Skip to main content

The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase

Structure-Function Relationship in Bacterial Allosteric LDHs

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 925))

Abstract

Many bacterial l-lactate dehydrogenases (LDH) are allosteric enzymes, and usually activated by fructose 1,6-bisphosphate (FBP) and often also by substrate pyruvate. The active and inactive state structures demonstrate that Thermus caldophilus, Lactobacillus casei, and Bifidobacterium longum LDHs consistently undergo allosteric transition according to Monod-Wyman-Changeux model, where the active (R) and inactive (T) states of the enzymes coexist in an allosteric equilibrium (pre-existing equilibrium) independently of allosteric effectors. The three enzymes consistently take on open and closed conformations of the homotetramers for the T and R states, coupling the quaternary structural changes with the structural changes in binding sites for substrate and FBP though tertiary structural changes. Nevertheless, the three enzymes undergo markedly different structural changes from one another, indicating that there is a high variety in the allosteric machineries of bacterial LDHs. L. casei LDH undergoes the largest quaternary structural change in the three enzymes, and regulates its catalytic activity though a large linkage frame for allosteric motion. In contrast, T. caldophilus LDH exhibits the simplest allosteric motion in the three enzymes, involving a simple mobile structural core for the allosteric motion. TcLDH likely mediates its allosteric equilibrium mostly through electrostatic repulsion within the protein molecule, providing an insight for regulation machineries in bacterial allosteric LDHs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BlLDH:

Bifidobacterium longum LDH

DMLDH:

dogfish muscle LDH

FBP:

fructose 1,6-bisphosphate

GsLDH:

Geobacillus stearothermophilus LDH

LcLDH:

Lactobacillus casei LDH

LDH:

L-lactate dehydrogenase

LpLDH:

Lactobacillus pentosus LDH

RMSD:

root mean square deviation

TcLDH:

Thermus caldophilus LDH

TmLDH:

Thermotoga maritima LDH

TtLDH:

Thermus thermophilus LDH

TtMDH:

Thermus thermophilus MDH

References

  • Abad-Zapetero C, Griffith JP, Sussman JL, Rossmann MG (1987) Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. J Mol Biol 198:445–467

    Article  Google Scholar 

  • Arai K, Ishimitsu T, Fushinobu S, Uchikoba H, Matsuzawa H, Taguchi H (2010) Active and inactive state structures of unliganded Lactobacillus casei allosteric l-lactate dehydrogenase. Proteins 78:681–694

    CAS  PubMed  Google Scholar 

  • Arai K, Ichikawa J, Nonaka S, Miyanaga A, Uchikoba H, Fushinobu S, Taguchi H (2011) A molecular design that stabilizes active state in bacterial allosteric l-lactate dehydrogenases. J Biochem 150:579–591

    Article  CAS  PubMed  Google Scholar 

  • Auerbach G, Ostendorp R, Prade L, Kornörfer I, Dams T, Huber R, Jaenicke R (1998) Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: the structure at 2.1 Å resolution reveal strategies for intrinsic protein stabilization. Structure 6:769–781

    Article  CAS  PubMed  Google Scholar 

  • Bur D, Clarke T, Friesen JD, Gold M, Hart KW, Holbrook JJ, Jones JB, Luyten MA, Wilks HM (1989) On the effect on specificity of Thr246-Gly mutation in L-lactate dehydrogenase of Bacillus sterothermophilus. Biochem Biophys Res Commun 161:59–63

    Article  CAS  PubMed  Google Scholar 

  • Cameron AD, Roper DI, Moreton KM, Mirhead H, Holbrook JJ, Wigley DB (1994) Allosteric activation in Bacillus stearothermophilus lactate dehydrogenase investigated by an X-ray crystallographic analysis of a mutant designed to prevent tetramerization of the enzyme. J Mol Biol 238:615–625

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Atkinson T, Campbell JW, Holbrook JJ (1985) The assembly mechanism of the lactate dehydrogenase tetramer from Bacillus stearothermophilus; the equilibrium relationships between quaternary structure and the binding of fructose 1,6-biphosphate, NADH and oxamate. Biochim Biophys Acta 829:387–396

