Skip to main content

Natural Sources as Innovative Solutions Against Fungal Biofilms

  • Chapter
  • First Online:
Book cover Fungal Biofilms and related infections

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 931))

Abstract

Fungal cells are capable of adhering to biotic and abiotic surfaces and form biofilms containing one or more microbial species that are microbial reservoirs. These biofilms may cause chronic and acute infections. Fungal biofilms related to medical devices are particularly responsible for serious infections such as candidemia. Nowadays, only a few therapeutic agents have demonstrated activities against fungal biofilms in vitro and/or in vivo. So the discovery of new anti-biofilm molecules is definitely needed. In this context, biodiversity is a large source of original active compounds including some that have already proven effective in therapies such as antimicrobial compounds (antibacterial or antifungal agents). Bioactive metabolites from natural sources, useful for developing new anti-biofilm drugs, are of interest. In this chapter, the role of molecules isolated from plants, lichens, algae, microorganisms, or from animal or human origin in inhibition and/or dispersion of fungal biofilms (especially Candida and Aspergillus biofilms) is discussed. Some essential oils, phenolic compounds, saponins, peptides and proteins and alkaloids could be of particular interest in fighting fungal biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alviano WS, Mendonça-Filho RR, Alviano DS et al (2005) Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol Immunol 20(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Anghel I, Grumezescu AM, Holban AM et al (2013a) Biohybrid nanostructured iron oxide nanoparticles and Satureja hortensis to prevent fungal biofilm development. Int J Mol Sci 14(9):18110–18123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anghel I, Holban AM, Andronescu E et al (2013b) Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to Candida albicans biofilm development. Biointerphases 8(1):12

    Article  PubMed  CAS  Google Scholar 

  • Bakkiyaraj D, Nandhini JR, Malathy B et al (2013) The anti-biofilm potential of pomegranate (Punica granatum L) extract against human bacterial and fungal pathogens. Biofouling 29(8):929–937

    Article  CAS  PubMed  Google Scholar 

  • Barbieri DS, Tonial F, Lopez PV et al (2014) Antiadherent activity of Schinus terebinthifolius and Croton urucurana extracts on in vitro biofilm formation of Candida albicans and Streptococcus mutans. Arch Oral Biol 59(9):887–896

    Article  PubMed  Google Scholar 

  • Bersan SM, Galvão LC, Goes VF et al (2014) Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement Altern Med 14:451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braga PC, Culici M, Alfieri M et al (2008) Thymol inhibits Candida albicans biofilm formation and mature biofilm. Int J Antimicrob Agents 31(5):472–477

    Article  CAS  PubMed  Google Scholar 

  • Bruneton J (2008) Pharmacognosy, phytochemistry, medicinal plants, 2nd edn. Lavoisier Tec & Doc, Paris

    Google Scholar 

  • Bujdáková H, Paulovicová E, Borecká-Melkusová S et al (2008) Antibody response to the 45 kDa Candida albicans antigen in an animal model and potential role of the antigen in adherence. J Med Microbiol 57(12):1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Busscher HJ, van Hoogmoed CG, Geertsema-Doornbusch GI et al (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp on silicone rubber. Appl Environ Microbiol 63(10):3810–3817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Dai B, Wang Y et al (2008) In vitro activity of baicalein against Candida albicans biofilms. Int J Antimicrob Agents 32(1):73–77

    Article  CAS  PubMed  Google Scholar 

  • Capoci IR, Bonfim-Mendonça PS, Arita GS et al (2015) Propolis is an efficient fungicide and inhibitor of biofilm production by vaginal candida albicans. Evid Based Complement Alternat Med 2015:287693

    Article  PubMed  PubMed Central  Google Scholar 

  • Carneiro VA, Santos HS, Arruda FV et al (2011) Casbane diterpene as a promising natural antimicrobial agent against biofilm-associated infections. Molecules 16(1):190–201

    Article  CAS  Google Scholar 

  • Ceresa C, Tessarolo F, Caola I et al (2015) Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 118(5):1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Li Y, Zhang L et al (2012) Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biol Pharm Bull 35(10):1794–1801

    Article  CAS  PubMed  Google Scholar 

  • Chang W, Zhang M, Li Y et al (2015) Lichen endophyte derived pyridoxatin inactivates Candida growth by interfering with ergosterol biosynthesis. Biochim Biophys Acta 1850(9):1762–1771

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Sun L, Wu X et al (2009) The inhibitory effect of a macrocyclic bisbibenzyl riccardin D on the biofilms of Candida albicans. Biol Pharm Bull 32(8):1417–1421

    Article  CAS  PubMed  Google Scholar 

  • Chevalier M, Medioni E, Prêcheur I (2012) Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. J Med Microbiol 61(7):1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Chifiriuc C, Grumezescu V, Grumezescu AM et al (2012) Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res Lett 7:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cochis A, Fracchia L, Martinotti MG et al (2012) Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol 113(6):755–761

