Advertisement

New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling

  • Jessica Gambardella
  • Bruno Trimarco
  • Guido Iaccarino
  • Gaetano SantulliEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1067)

Abstract

Excitation-contraction (EC) coupling denotes the conversion of electric stimulus in mechanic output in contractile cells. Several studies have demonstrated that calcium (Ca2+) plays a pivotal role in this process. Here we present a comprehensive and updated description of the main systems involved in cardiac Ca2+ handling that ensure a functional EC coupling and their pathological alterations, mainly related to heart failure.

Keywords

Calcium RyR Mitochondria SerCa Contraction Heart Failure 

References

  1. Acsai K, Antoons G, Livshitz L, Rudy Y, Sipido KR (2011) Microdomain [ca(2)(+)] near ryanodine receptors as reported by L-type ca(2)(+) and Na+/ca(2)(+) exchange currents. J Physiol 589(10):2569–2583PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allen DG, Nichols CG, Smith GL (1988) The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol 406:359–370PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anthony DF, Beattie J, Paul A, Currie S (2007) Interaction of calcium/calmodulin-dependent protein kinase IIdeltaC with sorcin indirectly modulates ryanodine receptor function in cardiac myocytes. J Mol Cell Cardiol 43(4):492–503PubMedCrossRefGoogle Scholar
  4. Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O'Rourke B, Kass DA et al (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292(3):H1607–H1618PubMedCrossRefGoogle Scholar
  5. Balke CW, Shorofsky SR (1998) Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37(2):290–299PubMedCrossRefGoogle Scholar
  6. Balshaw DM, Xu L, Yamaguchi N, Pasek DA, Meissner G (2001) Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 276(23):20144–20153PubMedCrossRefGoogle Scholar
  7. Benitah JP, Gomez AM, Virsolvy A, Richard S (2003) New perspectives on the key role of calcium in the progression of heart disease. J Muscle Res Cell Motil 24(4-6):275–283PubMedGoogle Scholar
  8. Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115(12):3306–3317PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M et al (2017) BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546(7659):549–553PubMedPubMedCentralGoogle Scholar
  10. Brunello E, Caremani M, Melli L, Linari M, Fernandez-Martinez M, Narayanan T et al (2014) The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle. J Physiol 592(17):3881–3899PubMedPubMedCentralCrossRefGoogle Scholar
  11. Caremani M, Pinzauti F, Reconditi M, Piazzesi G, Stienen GJ, Lombardi V et al (2016) Size and speed of the working stroke of cardiac myosin in situ. Proc Natl Acad Sci U S A 113(13):3675–3680PubMedPubMedCentralCrossRefGoogle Scholar
  12. Charles E, Hammadi M, Kischel P, Delcroix V, Demaurex N, Castelbou C et al (2017) The antidepressant fluoxetine induces necrosis by energy depletion and mitochondrial calcium overload. Oncotarget 8(2):3181–3196PubMedCrossRefGoogle Scholar
  13. Chugun A, Sato O, Takeshima H, Ogawa Y (2007) Mg2+ activates the ryanodine receptor type 2 (RyR2) at intermediate Ca2+ concentrations. Am J Physiol Cell Physiol 292(1):C535–C544PubMedCrossRefGoogle Scholar
  14. Clark RB, Tremblay A, Melnyk P, Allen BG, Giles WR, Fiset CT (2001) Tubule localization of the inward-rectifier K(+) channel in mouse ventricular myocytes: a role in K(+) accumulation. J Physiol 537(3):979–992PubMedPubMedCentralCrossRefGoogle Scholar
  15. Collins RO, Thomas RC (2001) The effect of calcium pump inhibitors on the response of intracellular calcium to caffeine in snail neurones. Cell Calcium 30(1):41–48PubMedCrossRefGoogle Scholar
  16. Colomo F, Poggesi C, Tesi C (1994) Force responses to rapid length changes in single intact cells from frog heart. J Physiol 475(2):347–350PubMedPubMedCentralCrossRefGoogle Scholar
  17. Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Poggesi C et al (2016) T-tubular electrical defects contribute to blunted beta-adrenergic response in heart failure. Int J Mol Sci 17(9)Google Scholar
  18. Currie S, Smith GL (1999) Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure. Cardiovasc Res 41(1):135–146PubMedCrossRefGoogle Scholar
  19. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A et al (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396(6710):474–477PubMedCrossRefGoogle Scholar
  20. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340PubMedPubMedCentralCrossRefGoogle Scholar
  21. Drago I, De Stefani D, Rizzuto R, Pozzan T (2012) Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci U S A 109(32):12986–12991PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ebashi S, Ebashi F, Kodama A (1967) Troponin as the Ca++-receptive protein in the contractile system. J Biochem 62(1):137–138PubMedCrossRefGoogle Scholar
  23. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Phys 245(1):C1–14CrossRefGoogle Scholar
  24. Fabiato A, Fabiato F (1975) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 249(3):469–495PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fabiato A, Fabiato F (1979) Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature 281(5727):146–148PubMedCrossRefGoogle Scholar
  26. Fameli N, Ogunbayo OA, van Breemen C, Evans AM (2014) Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Res 3:93PubMedPubMedCentralGoogle Scholar
  27. Fujioka Y, Komeda M, Matsuoka S (2000) Stoichiometry of Na+−Ca2+ exchange in inside-out patches excised from guinea-pig ventricular myocytes. J Physiol 523(2):339–351PubMedPubMedCentralCrossRefGoogle Scholar
  28. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276(24):21425–21433PubMedCrossRefGoogle Scholar
  29. Gambardella J, Sorriento D, Ciccarelli M, Del Giudice C, Fiordelisi A, Napolitano L et al (2017) Functional role of mitochondria in Arrhythmogenesis. Adv Exp Med Biol 982:191–202PubMedCrossRefGoogle Scholar
  30. Gao L, Tripathy A, Lu X, Meissner G (1997) Evidence for a role of C-terminal amino acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. FEBS Lett 412(1):223–226PubMedCrossRefGoogle Scholar
  31. Gonzalez-Rodriguez P, Falcon D, Castro MJ, Urena J, Lopez-Barneo J, Castellano A (2015) Hypoxic induction of T-type Ca(2+) channels in rat cardiac myocytes: role of HIF-1alpha and RhoA/ROCK signalling. J Physiol 593(21):4729–4745PubMedPubMedCentralCrossRefGoogle Scholar
  32. Granatiero V, De Stefani D, Rizzuto R (2017) Mitochondrial calcium handling in physiology and disease. Adv Exp Med Biol 982:25–47PubMedCrossRefGoogle Scholar
  33. Grossini E, Molinari C, Caimmi PP, Uberti F, Vacca G (2009) Levosimendan induces NO production through p38 MAPK, ERK and Akt in porcine coronary endothelial cells: role for mitochondrial K(ATP) channel. Br J Pharmacol 156(2):250–261PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gunter TE, Sheu SS (2009) Characteristics and possible functions of mitochondrial ca(2+) transport mechanisms. Biochim Biophys Acta 1787(11):1291–1308CrossRefGoogle Scholar
  35. Gustafsson F, Guarracino F, Schwinger R (2017) The inodilator levosimendan as a treatment for acute heart failure in various settings. Eur Heart J 19(suppl_C):C2–C7CrossRefGoogle Scholar
  36. Hachida M, Lu H, Kaneko N, Horikawa Y, Ohkado A, Gu H et al (1999a) Protective effect of JTV519 (K201), a new 1,4-benzothiazepine derivative, on prolonged myocardial preservation. Transplant Proc 31(1-2):996–1000PubMedCrossRefGoogle Scholar
  37. Hachida M, Kihara S, Nonoyama M, Koyanagi H (1999b) Protective effect of JTV519, a new 1,4-benzothiazepine derivative, on prolonged myocardial preservation. J Card Surg 14(3):187–193PubMedCrossRefGoogle Scholar
  38. Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H (1995) Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270(5):2074–2081PubMedCrossRefGoogle Scholar
  39. Hofer AM, Curci S, Machen TE, Schulz IATP (1996) regulates calcium leak from agonist-sensitive internal calcium stores. FASEB J 10(2):302–308PubMedCrossRefGoogle Scholar
  40. Isenberg G, Han S (1994) Gradation of ca(2+)-induced Ca2+ release by voltage-clamp pulse duration in potentiated guinea-pig ventricular myocytes. J Physiol 480(3):423–438PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kang TM, Hilgemann DW (2004) Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 427(6974):544–548PubMedCrossRefGoogle Scholar
  42. Karlstad J, Sun Y, Singh BB (2012) Ca(2+) signaling: an outlook on the characterization of ca(2+) channels and their importance in cellular functions. Adv Exp Med Biol 740:143–157PubMedPubMedCentralCrossRefGoogle Scholar
  43. Katz AM. Regulation of cardiac muscle contractility. J Gen Physiol. 1967;50(6):Suppl:185–196PubMedCentralCrossRefGoogle Scholar
  44. Kawai M, Kido T, Vogel M, Fink RH, Ishiwata S (2006) Temperature change does not affect force between regulated actin filaments and heavy meromyosin in single-molecule experiments. J Physiol 574(3):877–887PubMedPubMedCentralCrossRefGoogle Scholar
  45. Keizer J, Levine L (1996) Ryanodine receptor adaptation and Ca2+(−)induced Ca2+ release-dependent Ca2+ oscillations. Biophys J 71(6):3477–3487PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kitsis RN, Narula J (2008) Introduction-cell death in heart failure. Heart Fail Rev 13(2):107–109PubMedCrossRefGoogle Scholar
  47. Kohno M, Yano M, Kobayashi S, Doi M, Oda T, Tokuhisa T et al (2003) A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol 284(3):H1035–H1042PubMedCrossRefGoogle Scholar
  48. Kostic M, Ludtmann MH, Bading H, Hershfinkel M, Steer E, Chu CT et al (2015) PKA phosphorylation of NCLX reverses mitochondrial calcium overload and depolarization, promoting survival of PINK1-deficient dopaminergic neurons. Cell Rep 13(2):376–386PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kushnir A, Shan J, Betzenhauser MJ, Reiken S, Marks AR (2010) Role of CaMKIIdelta phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. Proc Natl Acad Sci U S A 107(22):10274–10279PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lam E, Martin MM, Timerman AP, Sabers C, Fleischer S, Lukas T et al (1995) A novel FK506 binding protein can mediate the immunosuppressive effects of FK506 and is associated with the cardiac ryanodine receptor. J Biol Chem 270(44):26511–26522PubMedCrossRefGoogle Scholar
  51. Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F et al (2017) Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med 376(21):2021–2031PubMedCrossRefGoogle Scholar
  52. Lehman W, Galinska-Rakoczy A, Hatch V, Tobacman LS, Craig R (2009) Structural basis for the activation of muscle contraction by troponin and tropomyosin. J Mol Biol 388(4):673–681PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lehman W, Orzechowski M, Li XE, Fischer S, Raunser S (2013) Gestalt-binding of tropomyosin on actin during thin filament activation. J Muscle Res Cell Motil 34(3-4):155–163PubMedCrossRefGoogle Scholar
  54. Lenzi F, Caniggia A (1953) Nature of myocardial contraction and of action potentials; importance of the cationic gradient. Acta Med Scand 146(4):300–312PubMedCrossRefGoogle Scholar
  55. Li H, Lichter JG, Seidel T, Tomaselli GF, Bridge JH, Sachse FB (2015) Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, T-tubules, and Ca2+ Sparks produced by Dyssynchronous heart failure. Circ Heart Fail 8(6):1105–1114PubMedPubMedCentralGoogle Scholar