    Article  CAS  Google Scholar 

  • Clarke AR, Wigley DB, Chia WN, Barstow DA, Atkinson T, Holbrook JJ (1986) Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase catalysis. Nature 324:699–702

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Wigley DB, Barstow DA, Chia WN, Atkinson T, Holbrook JJ (1987) A single amino acid substitution deregulates a bacterial lactate dehydrogenase and stabilizes its tetrameric structure. Biochim Biophys Acta 913:72–80

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Wilks HM, Barstow DA, Atkinson T, Chia WN, Holbrook JJ (1988) An investigation of the contribution made by the carboxylate group of an active site histidine-aspartate couple to binding and catalysis in lactate dehydrogenase. Biochemistry 27:1617–1622

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Atkinson T, Holbrook JJ (1989) From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Trends Biochem Sci 14:101–105, 145–148

    Article  CAS  PubMed  Google Scholar 

  • Colletier JP, Aleksandrov A, Coquelle N, Mraihi S, Mendoza-Barberá E, Field M, Madern D (2012) Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions. Mol Biol Evol 29:1683–1694

    Article  CAS  PubMed  Google Scholar 

  • Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562

    Article  CAS  PubMed  Google Scholar 

  • Eszes CM, Sessions RB, Clarke AR, Moreton KM, Holbrook JJ (1996) Removal of substrate inhibition in a lactate dehydrogenase from human muscle by a single residue change. FEBS Lett 399:193–197

    Article  CAS  PubMed  Google Scholar 

  • Eventoff W, Rossmann MG, Taylor SS, Torff HJ, Meyer H, Keil W, Kiltz HH (1977) Structural adaptations of lactate dehydrogenase isozymes. Proc Natl Acad Sci U S A 74:2677–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dt Chem Ges 27:2985–2993

    Article  CAS  Google Scholar 

  • Fushinobu S, Kamata K, Iwata S, Sakai H, Ohta T, Matsuzawa H (1996) Allosteric activation of l-lactate dehydrogenase analyzed by hybrid enzymes with effector-sensitive and -insensitive subunits. J Biol Chem 271:25611–25616

    Article  CAS  PubMed  Google Scholar 

  • Fushinobu S, Ohta T, Matsuzawa H (1998) Homotropic activation via the subunit interaction and allosteric symmetry revealed on analysis of hybrid enzymes of l-lactate dehydrogenase. J Biol Chem 273:2971–2976

    Article  CAS  PubMed  Google Scholar 

  • Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 43:106–139

    Google Scholar 

  • Grau UM, Trommer WE, Rossmann MG (1981) Structure of the active ternary complex of pig heart lactate dehydrogenase with S-lac-NAD at 2.7 A resolution. J Mol Biol 151:289–307

    Article  CAS  PubMed  Google Scholar 

  • Hart KW, Clarke AR, Wigley DB, Waldman ADB, Chia WN, Barstow DA, Atkinson T, Jones JB, Holbrook JJ (1987) A strong carboxylate-arginine interaction is important in substrate orientation and recognition in lactate dehydrogenase. Biochim Biophys Acta 914:294–298

    Article  CAS  PubMed  Google Scholar 

  • Holbrook JJ, Liljas A, Steindel SJ, Rossmann MG (1975) Lactate dehydrogenase. In: Boyer PD (ed) The enzymes, vol 11, 3rd edn. Academic, New York, pp 191–292

    Google Scholar 

  • Ikehara Y, Arai K, Furukawa N, Ohno T, Miyake T, Fushinobu S, Nakajima M, Miyanaga A, Taguchi H (2014) The core of allosteric motion in Thermus caldophilus l-Lactate dehydrogenase. J Biol Chem 289:31550–31564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata S, Ohta T (1993) Molecular basis of allosteric activation of bacterial l-lactate dehydrogenase. J Mol Biol 230:21–27

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Kamata K, Minowa T, Ohta T (1994) T and R states in the crystals of bacterial l-lactate dehydrogenase reveal the mechanism for allosteric control. Nat Struct Biol 1:176–185

    Article  CAS  PubMed  Google Scholar 

  • Koide S, Yokoyama S, Matsuzawa H, Miyazawa T, Ohta T (1989) Conformation of NAD+ bound to allosteric l-lactate dehydrogenase activated by chemical modification. J Biol Chem 264:8676–8679

    CAS  PubMed  Google Scholar 

  • Koide S, Yokoyama S, Matsuzawa H, Miyazawa T, Ohta T (1992) Conformational equilibrium of an enzyme catalytic site in the allosteric transition. Biochemistry 31:5362–5368

    Article  CAS  PubMed  Google Scholar 

  • Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci U S A 44:98–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshland DE, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–368

    Article  CAS  PubMed  Google Scholar 

  • Machida M, Yokoyama S, Matsuzawa H, Miyazawa T, Ohta T (1985a) Allosteric effect of fructose 1,6-bisphosphate on the conformation of NAD+ as bound to l-lactate dehydrogenase from Thermus caldophilus GK24. J Biol Chem 260:16143–16147

    CAS  PubMed  Google Scholar 

  • Machida M, Matsuzawa H, Ohta T (1985b) Fructose 1,6-bisphosphate-dependent l-lactate dehydrogenase from Thermus aquaticuas YT-1, an extreme thermophilile: activation by citrate and modification reagents and comparison with Thermus caldophilus GK24 l-lactate dehydrogenase. J Biochem 97:899–909

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa H, Machida M, Kunai K, Ito Y, Ohta T (1988) Identification of an allosteric site residue of a fructose 1,6-bisphosphate-dependemt l-lactate dehydrogenase of Thermus caldophilus GK24: production of a non-allosteric form by protein engineering. FEBS Lett 233:375–378

    Article  CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  • Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakowicz R, Kallwass HK, Parris W, Kay CM, Jones JB, Gold M (1993) Threonine 246 at the active site of the l-lactate dehydrogenase of Bacillus stearothermophilus is important for catalysis but not for substrate binding. Biochemistry 32:12730–12735

    Article  CAS  PubMed  Google Scholar 

  • Taguchi H, Ohta T (1992) Unusual amino acid substitution in the anion-binding site of Lactobacillus plantarum non-allosteric l-lactate dehydrogenase. Eur J Biochem 209:993–998

    Article  CAS  PubMed  Google Scholar 

  • Taguchi H, Yamashita M, Matsuzawa H, Ohta T (1982) Heat-stable and fructose 1,6-bisphosphate-activated l-lactate dehydrogenase from an extremely thermophilic bacterium. J Biochem 91:1345–1348

    Article  Google Scholar 

  • Taguchi H, Matsuzawa H, Ohta T (1984) l-Lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium. Desensitization to fructose 1,6-bisphosphate in the activated state by arginine-specific chemical modification and the N-terminal amino acid sequence. Eur J Biochem 145:283–290

    Article  CAS  PubMed  Google Scholar 

  • Taguchi H, Machida M, Matsuzawa H, Ohta T (1985) Allosteric and kinetic properties of l-lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium. Agric Biol Chem 49:359–364

    CAS  Google Scholar 

  • Uchikoba H, Fushinobu S, Wakagi T, Konno M, Taguchi H, Matsuzawa H (2002) Crystal structure of non-allosteric l-lactate dehydrogenase from Lactobacillus pentosus at 2.3 Å resolution: specific interactions as subunit interfaces. Proteins 46:206–214

    Article  CAS  PubMed  Google Scholar 

  • Wigley DB, Gamblin SJ, Turkenburg JP, Dodson EJ, Piontek K, Muirhead H, Holbrook JJ (1992) Structure of a ternary complex of an allosteric lactate dehydrogenase from Bacillus stearothermophilus at 2.5 Å resolution. J Mol Biol 223:317–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to Drs. Kazuhito Arai, Akimasa Miyanaga, and Masahiro Nakajima in my laboratory for many supports and discussions as to the descriptions of the structures and functions of TcLDH and LcLDH. The crystallographic studies for these two enzymes were performed with the approval of the Photon Factory Program Advisory Committee (Proposal Nos. 2004G136 and 2006G160).

Compliance with Ethical Standards

This article does not contain any studies relevant to Compliance with Ethical Standards, or with human participants or animals performed by any of the authors.

Statements

This article has not been simultaneously submitted for publication elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayao Taguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taguchi, H. (2016). The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 925. Springer, Singapore. https://doi.org/10.1007/5584_2016_171

Download citation

Publish with us

Policies and ethics