    Article  PubMed  Google Scholar 

  • Coleman JJ, Okoli I, Tegos GP et al (2010) Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 5(3):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordeiro RA, Macedo RB, Teixeira CE et al (2014) The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. J Med Microbiol 63(7):936–944

    Article  CAS  Google Scholar 

  • Curvelo JA, Marques AM, Barreto AL et al (2014) A novel nerolidol-rich essential oil from Piper claussenianum modulates Candida albicans biofilm. J Med Microbiol 63(5):697–702

    Article  CAS  PubMed  Google Scholar 

  • Da Silva AC, Lopes PM, De Azevedo MM et al (2012) Biological activities of α-pinene and β-pinene enantiomers. Molecules 17(6):6305–6316

    Article  PubMed  CAS  Google Scholar 

  • Dalleau S, Cateau E, Bergès T et al (2008) In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents 31(6):572–576

    Article  CAS  PubMed  Google Scholar 

  • De Brucker K, Delattin N, Robijns S et al (2014) Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob Agents Chemother 58(9):5395–5404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Campos Rasteiro VM, Da Costa AC, Araújo CF et al (2014) Essential oil of Melaleuca alternifolia for the treatment of oral candidiasis induced in an immunosuppressed mouse model. BMC Complement Altern Med 14:489

    Article  PubMed  PubMed Central  Google Scholar 

  • De Castro PA, Bom VL, Brown NA et al (2013) Identification of the cell targets important for propolis-induced cell death in Candida albicans. Fungal Genet Biol 60:74–86

    Article  PubMed  CAS  Google Scholar 

  • Delattin N, De Brucker K, Craik DJ et al (2014) Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability. Antimicrob Agents Chemother 58(5):2647–2656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doke SK, Raut JS, Dhawale S et al (2014) Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J Gen Appl Microbiol 60(5):163–168

    Article  CAS  PubMed  Google Scholar 

  • Dusane DH, Pawar VS, Nancharaiah YV et al (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27(6):645–654

    Article  CAS  PubMed  Google Scholar 

  • Dusane DH, Damare SR, Nancharaiah YV et al (2013) Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS ONE 8(5):e64501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evensen NA, Braun PC (2009) The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55(9):1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Feldman M, Tanabe S, Howell A et al (2012) Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells. BMC Complement Altern Med 12:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francolini I, Norris P, Piozzi A et al (2004) Usnic acid a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48(11):4360–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujibayashi T, Nakamura M, Tominaga A et al (2009) Effects of IgY against Candida albicans and Candida spp Adherence and Biofilm Formation. Jpn J Infect Dis 62(5):337–342

    CAS  PubMed  Google Scholar 

  • Furletti VF, Teixeira IP, Obando-Pereda G et al (2011) Action of Coriandrum sativum L Essential oil upon oral Candida albicans biofilm formation. Evid Based Complement Alternat Med 2011:985832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardot M, Guerineau A, Boudesocque L et al (2014) Promising results of cranberry in the prevention of oral Candida biofilms. Pathog Dis 70(3):432–439

    Article  CAS  PubMed  Google Scholar 

  • Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23(3):72–85

    Article  Google Scholar 

  • Grumezescu AM, Chifiriuc MC, Saviuc C et al (2012) Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia carryophyllata essential oil. IEEE Trans Nanobioscience 11(4):360–365

    Article  PubMed  Google Scholar 

  • Hodgkinson AJ, Cannon RD, Holmes AR et al (2007) Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicans IgA antibodies. J Dairy Res 74(3):269–275

    Article  CAS  PubMed  Google Scholar 

  • Holmes AR, Chong K, Rodrigues E et al (2012) Yeast colonization of voice prostheses: pilot study investigating effect of a bovine milk product containing anti-Candida albicans immunoglobulin A antibodies on yeast colonization and valve leakage. Ann Otol Rhinol Laryngol 121(1):61–66

    Article  PubMed  Google Scholar 

  • Hornby JM, Jensen EC, Lisec AD et al (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CC, Lai WL, Chuang KC et al (2013) The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med Mycol 51(5):473–482

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim e-SM, Rahman AK, Isoda R et al (2008) In vitro and in vivo effectiveness of egg yolk antibody against Candida albicans (anti-CA IgY). Vaccine 26(17):2073–2080

    Article  CAS  Google Scholar 

  • Janek T, Łukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamikawa Y, Fujisaki J, Nagayama T et al (2014) Use of Candida-specific chicken egg yolk antibodies to inhibit the adhering of Candida to denture base materials: prevention of denture stomatitis. Gerodontology. doi:10.1111/ger.12163

