Skip to main content

Activities of Lysosomal Enzymes in Alloxan-Induced Diabetes in the Mouse

  • Chapter
  • First Online:
Clinical Research Involving Pulmonary Disorders

Abstract

The study investigated a panel of lysosomal enzymes in the liver and kidney tissues in alloxan-induced diabetes in the mouse. The mice were divided into six experimental groups receiving 10% alloxan at a dose of 50 and 75 mg/kg over a period of four, eight, and twelve days; each group was compared with controls receiving 0.9% NaCl. The findings were that diabetes induced by both doses of alloxan was accompanied by significant increases in the lysosomal activities of acid phosphatase and the glycosidases investigated: β-glucuronidase, β-galactosidase, β-glucosidase, and N-acetyl-hexosaminidase. The lysosomal enzyme activity in both liver and kidney cells peaked 12 days after onset of diabetes for most enzymes, at the time when hyperglycemia and hyperinsulinemia already started abating after their peak at 8 days into the course of diabetes. The enzyme activity was in most cases higher with the higher dose of alloxan and thus higher level of glycemia. Lysosomal enzymes degrade glycoconjugates, the molecules that are present in the basement membrane of endothelial cells where they contribute to capillary wall stability. Thus, enhanced activity of these enzymes could presage the progression of diabetic microangiopathy, atherosclerosis, and the development of microvascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Attas OS, Al-Daghri NM, Alfadda AA, Abd-Alrahman SH, Sabico S (2011) Blood thiamine and its phosphate esters as measured by high-performance liquid chromatography: levels and associations in diabetes mellitus patients with varying degrees of microalbuminuria. J Endocrinol Invest 35(11):951–956

    PubMed  Google Scholar 

  • Barrett AJ, Heath MF (1977) Lysosomal enzymes. In: Dingle JT (ed) Lysosomes. A Laboratory Handbook. North-Holland Publishers, Amsterdam/New York/Oxford, pp 19–145

    Google Scholar 

  • Beaufay H (1972) Methods for isolation of lysosomes. In: Dingle JT (ed) Lysosomes. A Laboratory Handbook. North-Holland Publishers, Amsterdam/New York/Oxford, pp 1–30

    Google Scholar 

  • Bhimji S, Godin DV, McNeill JH (1985) Biochemical and functional changes in hearts from rabbits with diabetes. Diabetologia 28(7):452–457

    Article  CAS  PubMed  Google Scholar 

  • Chang AY, Noble RE, Wyse BM (1977) Streptozotocin-induced diabetes in the Chinese hamster. Biochemical and Endocrine Disorders. Diabetologia 13(6):595–602

    Article  CAS  PubMed  Google Scholar 

  • Dell’aquila AM, Ellger B (2013) Perioperative glycemic control: what is worth the effort? Curr Opin Anaesthesiol 26(4):438–443

    Article  PubMed  Google Scholar 

  • El-Demerdash FM, Yousef MI, El-Naga NI (2005) Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol 43(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Faure AM, Werder J, Nyström L (2013) Reactive oxygen species responsible for beta-glucan degradation. Food Chem 141(1):589–596

    Article  CAS  PubMed  Google Scholar 

  • Fushimi H, Shibata M, Tarui S (1980) Glycosidase activities in the liver and kidney of hereditary diabetic mice. J Biochem 87(3):941–949

    Article  CAS  PubMed  Google Scholar 

  • Gambaro G, Venturini AP, Noonan DM, Fries W, Reg G, Garbisa S, Milanesi C, Pesarini A, Borsatti A, Marchi E (1994) Treatment with a glycosaminoglycan formulation ameliorates experimental diabetic nephropathy. Kidney Int 46(3):797–806

    Article  CAS  PubMed  Google Scholar 

  • Gilinsky AS, Kirk AF, Hughes AR, Lindsay RS (2015) Lifestyle interventions for type 2 diabetes prevention in women with prior gestational diabetes: a systematic review and meta-analysis of behavioural, anthropometric and metabolic outcomes. Prev Med Rep 24:448–461

    Article  Google Scholar 

  • Grötsch H, Hropot M, Kief H, Klaus E (1986) Enzymuria in streptozotocin-diabetes rats. J Clin Chem Clin Biochem 24(8):533–539

    PubMed  Google Scholar 

  • Hamer I, Van Beersel G, Arnould T, Jadot M (2012) Lipids and lysosomes. Curr Drug Metab 13(10):1371–1387

    Article  CAS  PubMed  Google Scholar 

  • Heltianu C, Robciuc A, Botez G, Musina C, Stancu C, Sima AV, Simionescu M (2011) Modified low density lipoproteins decrease the activity and expression of lysosomal acid lipase in human endothelial and smooth muscle cells. Cell Biochem Biophys 61(1):209–216

    Article  CAS  PubMed  Google Scholar 

  • Hinohara Y, Takanashi S, Nagashima R, Shioya A (1974) Glucuronic acid pathway in alloxan diabetic rabbits. (I). Urinary excretion of metabolites related to the glucuronic acid pathway. Jpn J Pharmacol 24(6):869–878

    Article  CAS  PubMed  Google Scholar 

  • Kido Y (2013) Progress in diabetes. Rinsho Byori 61(10):941–947

    CAS  PubMed  Google Scholar 

  • Kirschke H, Wiederanders B (1984) Methoden zur Aktivitätsbestimmung von Proteinasen (Methods for determining proteinase activity). In: Kongress und Tagungsberichte der Martin-Luther-Universität, Halle-Wittenberg, Halle; pp. 11–17 (Article in German)

    Google Scholar 

  • Kołątaj A, Śliwa-Jóźwik A, Jóźwik A (2001) The lysosomal cell complex as a stress response indicator. Anim Sci Pap Rep 19(3):177–192

    Google Scholar 

  • Krischer JP, Cuthbertson DD, Yu L (2003) Screening strategies for the identification of multiple antibody-positive relatives of individuals with type 1 diabetes. J Clin Endocrinol Metab 88(1):103–108

    Article  CAS  PubMed  Google Scholar 

  • Kumari K, Sahib MK (1993) Susceptibility of different rat tissue to non-enzymatic protein glycosylation in experimental diabetes. Indian J Exp Biol 31(2):194–195

    CAS  PubMed  Google Scholar 

  • Kutryk MJ, Pierce GN, Dhalla NS (1987) Alterations in heart and serum lysosomal activities in streptozotocin-induced diabetes. Basic Res Cardiol 82(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–266

    Article  CAS  PubMed  Google Scholar 

  • Mandrup-Poulsen T (2013) Type 2 diabetes mellitus: a metabolic autoinflammatory disease. Dermatol Clin 31(3):495–506

    Article  CAS  PubMed  Google Scholar 

  • McAnuff MA, Omoruyi FO, Morrison EY, Asemota HN (2003) Hepatic function enzymes and lipid peroxidation in streptozotocin-induced diabetic rats fed bitter Yam (Dioscorea Polygonoides) steroidal sapogenin extract. Diabetologia Croat 32(1):17–23

    Google Scholar 

  • McAuliffe AV, Fisher EJ, McLennan SV, Yue DK, Turtle JR (1996) Urinary glycosaminoglycan excretion in NIDDM subjects: its relationship to albuminuria. Diabet Med 13(8):758–763

    Article  CAS  PubMed  Google Scholar 

  • Miralles JM, Velasco J, Villabona V, Sanchez-Bernal C, Perez N, Corrales JJ, Garcia-Diez LC, Villar E (1993) Prospective study of the enzymatic activities in urine of N-acetyl-beta-D-glucosaminidase, alpha-D-mannosidase, alpha- and beta-D-glucosidases, alpha-L- and beta-D-fucosidases, and beta-D-galactosidase in type I diabetes mellitus with early nephropathy. J Diabetes Complications 7(3):99–203

    Article  Google Scholar 

  • Mohanam S, Bose SM (1983) Influence of streptozotocin- and alloxan-induced diabetes in the rat on collagenase and certain lysosomal enzymes in relation to the degradation of connective tissue proteins. Diabetologia 25(1):66–70

    Article  CAS  PubMed  Google Scholar 

  • Mohanam S, Bose SM (1984) Influence of streptozotocin- and alloxan-induced diabetes on the metabolism of glycosaminoglycans. Acta Diabetol Lat 21(3):203–210

    Article  CAS  PubMed  Google Scholar 

  • Oshima Y, Isogai S, Mogami K, Ohuchi H, Ohe K (1994) Protective effect of heparin on renal glomerular anionic sites of streptozotocin-injected rats. Diabetes Res Clin Pract 25(2):83–89

    Article  PubMed  Google Scholar 

  • Panin LE, Kliment’eva TK, Maianskaia NN (1982) Effect of glucocorticoids and catecholamines on the state of the tissue lysosomal apparatus in rabbits with experimental diabetes. Probl Endokrinol (Mosk) 28(1):70–73

    CAS  PubMed  Google Scholar 

  • Perkisas S, Vandewoude M (2016) Where frailty meets diabetes. Diabetes Metab Res Rev 32(Suppl 1):261–267

    Article  PubMed  Google Scholar 

  • Platt FM, Boland B, van der Spoel AC (2012) The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol 199(5):723–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrbach DH, Martin GR (1982) Structure of basement membrane in normal and diabetic tissue. Ann N Y Acad Sci 401:203–211

    Article  CAS  PubMed  Google Scholar 

  • Stroev EA, Chugunova LG, Dubinina II (1993) Activity of lysosomal enzymes in diabetes mellitus patients along with diffuse enlargement of the thyroid gland. Vopr Med Khim 39(2):35–36

    CAS  PubMed  Google Scholar 

  • Takumi T, Kodama S, Takahashi T, Matsuo T (1985) N-acetyl-beta D-glucosaminidase activity in serum, kidney and liver of streptozotocin-induced diabetic rat. Enzyme 34(3):166–473

    Article  CAS  PubMed  Google Scholar 

  • Waters PJ, Flynn MD, Corrall RJM, Pennock CA (1992) Increases in plasma lysosomal enzymes in Type 1 (insulin-dependent) diabetes mellitus: relationship to diabetic complications and glycaemic control. Diabetologia 35(10):991–995

    Article  CAS  PubMed  Google Scholar 

  • WHO (2012) World Health Statistics 2012. WHO Press, Geneva

    Google Scholar 

  • Witek B, Król T, Kołątaj A, Ochwanowska E, Stanisławska I, Slewa A (2001) The insulin, glucose and cholesterol level and activity of lysosomal enzymes in the course of the model alloxan diabetes. Neuro Endocrinol Lett 22(4):240–244

    Google Scholar 

  • Witek B, Ochwanowska E, Kołątaj A, Baranowska D, Król T, Rafay J (2004) Insulin-induced changes of proteolytic activity of the lysosomal enzymes. Neuro Endocrinol Lett 25(1-2):83–86

    CAS  PubMed  Google Scholar 

  • Witek B, Fronczyk W, Jóźwik A, Walczak M, Kamińska A, Kołątaj A (2014) The effect of dietary protein level on selected degradative enzymes activity of hepatocytes cellular subfractions in experimental mice. Anim Sci Pap Rep 32(3):269–283

    CAS  Google Scholar 

  • Zhao T, Lu X, Davies NM, Gong Y, Guo J, Zhang H, Li Z, Hong J, Fu G, Li P (2013) Diabetes results in structural alteration of chondroitin sulfate in the urine. J Pharm Pharm Sci 16(3):486–493

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Stanisławska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Witek, B. et al. (2017). Activities of Lysosomal Enzymes in Alloxan-Induced Diabetes in the Mouse. In: Pokorski, M. (eds) Clinical Research Involving Pulmonary Disorders. Advances in Experimental Medicine and Biology(), vol 1040. Springer, Cham. https://doi.org/10.1007/5584_2017_102

Download citation

Publish with us

Policies and ethics