Skip to main content

The Concept of Biofilm-Related Implant Malfunction and “Low-Grade Infection”

  • Chapter
  • First Online:
A Modern Approach to Biofilm-Related Orthopaedic Implant Infections

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 971))

Abstract

Biofilms have a tremendous impact on industrial machines working in moist environments, while in biological systems their effect is further complicated by the host’s response.

Implant-related infections are a complex process, starting with bacterial adhesion and biofilm formation, followed by the variable interaction between host, implant, microorganisms and their by-products. Depending on the balance of these factors, different clinical presentations are observed, which may eventually, at times, shift from one into the other.

–“Implant malfunction” displays only mild clinical signs/symptoms – light pain and/or slight soft tissue contracture or functional impairment – with negative infection/inflammatory markers; it requires prolonged cultures, antibiofilm and eventually genomic investigations for pathogen detection;

–“Low-grade infection” features recurrent or persistent pain and/or soft tissue contracture with various functional impairment and mixed positive/negative markers of infection/inflammation; pathogen identification requires prolonged cultures and antibiofilm techniques;

–“High-grade infection” displays classical signs/symptoms of infection/inflammation with positive tests; pathogen identification is often possible with traditional microbiological techniques, but is better achieved with prolonged cultures and antibiofilm processing.

Understanding biofilms-related clinical presentations is crucial for physicians, to implement the best diagnostic and therapeutic measures, and for regulatory bodies, to define the evaluation process of technologies aimed at reducing implants’ malfunctions and infections, like anti-adhesive and antibiofilm coatings, that should be regulated as (part of) medical devices, requiring a suitable post-marketing surveillance.

Only an effective antibiofilm-targeted approach from all players will hopefully allow the medical community to mitigate the current unacceptable social and economical burden of implant-related infections and malfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angst EC (1923) The fouling of ship bottoms by bacteria. Report, Bureau Construction and Repair, United States Navy Department, Washington, DC

    Google Scholar 

  • Baddour LM, Epstein AE, Erickson CC, et al., American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee, Council on Cardiovascular Disease in Young, Council on Cardiovascular Surgery and Anesthesia, Council on Cardiovascular Nursing, Council on Clinical Cardiology, Interdisciplinary Council on Quality of Care, American Heart Association (2010) Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 121:458–477

    Google Scholar 

  • Bauer TW, Grosso MJ (2013) The basic science of biofilm and its relevance to the treatment of periprosthetic joint infection. Orthop Knowl Online J 11(9):12–20

    Google Scholar 

  • Beswick AD, Wylde V, Gooberman-Hill R et al (2012) What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open 2:e000435. doi:10.1136/bmjopen-2011-000435

    Article  PubMed  PubMed Central  Google Scholar 

  • Bixler et al (2014) J colloid Interface Sci 419:114–133

    Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32. doi:10.1111/j.1541-4337.2003.tb00012.x

    Article  CAS  Google Scholar 

  • Chye FYF, Abdullah A, Ayob MK (2004) Bacteriological quality and safety of raw milk in Malaysia. Food Microbiol 21:535–541

    Article  Google Scholar 

  • Coetser SE, Cloete TE (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 31:213–232

    Article  CAS  PubMed  Google Scholar 

  • Colautti RI, Bailey SA, Van Overdijk CD, Amundsen K, Macisaac HJ (2006) Characterised and projected costs of nonindigenous species in Canada. Biol Invasions 8:45–59. doi:10.1007/s10530-005-0236-y

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin -Scott HM (1995) Microbial biofilms. Ann Rev Micro 49:711–745

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Dale H, Hallan G, Hallan G, Espehaug B, Havelin LI, Engesaeter LB (2009) Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop 80:639–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Drago L, Signori V, De Vecchi E, Vassena C, Palazzi E, Cappelletti L, Romanò D, Romano’ CL (2013) Use of dithiothreitol to improve the diagnosis of prosthetic joint infections. J Orthop Res 31:1694. doi:10.1002/jor.22423

    CAS  PubMed  Google Scholar 

  • Flemming HC (2009) Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions. In: Flemming HC et al. (eds) Biofilm highlights. Springer Series on Biofilms 5. Springer-Verlag, Berlin/Heidelberg. doi:10.1007/978-3-642-19940-0_5, 2011

    Google Scholar 

  • Flemming HC (2011) Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions. In: Flemming H-C, Wingender J, Szewzyk U (eds) Biofilm highlights. Springer, Essen, pp 81–109

    Chapter  Google Scholar 

  • Flemming HC, Schaule G (1988) Biofouling on membranes – a microbiological approach. Desalination 70:95–119

    Article  CAS  Google Scholar 

  • Flemming H-C, Schaule G, McDonogh R, Ridgway HF (1994) Mechanism and extent of membrane biofouling. In: Geesey GG, Lewandowski Z, Flemming H-C (eds) Biofouling and biocorrosion in industrial water systems. Lewis, Chelsea, pp 63–89

    Google Scholar 

  • Ganesh CK, Anand SK (1998) Significance of microbial biofilms in food industry a review. Int J Food Microbiol 42:9–27

    Article  Google Scholar 

  • Gille J, Wallstabe S, Schulz AP et al (2012) Is non-union of tibial shaft fractures due to nonculturable bacterial pathogens? A clinical investigation using PCR and culture techniques. J Orthop Surg Res 7:20–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez E, Patel R (2011) Laboratory diagnosis of prosthetic joint infection, part I. Clin Microbiol Newsl 33(8):55–60

    Article  Google Scholar 

  • Gristina AG, Naylor PT, Webb LX (1990) Molecular mechanisms in musculoskeletal sepsis: the race for the surface. Instr Course Lect 39:471–482

    CAS  PubMed  Google Scholar 

  • Harrison JJ, Turner RJ, Marques LLR, Ceri H (2005) Biofilms. A new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am Sci 93:508–515

    Article  Google Scholar 

  • Kamino K (2013) Mini-review: barnacle adhesives and adhesion. Biofouling 29:735–749

    Article  CAS  PubMed  Google Scholar 

  • Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplast 27:61–65

    Article  Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    Article  CAS  Google Scholar 

  • Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36:1157–1161

    Article  PubMed  Google Scholar 

  • Lovati AB, Romanò CL, Bottagisio M, Monti L, De Vecchi E, Previdi S et al (2016) Modeling Staphylococcus epidermidis-induced non-unions: subclinical and clinical evidence in rats. PLoS One 11(1):e0147447. doi:10.1371/journal.pone.0147447

    Article  PubMed  PubMed Central  Google Scholar 

  • Millett PJ, Yen YM, Price CS, Horan MP, van der Meijden OA, Elser F (2011) Propionibacterium acnes infection as an occult cause of postoperative shoulder pain: a case series. Clin Orthop Relat Res 469(10):2824–2830

    Article  PubMed  PubMed Central  Google Scholar 

  • Moojen DJF, van Hellemondt D, Vogely HC et al (2010) Incidence of low-grade infection in aseptic loosening of total hip arthroplasty: a prospective multicenter study using extensive routine and broad-range 16S PCR with reverse line blot diagnostics. Acta Orthop 81(6):667–673

    Article  PubMed  PubMed Central  Google Scholar 

  • Nana A, Nelson SB, McLaren A, Chen AF (2016) What’s new in Musculoskeletal infection: update on biofilms. J Bone Joint Surg Am 98:1226–1234

    Article  PubMed  Google Scholar 

  • Pajkos A, Deva AK, Vickery K et al (2003) Detection of subclinical infection in significan breast implant capsules. Plast Recontr Surg 111:1605–1610

    Article  Google Scholar 

  • Palmer M, Costerton W, Sewecke J, Altman D (2011) Molecular techniques to detect biofilm bacteria in long bone nonunion: a case report. Clin Orthop Relat Res 469:3037–3042

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrak T, Kalodera Z, Novakovic P et al (1999) Bacteriological comparison of parallel and counter flow water chilling of poultry meat. Meat Sci 53:269–271

    Article  CAS  PubMed  Google Scholar 

  • Pittet B, Montandon D, Pittet D (2005) Infection in breast implants. Lancet Infect Dis 5:94–106

    Article  PubMed  Google Scholar 

  • Prakasam S, Stein K, Lee MK, Rampa S, Nalliah R, Allareddy V, Allareddy V (2016) Prevalence and predictors of complications following facial reconstruction procedures. Int J Oral Maxillofac Surg 45(6):735–742

    Article  CAS  PubMed  Google Scholar 

  • Prentice T, Beaglehole R, Irwin A (2004) The World Health Report, 2004: changing history. World Health Organization, Geneva

    Google Scholar 

  • Romanò CL, De Vecchi E, Vassena C, Manzi G, Drago L (2013a) A case of a late and atypical knee prosthetic infection by no-biofilm producer Pasteurella multocida strain identified by pyrosequencing. Pol J Microbiol 62(4):435–438

    PubMed  Google Scholar 

  • Romanò CL, Toscano M, Romanò D, Drago L (2013b) Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 25(2):67–80

    Article  PubMed  Google Scholar 

  • Romanò CL, Logoluso N, Drago L, Peccati A, Romanò D (2014) Role for irrigation and Debridement in Periprosthetic infections. J Knee Surg 27:267

    Article  PubMed  Google Scholar 

  • Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L (2015) Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 10:157–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanò CL, Malizos K, Capuano N, Mezzoprete R, D’Arienzo M, Van Der Straeten C, Scarponi S, Drago L (2016) Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty ? Bone Joint Infect 1:34–41

    Article  Google Scholar 

  • Scarponi S, Drago L, Romanò D, Logoluso N, Peccati A, Meani E, Romanò CL (2013) Cementless modular intramedullary nail without bone-on-bone fusion as a salvage procedure in chronically infected total knee prosthesis: long-term results. Int Orthop 35:413

    Google Scholar 

  • Schmitt G (2009) Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control. World Corrosion Organization, New York

    Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98. doi:10.1080/08927014.2010.542809

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20:407–413

    Article  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    Article  CAS  PubMed  Google Scholar 

  • Stoodley P, Ehrlich GD, Sedghizadeh PP, Hall-Stoodley L, Baratz ME, Altman DT, Sotereanos NG, Costerton JW, Demeo P (2011) Orthopaedic biofilm infections. Curr Orthop Pract 22(6):558–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186(11):6585–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsin RL (2003) The ship hull fouling penalty. Biofouling 19(Suppl):9–15

    Article  PubMed  Google Scholar 

  • Tsuchiya H, Shirai T, Nishida H, Murakami H, Kabata T, Yamamoto N et al (2012) Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci 17(5):595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verran J, Jones M (2000) Industrial biofouling. Wiley, New York

    Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF et al (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2014) Antimicrobial resistance: global report on surveillance 2014. http://www.who.int/drugresistance/documents/surveillancereport/en/

  • Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE (1982) Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis 146(4):487–497

    Article  CAS  PubMed  Google Scholar 

  • Zmistowski B, Karam JA, Durinka JB, Casper DS, Parvizi J (2013) Periprosthetic joint infection increases the risk of one-year mortality. J Bone Joint Surg Am 95:2177–2184

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Luca Romanò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Romanò, C.L., Romanò, D., Morelli, I., Drago, L. (2016). The Concept of Biofilm-Related Implant Malfunction and “Low-Grade Infection”. In: Drago, L. (eds) A Modern Approach to Biofilm-Related Orthopaedic Implant Infections. Advances in Experimental Medicine and Biology(), vol 971. Springer, Cham. https://doi.org/10.1007/5584_2016_158

Download citation

Publish with us

Policies and ethics