    Google Scholar 

  • Kavanaugh NL, Zhang AQ, Nobile CJ et al (2014) Mucins suppress virulence traits of Candida albicans. MBio 5(6):e01911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MS, Ahmad I (2012a) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67(3):618–621

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Ahmad I (2012b) Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. J Ethnopharmacol 140(2):416–423

    Article  CAS  PubMed  Google Scholar 

  • Konopka K, Dorocka-Bobkowska B, Gebremedhin S et al (2010) Susceptibility of Candida biofilms to histatin 5 and fluconazole. Antonie Van Leeuwenhoek 97(4):413–417

    Article  CAS  PubMed  Google Scholar 

  • Lazăr V, Chifiriuc MC (2010) Medical significance and new therapeutical strategies for biofilm associated infections. Roum Arch Microbiol Immunol 69(3):125–138

    PubMed  Google Scholar 

  • Li Y, Ma Y, Zhang L et al (2012) In vivo inhibitory effect on the biofilm formation of Candida albicans by liverwort derived riccardin D. PLoS ONE 7(4):e35543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chang W, Zhang M et al (2015) Synergistic and drug-resistant reversing effects of diorcinol D combined with fluconazole against Candida albicans. FEMS Yeast Res 15(2):fov001

    Article  PubMed  Google Scholar 

  • Luiz RL, Vila TV, De Mello JC et al (2015) Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. BMC Complement Altern Med 15:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandal SM (2012) A novel hydroxyproline rich glycopeptide from pericarp of Datura stramonium: proficiently eradicate the biofilm of antifungals resistant Candida albicans. Biopolymers 98(4):332–337

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Migliolo L, Franco OL et al (2011) Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32(8):1741–1747

    Article  CAS  PubMed  Google Scholar 

  • Messier C, Grenier D (2011) Effect of licorice compounds licochalcone A glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses 54(6):e801–e806

    Article  CAS  PubMed  Google Scholar 

  • Messier C, Epifano F, Genovese S et al (2011) Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine 18(5):380–383

    Article  CAS  PubMed  Google Scholar 

  • Mishra N, Ali S, Shukla P (2015) A monoclonal antibody against 472 kDa cell surface antigen prevents adherence and affects biofilm formation of Candida albicans. World J Microbiol Biotechnol 31(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Mole S, Waterman PG (1987) A critical analysis of techniques for measuring tannins in ecological studies. Oecologia 72(1):148–156

    Article  Google Scholar 

  • Monteiro AS, Miranda TT, Lula I et al (2011) Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72. Colloids Surf B Biointerfaces 84(2):467–476

    Article  CAS  PubMed  Google Scholar 

  • Onsare JG, Arora DS (2015) Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus Pseudomonas aeruginosa and Candida albicans. J Appl Microbiol 118(2):313–325

    Article  CAS  PubMed  Google Scholar 

  • Palíková I, Heinrich J, Bednár P et al (2008) Constituents and antimicrobial properties of blue honeysuckle: a novel source for phenolic antioxidants. J Agric Food Chem 56(24):11883–11889

    Article  PubMed  CAS  Google Scholar 

  • Palmeira-de-Oliveira A, Gaspar C, Palmeira-de-Oliveira R et al (2012) The anti-Candida activity of Thymbra capitata essential oil: effect upon pre-formed biofilm. J Ethnopharmacol 140(2):379–383

    Article  CAS  PubMed  Google Scholar 

  • Pemmaraju SC, Pruthi PA, Prasad R et al (2013) Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J Exp Biol 51(11):1032–1037

    CAS  PubMed  Google Scholar 

  • Pires RH, Montanari LB, Martins CH et al (2011) Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia 172(6):453–464

    Article  CAS  PubMed  Google Scholar 

  • Pires RH, Lucarini R, Mendes-Giannini MJ (2012) Effect of usnic acid on Candida orthopsilosis and C parapsilosis. Antimicrob Agents Chemother 56(1):595–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pusateri CR, Monaco EA, Edgerton M (2009) Sensitivity of Candida albicans biofilm cells grown on denture acrylic to antifungal proteins and chlorhexidine. Arch Oral Biol 54(6):588–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Saville SP, Wickes BL et al (2002) Inhibition of Candida albicans biofilm formation by farnesol a quorum-sensing molecule. Appl Environ Microbiol 68(11):5459–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramage G, Milligan S, Lappin DF et al (2012) Antifungal cytotoxic and immunomodulatory properties of tea tree oil and its derivative components: potential role in management of oral candidosis in cancer patients. Front Microbiol 3:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Rane HS, Bernardo SM, Howell AB et al (2014) Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms. J Antimicrob Chemother 69(2):428–436

    Article  CAS  PubMed  Google Scholar 

  • Raut JS, Shinde RB, Chauhan NM et al (2013) Terpenoids of plant origin inhibit morphogenesis adhesion and biofilm formation by Candida albicans. Biofouling 29(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Rautela R, Singh AK, Shukla A et al (2014) Lipopeptides from Bacillus strain AR2 inhibits biofilm formation by Candida albicans. Antonie Van Leeuwenhoek 105(5):809–821

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Van Der Mei H, Banat IM et al (2006) Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol 46(1):107–112

    Article  CAS  PubMed  Google Scholar 

  • Rossignol T, Kelly B, Dobson C et al (2011) Endocytosis-mediated vacuolar accumulation of the human ApoE apolipoprotein-derived ApoEdpL-W antimicrobial peptide contributes to its antifungal activity in Candida albicans. Antimicrob Agents Chemother 55(10):4670–4681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundel PW (1978) The ecological role of secondary lichen substances. Biochem Syst Ecol 6:157–170

    Article  CAS  Google Scholar 

  • Sadowska B, Budzyńska A, Więckowska-Szakiel M et al (2014) New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans. J Med Microbiol 63(8):1076–1086

    Article  PubMed  Google Scholar 

  • Saharkhiz MJ, Motamedi M, Zomorodian K et al (2012) Chemical composition antifungal and antibiofilm activities of the essential oil of Mentha piperita L. ISRN Pharm 2012:718645

    PubMed  PubMed Central  Google Scholar 

  • Sangetha S, Zuraini Z, Suryani S et al (2009) In situ TEM and SEM studies on the antimicrobial activity and prevention of Candida albicans biofilm by Cassia spectabilis extract. Micron 40(4):439–443

    Article  CAS  PubMed  Google Scholar 

  • Sengupta J, Saha S, Khetan A et al (2012) Effects of lactoferricin B against keratitis-associated fungal biofilms. J Infect Chemother 18(5):698–703

    Article  CAS  PubMed  Google Scholar 

  • Shahzad M, Sherry L, Rajendran R et al (2014) Utilising polyphenols for the clinical management of Candida albicans biofilms. Int J Antimicrob Agents 44(3):269–273

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Wang T, Yan Y et al (2014) Matrine reduces yeast-to-hypha transition and resistance of a fluconazole-resistant strain of Candida albicans. J Appl Microbiol 117(3):618–626

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Srivastava S (2014) Anti-Candida activity of spent culture filtrate of Lactobacillus plantarum strain LR/14. J Mycol Med 24(2):e25–e34

    Article  CAS  PubMed  Google Scholar 

  • Shuford JA, Steckelberg JM, Patel R (2005) Effects of fresh garlic extract on Candida albicans biofilms. Antimicrob Agents Chemother 49(1):473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    Article  CAS  Google Scholar 

  • Singh N, Pemmaraju SC, Pruthi PA et al (2013) Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl Biochem Biotechnol 169(8):2374–2391

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Upreti DK, Singh BR et al (2015) Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother 59(4):2153–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sroisiri T, Boonyanit T (2010) Inhibition of candida adhesion to denture acrylic by Boesenbergia pandurata. Asian Pac J Trop Med 3(4):272–275

    Article  Google Scholar 

  • Stringaro A, Vavala E, Colone M et al (2014) Effects of Mentha suaveolens essential oil alone or in combination with other drugs in Candida albicans. Evid Based Complement Alternat Med 2014:125904

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudjana AN, Carson CF, Carson KC et al (2012) Candida albicans adhesion to human epithelial cells and polystyrene and formation of biofilm is reduced by sub-inhibitory Melaleuca alternifolia (tea tree) essential oil. Med Mycol 50(8):863–870

    Article  PubMed  Google Scholar 

  • Sun LM, Zhang CL, Li P (2012) Characterization antibiofilm and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60(24):6150–6156

    Article  CAS  PubMed  Google Scholar 

  • Swidergall M, Ernst AM, Ernst JF (2013) Candida albicans mucin Msb2 is a broad-range protectant against antimicrobial peptides. Antimicrob Agents Chemother 57(8):3917–3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tati S, Li R, Puri S et al (2014) Histatin 5-spermidine conjugates have enhanced fungicidal activity and efficacy as a topical therapeutic for oral candidiasis. Antimicrob Agents Chemother 58(2):756–766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taweechaisupapong S, Singhara S, Lertsatitthanakorn P et al (2010) Antimicrobial effects of Boesenbergia pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens. Pak J Pharm Sci 23(2):224–231

    CAS  PubMed  Google Scholar 

  • Thaweboon S, Thaweboon B (2009) In vitro antimicrobial activity of Ocimum americanum L essential oil against oral microorganisms. Southeast Asian J Trop Med Public Health 40(5):1025–1033

    PubMed  Google Scholar 

  • Thibane VS, