adv Exp Med Biol 982:25–47

    Article  PubMed  Google Scholar 

  • Grossini E, Molinari C, Caimmi PP, Uberti F, Vacca G (2009) Levosimendan induces NO production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: role for mitochondrial K(ATP) channel. Br J Pharmacol 156(2):250–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunter TE, Sheu SS (2009) Characteristics and possible functions of mitochondrial ca(2+) transport mechanisms. Biochim Biophys Acta 1787(11):1291–1308

    Article  CAS  Google Scholar 

  • Gustafsson F, Guarracino F, Schwinger R (2017) The inodilator levosimendan as a treatment for acute heart failure in various settings. Eur Heart J 19(suppl_C):C2–C7

    Article  Google Scholar 

  • Hachida M, Lu H, Kaneko N, Horikawa Y, Ohkado A, Gu H et al (1999a) Protective effect of JTV519 (K201), a new 1,4-benzothiazepine derivative, on prolonged myocardial preservation. Transplant Proc 31(1-2):996–1000

    Article  PubMed  CAS  Google Scholar 

  • Hachida M, Kihara S, Nonoyama M, Koyanagi H (1999b) Protective effect of JTV519, a new 1,4-benzothiazepine derivative, on prolonged myocardial preservation. J Card Surg 14(3):187–193

    Article  PubMed  CAS  Google Scholar 

  • Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H (1995) Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270(5):2074–2081

    Article  PubMed  CAS  Google Scholar 

  • Hofer AM, Curci S, Machen TE, Schulz IATP (1996) regulates calcium leak from agonist-sensitive internal calcium stores. FASEB J 10(2):302–308

    Article  PubMed  CAS  Google Scholar 

  • Isenberg G, Han S (1994) Gradation of ca(2+)-induced Ca2+ release by voltage-clamp pulse duration in potentiated guinea-pig ventricular myocytes. J Physiol 480(3):423–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang TM, Hilgemann DW (2004) Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 427(6974):544–548

    Article  PubMed  CAS  Google Scholar 

  • Karlstad J, Sun Y, Singh BB (2012) Ca(2+) signaling: an outlook on the characterization of ca(2+) channels and their importance in cellular functions. Adv Exp Med Biol 740:143–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katz AM. Regulation of cardiac muscle contractility. J Gen Physiol. 1967;50(6):Suppl:185–196

    Article  PubMed Central  Google Scholar 

  • Kawai M, Kido T, Vogel M, Fink RH, Ishiwata S (2006) Temperature change does not affect force between regulated actin filaments and heavy meromyosin in single-molecule experiments. J Physiol 574(3):877–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keizer J, Levine L (1996) Ryanodine receptor adaptation and Ca2+(−)induced Ca2+ release-dependent Ca2+ oscillations. Biophys J 71(6):3477–3487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitsis RN, Narula J (2008) Introduction-cell death in heart failure. Heart Fail Rev 13(2):107–109

    Article  PubMed  Google Scholar 

  • Kohno M, Yano M, Kobayashi S, Doi M, Oda T, Tokuhisa T et al (2003) A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol 284(3):H1035–H1042

    Article  PubMed  CAS  Google Scholar 

  • Kostic M, Ludtmann MH, Bading H, Hershfinkel M, Steer E, Chu CT et al (2015) PKA phosphorylation of NCLX reverses mitochondrial calcium overload and depolarization, promoting survival of PINK1-deficient dopaminergic neurons. Cell Rep 13(2):376–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushnir A, Shan J, Betzenhauser MJ, Reiken S, Marks AR (2010) Role of CaMKIIdelta phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. Proc Natl Acad Sci U S A 107(22):10274–10279

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam E, Martin MM, Timerman AP, Sabers C, Fleischer S, Lukas T et al (1995) A novel FK506 binding protein can mediate the immunosuppressive effects of FK506 and is associated with the cardiac ryanodine receptor. J Biol Chem 270(44):26511–26522

    Article  PubMed  CAS  Google Scholar 

  • Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F et al (2017) Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med 376(21):2021–2031

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Galinska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388(4):673–681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehman W, Orzechowski M, Li XE, Fischer S, Raunser S (2013) Gestalt-binding of tropomyosin on actin during thin filament activation. J Muscle Res Cell Motil 34(3-4):155–163

    Article  PubMed  CAS  Google Scholar 

  • Lenzi F, Caniggia A (1953) Nature of myocardial contraction and of action potentials; importance of the cationic gradient. Acta Med Scand 146(4):300–312

    Article  PubMed  CAS  Google Scholar 

  • Li H, Lichter JG, Seidel T, Tomaselli GF, Bridge JH, Sachse FB (2015) Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, T-tubules, and Ca2+ Sparks produced by Dyssynchronous heart failure. Circ Heart Fail 8(6):1105–1114

    PubMed  PubMed Central  CAS  Google Scholar 

  • Linck B, Schmitz W, Messenger RNA (2000) Expression and immunological quantification of phospholamban and SR-ca(2+)-ATPase in failing and nonfailing human hearts. Cardiovasc Res 45(1):241–244

    Article  PubMed  CAS  Google Scholar 

  • Liu JC, Liu J, Holmstrom KM, Menazza S, Parks RJ, Fergusson MM et al (2016) MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload. Cell Rep 16(6):1561–1573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JC, Parks RJ, Liu J, Stares J, Rovira II, Murphy E et al (2017) The in vivo biology of the mitochondrial calcium uniporter. Adv Exp Med Biol 982:49–63

    Article  PubMed  Google Scholar 

  • Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG et al (2017) Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 14(6):342–360

    Article  PubMed  CAS  Google Scholar 

  • Louch WE, Hake J, Mork HK, Hougen K, Skrbic B, Ursu D et al (2013) Slow Ca(2)(+) sparks de-synchronize Ca(2)(+) release in failing cardiomyocytes: evidence for altered configuration of Ca(2)(+) release units? J Mol Cell Cardiol 58:41–52

    Article  PubMed  CAS  Google Scholar 

  • Lukyanenko V, Muriel JM, Bloch RJ (2017) Coupling of excitation to Ca2+ release is modulated by dysferlin. J Physiol 595:5191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Luo D, Yang D, Lan X, Li K, Li X, Chen J et al (2008) Nuclear Ca2+ sparks and waves mediated by inositol 1,4,5-trisphosphate receptors in neonatal rat cardiomyocytes. Cell Calcium 43(2):165–174

    Article  PubMed  CAS  Google Scholar 

  • Luongo TS, Lambert JP, Gross P, Nwokedi M, Lombardi AA, Shanmughapriya S et al (2017) The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 545(7652):93–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lymperopoulos A, Garcia D, Walklett K (2014) Pharmacogenetics of cardiac inotropy. Pharmacogenomics 15(14):1807–1821

    Article  PubMed  CAS  Google Scholar 

  • Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106(16):6854–6859

    Article  PubMed  PubMed Central  Google Scholar 

  • MacGowan GA, Kirk JA, Evans C, Shroff SG (2006) Pressure-calcium relationships in perfused mouse hearts. Am J Physiol Heart Circ Physiol 290(6):H2614–H2624

    Article  PubMed  CAS  Google Scholar 

  • Maltsev AV, Maltsev VA, Stern MD (2017) Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals. Proc Natl Acad Sci U S A 114(29):7525–7530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matecki S, Dridi H, Jung B, Saint N, Reiken SR, Scheuermann V et al (2016) Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc Natl Acad Sci U S A 113(32):9069–9074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ et al (2007) Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297(17):1883–1891

    Article  PubMed  CAS  Google Scholar 

  • Mignery GA, Newton CL, Archer BT, 3rd, Sudhof TC. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 1990;265(21):12679–12685

    Google Scholar 

  • Min CK, Yeom DR, Lee KE, Kwon HK, Kang M, Kim YS et al (2012) Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for ca(2)+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochem J 447(3):371–379

    Article  PubMed  CAS  Google Scholar 

  • Miragoli M, Cabassi A (2017) Mitochondrial Mechanosensor microdomains in cardiovascular disorders. Adv Exp Med Biol 982:247–264

    Article  PubMed  Google Scholar 

  • Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C et al (2017) Mechanistic role of mPTP in ischemia-reperfusion injury. Adv Exp Med Biol 982:169–189

    Article  PubMed  Google Scholar 

  • Nakai J, Ogura T, Protasi F, Franzini-Armstrong C, Allen PD, Beam KG (1997) Functional nonequality of the cardiac and skeletal ryanodine receptors. Proc Natl Acad Sci U S A 94(3):1019–1022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nanasi PP, Magyar J, Varro A, Ordog B (2017) Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications. Can J Physiol Pharmacol

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Yano M, Ohkusa T, Kohno M, Hisaoka T, Tanigawa T et al (2000) Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal ca(2+) release in heart failure. Cardiovasc Res 48(2):323–331

    Article  PubMed  CAS  Google Scholar 

  • Oyehaug L, Loose KO, Jolle GF, Roe AT, Sjaastad I, Christensen G et al (2013) Synchrony of cardiomyocyte Ca(2+) release is controlled by T-tubule organization, SR Ca(2+) content, and ryanodine receptor Ca(2+) sensitivity. Biophys J 104(8):1685–1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Page E, McCallister LP, Power B (1971) Sterological measurements of cardiac ultrastructures implicated in excitation-contraction coupling. Proc Natl Acad Sci U S A 68(7):1465–1466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paolini C, Fessenden JD, Pessah IN, Franzini-Armstrong C (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci U S A 101(34):12748–12752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parnell E, Palmer TM, Yarwood SJ (2015) The future of EPAC-targeted therapies: agonism versus antagonism. Trends Pharmacol Sci 36(4):203–214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel D, Duke K, Light RB, Jacobs H, Mink SN, Bose D (2000) Impaired sarcoplasmic calcium release inhibits myocardial contraction in experimental sepsis. J Crit Care 15(2):64–72

    Article  PubMed  CAS  Google Scholar 

  • Piazzesi G, Lombardi V (1996) Simulation of the rapid regeneration of the actin-myosin working stroke with a tight coupling model of muscle contraction. J Muscle Res Cell Motil 17(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Pinali C, Malik N, Davenport JB, Allan LJ, Murfitt L, Iqbal MM et al (2017) Post-myocardial infarction T-tubules form enlarged branched structures with dysregulation of Junctophilin-2 and bridging integrator 1 (BIN-1). J Am Heart Assoc 6(5):e004834

    Article  PubMed  PubMed Central  Google Scholar 

  • Plummer BN, Cutler MJ, Wan X, Laurita KR (2011) Spontaneous calcium oscillations during diastole in the whole heart: the influence of ryanodine reception function and gap junction coupling. Am J Physiol Heart Circ Physiol 300(5):H1822–H1828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polzl G, Altenberger J, Baholli L, Beltran P, Borbely A, Comin-Colet J et al (2017) Repetitive use of levosimendan in advanced heart failure: need for stronger evidence in a field in dire need of a useful therapy. Int J Cardiol 243:389

    Article  PubMed  Google Scholar 

  • Pott C, Yip M, Goldhaber JI, Philipson KD (2007) Regulation of cardiac L-type Ca2+ current in Na+−Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+−Ca2+ exchanger. Biophys J 92(4):1431–1437

    Article  PubMed  CAS  Google Scholar 

  • Rao JN, Madasu Y, Dominguez R (2014) Mechanism of actin filament pointed-end capping by tropomodulin. Science 345(6195):463–467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy YS, Honig CR (1972) Ca 2+ -binding and Ca 2+ -sensitizing functions of cardiac native tropomyosin, troponin, and tropomyosin. Biochim Biophys Acta 275(3):453–463

    Article  PubMed  CAS  Google Scholar 

  • Robertson IM, Baryshnikova OK, Li MX, Sykes BD (2008) Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex. Biochemistry 47(28):7485–7495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rumberger E, Ahrens U (1972) The effect of ryanodine on the force-frequency-relationship of the heart muscle. Pflugers Arch 332(Suppl):R36

    Google Scholar 

  • Sacherer M, Sedej S, Wakula P, Wallner M, Vos MA, Kockskamper J et al (2012) JTV519 (K201) reduces sarcoplasmic reticulum ca(2)(+) leak and improves diastolic function in vitro in murine and human non-failing myocardium. Br J Pharmacol 167(3):493–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santulli G, Marks AR (2015) Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol 8(2):206–222

    Article  PubMed  CAS  Google Scholar 

  • Santulli G, Ciccarelli M, Trimarco B, Iaccarino G (2013) Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the beta adrenergic system. Front Physiol 4:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Santulli G, Xie W, Reiken SR, Marks AR (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 112(36):11389–11394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santulli G, Nakashima R, Yuan Q, Marks AR (2017a) Intracellular calcium release channels: an update. J Physiol 595(10):3041–3051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Santulli G, Lewis DR, Marks AR (2017b) Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil (in press)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schobesberger S, Wright P, Tokar S, Bhargava A, Mansfield C, Glukhov AV et al (2017) T-tubule remodelling disturbs localized beta2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovasc Res 113(7):770–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwinger RH, Bolck B, Munch G, Brixius K, Muller-Ehmsen J, Erdmann E (1998) cAMP-dependent protein kinase A-stimulated sarcoplasmic reticulum function in heart failure. Ann N Y Acad Sci 853:240–250

    Article  PubMed  CAS  Google Scholar 

  • Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E (1999) Reduced ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31(3):479–491

    Article  PubMed  Google Scholar 

  • Sen L, Cui G, Fonarow GC, Laks H (2000) Differences in mechanisms of SR dysfunction in ischemic vs. idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 279(2):H709–H718

    Article  PubMed  CAS  Google Scholar 

  • Shacklock PS, Wier WG, Balke CW (1995) Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J Physiol 487(3):601–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw RM, Colecraft HM (2013) L-type calcium channel targeting and local signalling in cardiac myocytes. Cardiovasc Res 98(2):177–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheeran FL, Pepe S (2017) Mitochondrial bioenergetics and dysfunction in failing heart. Adv Exp Med Biol 982:65–80

    Article  PubMed  Google Scholar 

  • Shiferaw Y, Watanabe MA, Garfinkel A, Weiss JN, Karma A (2003) Model of intracellular calcium cycling in ventricular myocytes. Biophys J 85(6):3666–3686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR (1986) Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261(28):13333–13341

    PubMed  CAS  Google Scholar 

  • Soeller C, Cannell MB (1997) Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J 73(1):97–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorriento D, Gambardella J, Fiordelisi A, Trimarco B, Ciccarelli M, Iaccarino G et al (2017) Mechanistic role of kinases in the regulation of mitochondrial fitness. Adv Exp Med Biol 982:521–528

    Article  PubMed  Google Scholar 

  • Subramani S, Balakrishnan S, Jyoti T, Mohammed AA, Arasan S, Vijayanand C (2005) Force-frequency relation in frog-ventricle is dependent on the direction of sodium/calcium exchange in diastole. Acta Physiol Scand 185(3):193–202

    Article  PubMed  CAS  Google Scholar 

  • Sutko JL, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Pharmacol Rev 49(1):53–98

    PubMed  CAS  Google Scholar 

  • Takasago T, Imagawa T, Furukawa K, Ogurusu T, Shigekawa M (1991) Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J Biochem 109(1):163–170

    Article  PubMed  CAS  Google Scholar 

  • Thevis M, Beuck S, Thomas A, Fussholler G, Sigmund G, Schlorer N et al (2009) Electron ionization mass spectrometry of the ryanodine receptor-based ca(2+)-channel stabilizer S-107 and its implementation into routine doping control. Rapid Commun Mass Spectrom 23(15):2363–2370

    Article  PubMed  CAS  Google Scholar 

  • Timerman AP, Onoue H, Xin HB, Barg S, Copello J, Wiederrecht G et al (1996) Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem 271(34):20385–20391

    Article  PubMed  CAS  Google Scholar 

  • Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S (2017) Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol 982:277–306

    Article  PubMed  Google Scholar 

  • Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD et al (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318(2):477–487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR (2014) Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A 111(42):15250–15255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787(11):1374–1382

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xu Y, Guth K, Kerrick WG, Troponin C (1999) Regulates the rate constant for the dissociation of force-generating myosin cross-bridges in cardiac muscle. J Muscle Res Cell Motil 20(7):645–653

    Article  PubMed  CAS  Google Scholar 

  • Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410(6828):592–596

    Article  PubMed  CAS  Google Scholar 

  • Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K et al (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107(4):520–531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie W, Santulli G, Guo X, Gao M, Chen BX, Marks AR (2013) Imaging atrial arrhythmic intracellular calcium in intact heart. J Mol Cell Cardiol 64:120–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX et al (2015) Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep 5:11427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xin HB, Rogers K, Qi Y, Kanematsu T, Fleischer S (1999) Three amino acid residues determine selective binding of FK506-binding protein 12.6 to the cardiac ryanodine receptor. J Biol Chem 274(22):15315–15319

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Ikeda Y, Matsuzaki M (2005) Altered intracellular Ca2+ handling in heart failure. J Clin Invest 115(3):556–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Q, Chen Z, Santulli G, Gu L, Yang ZG, Yuan ZQ et al (2014) Functional role of Calstabin2 in age-related cardiac alterations. Sci Rep 4:7425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Brown JH (2004) Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 63(3):476–486

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZH, Jin CL, Jang JH, Wu YN, Kim SJ, Jin HH et al (2016) Assessment of myofilament Ca2+ sensitivity underlying cardiac excitation-contraction coupling. J Vis Exp: JoVE 114

    Google Scholar 

  • Zhou Z, January CT (1998) Both T- and L-type Ca2+ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. Biophys J 74(4):1830–1839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J, Hua X, Li D, Zhang J, Xia Q (2015) Rapamycin attenuates mouse liver ischemia and reperfusion injury by inhibiting endoplasmic reticulum stress. Transplant Proc 47(6):1646–1652

    Article  PubMed  CAS  Google Scholar 

  • Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D (2014) Ca handling during excitation-contraction coupling in heart failure. Pflugers Archiv: Eur J Physiol 466(6):1129–1137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Santulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gambardella, J., Trimarco, B., Iaccarino, G., Santulli, G. (2017). New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling. In: Islam, M. (eds) Heart Failure: From Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1067. Springer, Cham. https://doi.org/10.1007/5584_2017_106

Download citation

  • DOI: https://doi.org/10.1007/5584_2017_106

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78279-9

  • Online ISBN: 978-3-319-78280-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics