Skip to main content

Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 925))

Abstract

Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

Ca2+ :

Calcium

CBX:

Carbenoxolone

DMD:

Duchenne muscular dystrophy

HSMM:

Human primary skeletal muscle myoblast

kDa:

Kilodalton

P2R:

P2 receptor

Panx:

Pannexin

Panx1:

Pannexin 1

Panx2:

Pannexin 2

Panx3:

Pannexin 3

RC:

Reserve cell

RMS:

Rhabdomyosarcoma

SC:

Satellite cell

References

  • Araya R, Riquelme MA, Brandan E, Saez JC (2004) The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. Brain Res Brain Res Rev 47(1–3):174–188. doi:S0165017304000761 [pii] 10.1016/j.brainresrev.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  • Arias-Calderon M, Almarza G, Diaz-Vegas A, Contreras-Ferrat A, Valladares D, Casas M, Toledo H, Jaimovich E, Buvinic S (2016) Characterization of a multiprotein complex involved in excitation-transcription coupling of skeletal muscle. Skelet Muscle 6:15. doi:10.1186/s13395-016-0087-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572(1–3):65–68

    Article  CAS  PubMed  Google Scholar 

  • Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83(4):706–716

    Article  CAS  PubMed  Google Scholar 

  • Bargiotas P, Krenz A, Hormuzdi SG, Ridder DA, Herb A, Barakat W, Penuela S, von Engelhardt J, Monyer H, Schwaninger M (2011) Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci U S A 108(51):20772–20777. doi:10.1073/pnas.1018262108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann A, Grissmer A, Krause E, Tschernig T, Meier C (2016) Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells. Cell Tissue Res 363(3):751–763. doi:10.1007/s00441-015-2281-x

    Article  CAS  PubMed  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4(2):pii: a008342. doi:10.1101/cshperspect.a008342

    Article  CAS  Google Scholar 

  • Biressi S, Molinaro M, Cossu G (2007) Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 308(2):281–293. doi:10.1016/j.ydbio.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  • Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282(43):31733–31743

    Article  CAS  PubMed  Google Scholar 

  • Bond SR, Wang N, Leybaert L, Naus CC (2012) Pannexin 1 ohnologs in the teleost lineage. J Membr Biol 245(8):483–493. doi:10.1007/s00232-012-9497-4

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12(6):349–361. doi:nrm3118 [pii] 10.1038/nrm3118

    Article  CAS  PubMed  Google Scholar 

  • Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 100(23):13644–13649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buvinic S, Almarza G, Bustamante M, Casas M, Lopez J, Riquelme M, Saez JC, Huidobro-Toro JP, Jaimovich E (2009) ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 284(50):34490–34505. doi:M109.057315 [pii] 10.1074/jbc.M109.057315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caskenette D, Penuela S, Lee V, Barr K, Beier F, Laird DW, Willmore KE (2016) Global deletion of Panx3 produces multiple phenotypic effects in mouse humeri and femora. J Anat. doi:10.1111/joa.12437

    PubMed  Google Scholar 

  • Cea LA, Cisterna BA, Puebla C, Frank M, Figueroa XF, Cardozo C, Willecke K, Latorre R, Saez JC (2013) De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci U S A 110(40):16229–16234. doi:10.1073/pnas.1312331110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celetti SJ, Cowan KN, Penuela S, Shao Q, Churko J, Laird DW (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123(Pt 8):1363–1372. doi:jcs.056093 [pii] 10.1242/jcs.056093

    Article  CAS  PubMed  Google Scholar 

  • Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467(7317):863–867. doi:nature09413 [pii] 10.1038/nature09413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191(5):381–396

    Article  CAS  Google Scholar 

  • Cinnamon Y, Kahane N, Bachelet I, Kalcheim C (2001) The sub-lip domain--a distinct pathway for myotome precursors that demonstrate rostral-caudal migration. Development 128(3):341–351

    CAS  PubMed  Google Scholar 

  • Cowan KN, Langlois S, Penuela S, Cowan BJ, Laird DW (2012) Pannexin1 and Pannexin3 exhibit distinct localization patterns in human skin appendages and are regulated during keratinocyte differentiation and carcinogenesis. Cell Commun Adhes 19(3–4):45–53. doi:10.3109/15419061.2012.712575

    Article  CAS  PubMed  Google Scholar 

  • D’Hondt C, Ponsaerts R, De Smedt H, Vinken M, De Vuyst E, De Bock M, Wang N, Rogiers V, Leybaert L, Himpens B, Bultynck G (2011) Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 23(2):305–316. doi:S0898-6568(10)00211-1 [pii] 10.1016/j.cellsig.2010.07.018

    Article  PubMed  CAS  Google Scholar 

  • Diezmos EF, Sandow SL, Markus I, Shevy Perera D, Lubowski DZ, King DW, Bertrand PP, Liu L (2013) Expression and localization of pannexin-1 hemichannels in human colon in health and disease. Neurogastroenterol Motil 25(6):e395–e405. doi:10.1111/nmo.12130

    Article  CAS  PubMed  Google Scholar 

  • Dolmatova E, Spagnol G, Boassa D, Baum JR, Keith K, Ambrosi C, Kontaridis MI, Sorgen PL, Sosinsky GE, Duffy HS (2012) Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 303(10):H1208–H1218. doi:10.1152/ajpheart.00251.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ednie AR, Bennett ES (2012) Modulation of voltage-gated ion channels by sialylation. Compr Physiol 2(2):1269–1301. doi:10.1002/cphy.c110044

    PubMed  Google Scholar 

  • Friday BB, Pavlath GK (2001) A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Cell Sci 114(Pt 2):303–310

    CAS  PubMed  Google Scholar 

  • Friday BB, Horsley V, Pavlath GK (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149(3):657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. Embo J 10(5):1135–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435(7044):954–958. doi:10.1038/nature03572

    Article  CAS  PubMed  Google Scholar 

  • Gulbransen BD, Sharkey KA (2012) Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9(11):625–632. doi:nrgastro.2012.138 [pii] 10.1038/nrgastro.2012.138

    Article  CAS  PubMed  Google Scholar 

  • Hirata A, Masuda S, Tamura T, Kai K, Ojima K, Fukase A, Motoyoshi K, Kamakura K, Miyagoe-Suzuki Y, Takeda S (2003) Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin. Am J Pathol 163(1):203–215. doi:10.1016/S0002-9440(10)63644-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci U S A 104(15):6436–6441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Iwamoto T, Nakamura T, Doyle A, Fukumoto S, Yamada Y (2011) Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation. J Cell Biol 193(7):1257–1274. doi:jcb.201101050 [pii] 10.1083/jcb.201101050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Iwamoto T, Fukumoto S, Yamada Y (2014) Pannexin 3 Inhibits Proliferation of Osteoprogenitor Cells by Regulating Wnt and p21 Signaling. J Biol Chem 289(5):2839–2851. doi:M113.523241 [pii] 10.1074/jbc.M113.523241

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Williams GL, Ikeuchi T, Sakai K, Fukumoto S, Yamada Y (2016) Pannexin 3 and connexin 43 modulate skeletal development through their distinct functions and expression patterns. J Cell Sci 129(5):1018–1030. doi:10.1242/jcs.176883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto T, Nakamura T, Doyle A, Ishikawa M, de Vega S, Fukumoto S, Yamada Y (2010) Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation. J Biol Chem 285(24):18948–18958. doi:M110.127027 [pii] 10.1074/jbc.M110.127027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorquera G, Altamirano F, Contreras-Ferrat A, Almarza G, Buvinic S, Jacquemond V, Jaimovich E, Casas M (2012) Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity. J Cell Sci 126(Pt 5):1189–1198. doi:jcs.116855 [pii] 10.1242/jcs.116855

    Google Scholar 

  • Jostes B, Walther C, Gruss P (1990) The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech Dev 33(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Kahane N, Kalcheim C (1998) Identification of early postmitotic cells in distinct embryonic sites and their possible roles in morphogenesis. Cell Tissue Res 294(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (1998) The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development. Development 125(21):4259–4271

    CAS  PubMed  Google Scholar 

  • Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19(12):1426–1431. doi:10.1101/gad.345505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer JC, Hauschka SD (2001) Myf-5 is transiently expressed in nonmuscle mesoderm and exhibits dynamic regional changes within the presegmented mesoderm and somites I-IV. Dev Biol 232(1):77–90. doi:10.1006/dbio.2000.0114

    Article  CAS  PubMed  Google Scholar 

  • Lai CP, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67(4):1545–1554

    Article  CAS  PubMed  Google Scholar 

  • Lai CP, Bechberger JF, Naus CC (2009) Pannexin2 as a novel growth regulator in C6 glioma cells. Oncogene 28(49):4402–4408

    Article  CAS  PubMed  Google Scholar 

  • Langlois S, Xiang X, Young K, Cowan BJ, Penuela S, Cowan KN (2014) Pannexin 1 and pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation. J Biol Chem 289(44):30717–30731. doi:M114.572131 [pii] 10.1074/jbc.M114.572131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Vasseur M, Lelowski J, Bechberger JF, Sin WC, Naus CC (2014) Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 8:392. doi:10.3389/fncel.2014.00392