  56. Linck B, Schmitz W, Messenger RNA (2000) Expression and immunological quantification of phospholamban and SR-ca(2+)-ATPase in failing and nonfailing human hearts. Cardiovasc Res 45(1):241–244PubMedCrossRefGoogle Scholar
  57. Liu JC, Liu J, Holmstrom KM, Menazza S, Parks RJ, Fergusson MM et al (2016) MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload. Cell Rep 16(6):1561–1573PubMedPubMedCentralCrossRefGoogle Scholar
  58. Liu JC, Parks RJ, Liu J, Stares J, Rovira II, Murphy E et al (2017) The in vivo biology of the mitochondrial calcium uniporter. Adv Exp Med Biol 982:49–63PubMedCrossRefGoogle Scholar
  59. Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG et al (2017) Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 14(6):342–360PubMedCrossRefGoogle Scholar
  60. Louch WE, Hake J, Mork HK, Hougen K, Skrbic B, Ursu D et al (2013) Slow Ca(2)(+) sparks de-synchronize Ca(2)(+) release in failing cardiomyocytes: evidence for altered configuration of Ca(2)(+) release units? J Mol Cell Cardiol 58:41–52PubMedCrossRefGoogle Scholar
  61. Lukyanenko V, Muriel JM, Bloch RJ (2017) Coupling of excitation to Ca2+ release is modulated by dysferlin. J Physiol 595:5191PubMedCrossRefPubMedCentralGoogle Scholar
  62. Luo D, Yang D, Lan X, Li K, Li X, Chen J et al (2008) Nuclear Ca2+ sparks and waves mediated by inositol 1,4,5-trisphosphate receptors in neonatal rat cardiomyocytes. Cell Calcium 43(2):165–174PubMedCrossRefGoogle Scholar
  63. Luongo TS, Lambert JP, Gross P, Nwokedi M, Lombardi AA, Shanmughapriya S et al (2017) The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 545(7652):93–97PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lymperopoulos A, Garcia D, Walklett K (2014) Pharmacogenetics of cardiac inotropy. Pharmacogenomics 15(14):1807–1821PubMedCrossRefGoogle Scholar
  65. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106(16):6854–6859PubMedPubMedCentralCrossRefGoogle Scholar
  66. MacGowan GA, Kirk JA, Evans C, Shroff SG (2006) Pressure-calcium relationships in perfused mouse hearts. Am J Physiol Heart Circ Physiol 290(6):H2614–H2624PubMedCrossRefGoogle Scholar
  67. Maltsev AV, Maltsev VA, Stern MD (2017) Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals. Proc Natl Acad Sci U S A 114(29):7525–7530PubMedPubMedCentralCrossRefGoogle Scholar
  68. Matecki S, Dridi H, Jung B, Saint N, Reiken SR, Scheuermann V et al (2016) Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc Natl Acad Sci U S A 113(32):9069–9074PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ et al (2007) Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297(17):1883–1891PubMedCrossRefGoogle Scholar
  70. Mignery GA, Newton CL, Archer BT, 3rd, Sudhof TC. Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 1990;265(21):12679–12685Google Scholar
  71. Min CK, Yeom DR, Lee KE, Kwon HK, Kang M, Kim YS et al (2012) Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for ca(2)+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochem J 447(3):371–379PubMedCrossRefGoogle Scholar
  72. Miragoli M, Cabassi A (2017) Mitochondrial Mechanosensor microdomains in cardiovascular disorders. Adv Exp Med Biol 982:247–264PubMedCrossRefGoogle Scholar
  73. Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C et al (2017) Mechanistic role of mPTP in ischemia-reperfusion injury. Adv Exp Med Biol 982:169–189PubMedCrossRefGoogle Scholar
  74. Nakai J, Ogura T, Protasi F, Franzini-Armstrong C, Allen PD, Beam KG (1997) Functional nonequality of the cardiac and skeletal ryanodine receptors. Proc Natl Acad Sci U S A 94(3):1019–1022PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nanasi PP, Magyar J, Varro A, Ordog B (2017) Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications. Can J Physiol PharmacolPubMedCrossRefGoogle Scholar
  76. Ono K, Yano M, Ohkusa T, Kohno M, Hisaoka T, Tanigawa T et al (2000) Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal ca(2+) release in heart failure. Cardiovasc Res 48(2):323–331PubMedCrossRefGoogle Scholar
  77. Oyehaug L, Loose KO, Jolle GF, Roe AT, Sjaastad I, Christensen G et al (2013) Synchrony of cardiomyocyte Ca(2+) release is controlled by T-tubule organization, SR Ca(2+) content, and ryanodine receptor Ca(2+) sensitivity. Biophys J 104(8):1685–1697PubMedPubMedCentralCrossRefGoogle Scholar
  78. Page E, McCallister LP, Power B (1971) Sterological measurements of cardiac ultrastructures implicated in excitation-contraction coupling. Proc Natl Acad Sci U S A 68(7):1465–1466PubMedPubMedCentralCrossRefGoogle Scholar
  79. Paolini C, Fessenden JD, Pessah IN, Franzini-Armstrong C (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci U S A 101(34):12748–12752PubMedPubMedCentralCrossRefGoogle Scholar
  80. Parnell E, Palmer TM, Yarwood SJ (2015) The future of EPAC-targeted therapies: agonism versus antagonism. Trends Pharmacol Sci 36(4):203–214PubMedPubMedCentralCrossRefGoogle Scholar
  81. Patel D, Duke K, Light RB, Jacobs H, Mink SN, Bose D (2000) Impaired sarcoplasmic calcium release inhibits myocardial contraction in experimental sepsis. J Crit Care 15(2):64–72PubMedCrossRefGoogle Scholar
  82. Piazzesi G, Lombardi V (1996) Simulation of the rapid regeneration of the actin-myosin working stroke with a tight coupling model of muscle contraction. J Muscle Res Cell Motil 17(1):45–53PubMedCrossRefGoogle Scholar
  83. Pinali C, Malik N, Davenport JB, Allan LJ, Murfitt L, Iqbal MM et al (2017) Post-myocardial infarction T-tubules form enlarged branched structures with dysregulation of Junctophilin-2 and bridging integrator 1 (BIN-1). J Am Heart Assoc 6(5):e004834PubMedPubMedCentralCrossRefGoogle Scholar
  84. Plummer BN, Cutler MJ, Wan X, Laurita KR (2011) Spontaneous calcium oscillations during diastole in the whole heart: the influence of ryanodine reception function and gap junction coupling. Am J Physiol Heart Circ Physiol 300(5):H1822–H1828PubMedPubMedCentralCrossRefGoogle Scholar
  85. Polzl G, Altenberger J, Baholli L, Beltran P, Borbely A, Comin-Colet J et al (2017) Repetitive use of levosimendan in advanced heart failure: need for stronger evidence in a field in dire need of a useful therapy. Int J Cardiol 243:389PubMedCrossRefGoogle Scholar
  86. Pott C, Yip M, Goldhaber JI, Philipson KD (2007) Regulation of cardiac L-type Ca2+ current in Na+−Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+−Ca2+ exchanger. Biophys J 92(4):1431–1437PubMedCrossRefGoogle Scholar
  87. Rao JN, Madasu Y, Dominguez R (2014) Mechanism of actin filament pointed-end capping by tropomodulin. Science 345(6195):463–467PubMedPubMedCentralCrossRefGoogle Scholar
  88. Reddy YS, Honig CR (1972) Ca 2+ -binding and Ca 2+ -sensitizing functions of cardiac native tropomyosin, troponin, and tropomyosin. Biochim Biophys Acta 275(3):453–463PubMedCrossRefGoogle Scholar
  89. Robertson IM, Baryshnikova OK, Li MX, Sykes BD (2008) Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex. Biochemistry 47(28):7485–7495PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rumberger E, Ahrens U (1972) The effect of ryanodine on the force-frequency-relationship of the heart muscle. Pflugers Arch 332(Suppl):R36Google Scholar
  91. Sacherer M, Sedej S, Wakula P, Wallner M, Vos MA, Kockskamper J et al (2012) JTV519 (K201) reduces sarcoplasmic reticulum ca(2)(+) leak and improves diastolic function in vitro in murine and human non-failing myocardium. Br J Pharmacol 167(3):493–504PubMedPubMedCentralCrossRefGoogle Scholar
  92. Santulli G, Marks AR (2015) Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol 8(2):206–222PubMedCrossRefGoogle Scholar
  93. Santulli G, Ciccarelli M, Trimarco B, Iaccarino G (2013) Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the beta adrenergic system. Front Physiol 4:209PubMedPubMedCentralCrossRefGoogle Scholar
  94. Santulli G, Xie W, Reiken SR, Marks AR (2015) Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A 112(36):11389–11394PubMedPubMedCentralCrossRefGoogle Scholar
  95. Santulli G, Nakashima R, Yuan Q, Marks AR (2017a) Intracellular calcium release channels: an update. J Physiol 595(10):3041–3051PubMedCrossRefPubMedCentralGoogle Scholar
  96. Santulli G, Lewis DR, Marks AR (2017b) Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil (in press)PubMedCrossRefPubMedCentralGoogle Scholar
  97. Schobesberger S, Wright P, Tokar S, Bhargava A, Mansfield C, Glukhov AV et al (2017) T-tubule remodelling disturbs localized beta2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovasc Res 113(7):770–782PubMedPubMedCentralCrossRefGoogle Scholar
  98. Schwinger RH, Bolck B, Munch G, Brixius K, Muller-Ehmsen J, Erdmann E (1998) cAMP-dependent protein kinase A-stimulated sarcoplasmic reticulum function in heart failure. Ann N Y Acad Sci 853:240–250PubMedCrossRefGoogle Scholar
  99. Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E (1999) Reduced ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31(3):479–491PubMedCrossRefGoogle Scholar
  100. Sen L, Cui G, Fonarow GC, Laks H (2000) Differences in mechanisms of SR dysfunction in ischemic vs. idiopathic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 279(2):H709–H718PubMedCrossRefGoogle Scholar
  101. Shacklock PS, Wier WG, Balke CW (1995) Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J Physiol 487(3):601–608PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shaw RM, Colecraft HM (2013) L-type calcium channel targeting and local signalling in cardiac myocytes. Cardiovasc Res 98(2):177–186PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sheeran FL, Pepe S (2017) Mitochondrial bioenergetics and dysfunction in failing heart. Adv Exp Med Biol 982:65–80PubMedCrossRefGoogle Scholar
  104. Shiferaw Y, Watanabe MA, Garfinkel A, Weiss JN, Karma A (2003) Model of intracellular calcium cycling in ventricular myocytes. Biophys J 85(6):3666–3686PubMedPubMedCentralCrossRefGoogle Scholar
  105. Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR (1986) Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261(28):13333–13341PubMedGoogle Scholar
  106. Soeller C, Cannell MB (1997) Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J 73(1):97–111PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sorriento D, Gambardella J, Fiordelisi A, Trimarco B, Ciccarelli M, Iaccarino G et al (2017) Mechanistic role of kinases in the regulation of mitochondrial fitness. Adv Exp Med Biol 982:521–528PubMedCrossRefGoogle Scholar
  108. Subramani S, Balakrishnan S, Jyoti T, Mohammed AA, Arasan S, Vijayanand C (2005) Force-frequency relation in frog-ventricle is dependent on the direction of sodium/calcium exchange in diastole. Acta Physiol Scand 185(3):193–202PubMedCrossRefGoogle Scholar
  109. Sutko JL, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Pharmacol Rev 49(1):53–98PubMedGoogle Scholar
  110. Takasago T, Imagawa T, Furukawa K, Ogurusu T, Shigekawa M (1991) Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J Biochem 109(1):163–170PubMedCrossRefGoogle Scholar
  111. Thevis M, Beuck S, Thomas A, Fussholler G, Sigmund G, Schlorer N et al (2009) Electron ionization mass spectrometry of the ryanodine receptor-based ca(2+)-channel stabilizer S-107 and its implementation into routine doping control. Rapid Commun Mass Spectrom 23(15):2363–2370PubMedCrossRefGoogle Scholar
  112. Timerman AP, Onoue H, Xin HB, Barg S, Copello J, Wiederrecht G et al (1996) Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem 271(34):20385–20391PubMedCrossRefGoogle Scholar
  113. Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S (2017) Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol 982:277–306PubMedCrossRefGoogle Scholar
  114. Tunwell RE, Wickenden C, Bertrand BM, Shevchenko VI, Walsh MB, Allen PD et al (1996) The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J 318(2):477–487PubMedPubMedCentralCrossRefGoogle Scholar
  115. Umanskaya A, Santulli G, Xie W, Andersson DC, Reiken SR, Marks AR (2014) Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging. Proc Natl Acad Sci U S A 111(42):15250–15255PubMedPubMedCentralCrossRefGoogle Scholar
  116. Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A (2009) Modulation of calcium signalling by mitochondria. Biochim Biophys Acta 1787(11):1374–1382PubMedCrossRefGoogle Scholar
  117. Wang Y, Xu Y, Guth K, Kerrick WG, Troponin C (1999) Regulates the rate constant for the dissociation of force-generating myosin cross-bridges in cardiac muscle. J Muscle Res Cell Motil 20(7):645–653PubMedCrossRefGoogle Scholar
  118. Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410(6828):592–596PubMedCrossRefGoogle Scholar
  119. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K et al (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107(4):520–531PubMedPubMedCentralCrossRefGoogle Scholar
  120. Xie W, Santulli G, Guo X, Gao M, Chen BX, Marks AR (2013) Imaging atrial arrhythmic intracellular calcium in intact heart. J Mol Cell Cardiol 64:120–123PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX et al (2015) Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep 5:11427PubMedPubMedCentralCrossRefGoogle Scholar
  122. Xin HB, Rogers K, Qi Y, Kanematsu T, Fleischer S (1999) Three amino acid residues determine selective binding of FK506-binding protein 12.6 to the cardiac ryanodine receptor. J Biol Chem 274(22):15315–15319PubMedCrossRefGoogle Scholar
  123. Yano M, Ikeda Y, Matsuzaki M (2005) Altered intracellular Ca2+ handling in heart failure. J Clin Invest 115(3):556–564PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yuan Q, Chen Z, Santulli G, Gu L, Yang ZG, Yuan ZQ et al (2014) Functional role of Calstabin2 in age-related cardiac alterations. Sci Rep 4:7425PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhang T, Brown JH (2004) Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 63(3):476–486PubMedCrossRefGoogle Scholar
  126. Zhao ZH, Jin CL, Jang JH, Wu YN, Kim SJ, Jin HH et al (2016) Assessment of myofilament Ca2+ sensitivity underlying cardiac excitation-contraction coupling. J Vis Exp: JoVE 114Google Scholar
  127. Zhou Z, January CT (1998) Both T- and L-type Ca2+ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. Biophys J 74(4):1830–1839PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhu J, Hua X, Li D, Zhang J, Xia Q (2015) Rapamycin attenuates mouse liver ischemia and reperfusion injury by inhibiting endoplasmic reticulum stress. Transplant Proc 47(6):1646–1652PubMedCrossRefGoogle Scholar
  129. Zima AV, Bovo E, Mazurek SR, Rochira JA, Li W, Terentyev D (2014) Ca handling during excitation-contraction coupling in heart failure. Pflugers Archiv: Eur J Physiol 466(6):1129–1137CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jessica Gambardella
    • 1
    • 2
  • Bruno Trimarco
    • 1
  • Guido Iaccarino
    • 2
  • Gaetano Santulli
    • 1
    • 3
    Email author
  1. 1.Department of Advanced Biomedical Sciences“Federico II” UniversityNaplesItaly
  2. 2.Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of SalernoFiscianoItaly
  3. 3.Department of Medicine, Albert Einstein College of MedicineNew YorkUSA

Personalised recommendations