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2012) microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 122(6):2054–2065. doi:62656 [pii] 10.1172/JCI62656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locovei S, Bao L, Dahl G (2006a) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103(20):7655–7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locovei S, Wang J, Dahl G (2006b) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580(1):239–244

    Article  CAS  PubMed  Google Scholar 

  • Loeb DM, Thornton K, Shokek O (2008) Pediatric soft tissue sarcomas. Surg Clin North Am 88(3):615–627, vii. doi:S0039-6109(08)00042-X [pii] 10.1016/j.suc.2008.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohman AW, Weaver JL, Billaud M, Sandilos JK, Griffiths R, Straub AC, Penuela S, Leitinger N, Laird DW, Bayliss DA, Isakson BE (2012) S-nitrosylation inhibits pannexin 1 channel function. J Biol Chem 287(47):39602–39612. doi:M112.397976 [pii] 10.1074/jbc.M112.397976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohman AW, Leskov IL, Butcher JT, Johnstone SR, Stokes TA, Begandt D, DeLalio LJ, Best AK, Penuela S, Leitinger N, Ravichandran KS, Stokes KY, Isakson BE (2015) Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nat Commun 6:7965. doi:10.1038/ncomms8965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNally EM, Pytel P (2007) Muscle diseases: the muscular dystrophies. Annu Rev Pathol 2:87–109. doi:10.1146/annurev.pathol.2.010506.091936

    Article  CAS  PubMed  Google Scholar 

  • Moon PM, Penuela S, Barr K, Khan S, Pin CL, Welch I, Attur M, Abramson SB, Laird DW, Beier F (2015) Deletion of Panx3 Prevents the Development of Surgically Induced Osteoarthritis. J Mol Med (Berl). doi:10.1007/s00109-015-1311-1

    Google Scholar 

  • Nanni P, Nicoletti G, Palladini A, Astolfi A, Rinella P, Croci S, Landuzzi L, Monduzzi G, Stivani V, Antognoli A, Murgo A, Ianzano M, De Giovanni C, Lollini PL (2009) Opposing control of rhabdomyosarcoma growth and differentiation by myogenin and interleukin 4. Mol Cancer Ther 8(4):754–761. doi:1535–7163.MCT-08-0678 [pii] 10.1158/1535-7163.MCT-08-0678

    Article  CAS  PubMed  Google Scholar 

  • Oberlin O, Rey A, Lyden E, Bisogno G, Stevens MC, Meyer WH, Carli M, Anderson JR (2008) Prognostic factors in metastatic rhabdomyosarcomas: results of a pooled analysis from United States and European cooperative groups. J Clin Oncol 26(14):2384–2389. doi:26/14/2384 [pii] 10.1200/JCO.2007.14.7207

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh SK, Shin JO, Baek JI, Lee J, Bae JW, Ankamerddy H, Kim MJ, Huh TL, Ryoo ZY, Kim UK, Bok J, Lee KY (2015) Pannexin 3 is required for normal progression of skeletal development in vertebrates.. doi:fj.15-273722 [pii] 10.1096/fj.15-273722

    Google Scholar 

  • Ordahl CP, Berdougo E, Venters SJ, Denetclaw WF Jr (2001) The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium. Development 128(10):1731–1744

    CAS  PubMed  Google Scholar 

  • Orellana JA, Velasquez S, Williams DW, Saez JC, Berman JW, Eugenin EA (2013) Pannexin1 hemichannels are critical for HIV infection of human primary CD4+ T lymphocytes. J Leukoc Biol 94(3):399–407. doi:10.1189/jlb.0512249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panchin YV (2005) Evolution of gap junction proteins--the pannexin alternative. J Exp Biol 208(Pt 8):1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10(13):R473–R474. doi:S0960-9822(00)00576-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Paoletti A, Raza SQ, Voisin L, Law F, Caillet M, Martins I, Deutsch E, Perfettini JL (2013) Editorial: Pannexin-1--the hidden gatekeeper for HIV-1. J Leukoc Biol 94(3):390–392. doi:10.1189/jlb.0313148

    Article  CAS  PubMed  Google Scholar 

  • Paterson B, Strohman RC (1972) Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev Biol 29(2):113–138

    Article  CAS  PubMed  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. Embo J 25(21):5071–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120(Pt 21):3772–3783. doi:jcs.009514 [pii] 10.1242/jcs.009514

    Article  CAS  PubMed  Google Scholar 

  • Penuela S, Bhalla R, Nag K, Laird DW (2009) Glycosylation Regulates Pannexin Intermixing and Cellular Localization. Mol Biol Cell 20(20):4313–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penuela S, Gehi R, Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828(1):15–22. doi:S0005-2736(12)00021-1 [pii] 10.1016/j.bbamem.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  • Penuela S, Kelly JJ, Churko JM, Barr KJ, Berger AC, Laird DW (2014a) Panx1 regulates cellular properties of keratinocytes and dermal fibroblasts in skin development and wound healing. J Invest Dermatol 134(7):2026–2035. doi:10.1038/jid.2014.86

    Article  CAS  PubMed  Google Scholar 

  • Penuela S, Lohman AW, Lai W, Gyenis L, Litchfield DW, Isakson BE, Laird DW (2014b) Diverse post-translational modifications of the pannexin family of channel-forming proteins. Channels (Austin) 8(2):124–130. doi:27422 [pii] 10.4161/chan.27422

    Article  CAS  Google Scholar 

  • Pillon NJ, Li YE, Fink LN, Brozinick JT, Nikolayev A, Kuo MS, Bilan PJ, Klip A (2014) Nucleotides released from palmitate-challenged muscle cells through pannexin-3 attract monocytes. Diabetes 63(11):3815–3826. doi:db14-0150 [pii] 10.2337/db14-0150

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa MA, Costa C, Magalhaes-Cardoso MT, Ferreirinha F, Sevigny J, Correia-de-Sa P (2013) Histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to Ca2+ mobilization and cell proliferation. J Biol Chem 288(38):27571–27583. doi:10.1074/jbc.M113.460865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pownall ME, Gustafsson MK, Emerson CP Jr (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783. doi:10.1146/annurev.cellbio.18.012502.105758

    Article  CAS  PubMed  Google Scholar 

  • Prochnow N, Abdulazim A, Kurtenbach S, Wildforster V, Dvoriantchikova G, Hanske J, Petrasch-Parwez E, Shestopalov VI, Dermietzel R, Manahan-Vaughan D, Zoidl G (2012) Pannexin1 stabilizes synaptic plasticity and is needed for learning. PLoS ONE 7(12):e51767. doi:10.1371/journal.pone.0051767 PONE-D-12-23109 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186(11):6553–6561. doi:jimmunol.1100478 [pii] 10.4049/jimmunol.1100478

    Article  CAS  PubMed  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044):948–953. doi:10.1038/nature03594

    Article  CAS  PubMed  Google Scholar 

  • Riquelme MA, Cea LA, Vega JL, Boric MP, Monyer H, Bennett MV, Frank M, Willecke K, Saez JC (2013) The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75:594–603. doi:S0028-3908(13)00118-4 [pii] 10.1016/j.neuropharm.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  • Riquelme MA, Cea LA, Vega JL, Puebla C, Vargas AA, Shoji KF, Subiabre M, Saez JC (2015) Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Front Cell Dev Biol 3:25. doi:10.3389/fcell.2015.00025

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambasivan R, Tajbakhsh S (2007) Skeletal muscle stem cell birth and properties. Semin Cell Dev Biol 18(6):870–882. doi:10.1016/j.semcdb.2007.09.013

    Article  CAS  PubMed  Google Scholar 

  • Sassoon D, Lyons G, Wright WE, Lin V, Lassar A, Weintraub H, Buckingham M (1989) Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341(6240):303–307. doi:10.1038/341303a0

    Article  CAS  PubMed  Google Scholar 

  • Scaal M, Christ B (2004) Formation and differentiation of the avian dermomyotome. Anat Embryol (Berl) 208(6):411–424. doi:10.1007/s00429-004-0417-y

    Article  Google Scholar 

  • Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A 103(4):945–950. doi:10.1073/pnas.0510164103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175(1):84–94. doi:10.1006/dbio.1996.0097

    Article  CAS  PubMed  Google Scholar 

  • Schwetz TA, Norring SA, Ednie AR, Bennett ES (2011) Sialic acids attached to O-glycans modulate voltage-gated potassium channel gating. J Biol Chem 286(6):4123–4132. doi:10.1074/jbc.M110.171322

    Article  CAS  PubMed  Google Scholar 

  • Seror C, Melki MT, Subra F, Raza SQ, Bras M, Saidi H, Nardacci R, Voisin L, Paoletti A, Law F, Martins I, Amendola A, Abdul-Sater AA, Ciccosanti F, Delelis O, Niedergang F, Thierry S, Said-Sadier N, Lamaze C, Metivier D, Estaquier J, Fimia GM, Falasca L, Casetti R, Modjtahedi N, Kanellopoulos J, Mouscadet JF, Ojcius DM, Piacentini M, Gougeon ML, Kroemer G, Perfettini JL (2011) Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. J Exp Med 208(9):1823–1834. doi:10.1084/jem.20101805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65(3):376–394

    Article  CAS  PubMed  Google Scholar 

  • Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5(3):193–197. doi:15765 [pii]

    Article  CAS  Google Scholar 

  • Stewart MK, Plante I, Penuela S, Laird DW (2016) Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE 11(4):e0154162. doi:10.1371/journal.pone.0154162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stuelsatz P, Pouzoulet F, Lamarre Y, Dargelos E, Poussard S, Leibovitch S, Cottin P, Veschambre P (2010) Down-regulation of MyoD by calpain 3 promotes generation of reserve cells in C2C12 myoblasts. J Biol Chem 285(17):12670–12683. doi:10.1074/jbc.M109.063966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suadicani SO, Iglesias R, Wang J, Dahl G, Spray DC, Scemes E (2012) ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia 60(7):1106–1116. doi:10.1002/glia.22338

    Article  PubMed  PubMed Central  Google Scholar 

  • Swayne LA, Sorbara CD, Bennett SA (2010) Pannexin 2 is expressed by postnatal hippocampal neural progenitors and modulates neuronal commitment. J Biol Chem 285(32):24977–24986. doi:M110.130054 [pii] 10.1074/jbc.M110.130054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapscott SJ, Thayer MJ, Weintraub H (1993) Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science 259(5100):1450–1453

    Article  CAS  PubMed  Google Scholar 

  • Taulli R, Bersani F, Foglizzo V, Linari A, Vigna E, Ladanyi M, Tuschl T, Ponzetto C (2009) The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest 119(8):2366–2378. doi:38075 [pii] 10.1172/JCI38075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312(5775):924–927

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Jackson MF, Olah ME, Rungta RL, Hines DJ, Beazely MA, MacDonald JF, MacVicar BA (2008) Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322(5907):1555–1559

    Article  CAS  PubMed  Google Scholar 

  • Timoteo MA, Carneiro I, Silva I, Noronha-Matos JB, Ferreirinha F, Silva-Ramos M, Correia-de-Sa P (2014) ATP released via pannexin-1 hemichannels mediates bladder overactivity triggered by urothelial P2Y6 receptors. Biochem Pharmacol 87(2):371–379. doi:10.1016/j.bcp.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  • Turmel P, Dufresne J, Hermo L, Smith CE, Penuela S, Laird DW, Cyr DG (2011) Characterization of pannexin1 and pannexin3 and their regulation by androgens in the male reproductive tract of the adult rat. Mol Reprod Dev 78(2):124–138. doi:10.1002/mrd.21280

    Article  CAS  PubMed  Google Scholar 

  • Valladares D, Almarza G, Contreras A, Pavez M, Buvinic S, Jaimovich E, Casas M (2013) Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy. PLoS ONE 8(11):e75340. doi:10.1371/journal.pone.0075340

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanden Abeele F, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, Prevarskaya N (2006) Functional implications of calcium permeability of the channel formed by pannexin 1. J Cell Biol 174(4):535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS, Croce CM, Guttridge DC (2008) NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14(5):369–381. doi:S1535-6108(08)00330-9 [pii] 10.1016/j.ccr.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  • Weilinger NL, Lohman AW, Rakai BD, Ma EM, Bialecki J, Maslieieva V, Rilea T, Bandet MV, Ikuta NT, Scott L, Colicos MA, Teskey GC, Winship IR, Thompson RJ (2016) Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci 19(3):432–442. doi:10.1038/nn.4236

    Article  CAS  PubMed  Google Scholar 

  • Yaffe D (1968) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A 61(2):477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. doi:10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci 111(Pt 6):769–779

    CAS  PubMed  Google Scholar 

  • Zoidl G, Kremer M, Zoidl C, Bunse S, Dermietzel R (2008) Molecular diversity of connexin and pannexin genes in the retina of the zebrafish Danio rerio. Cell Commun Adhes 15(1):169–183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is supported by the Department of Surgery at the Children’s Hospital of Eastern Ontario (Ottawa, Canada) and the Cancer Research Society.

Conflicts of Interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle N. Cowan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Langlois, S., Cowan, K.N. (2016). Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 925. Springer, Singapore. https://doi.org/10.1007/5584_2016_53

Download citation

Publish with us

Policies and ethics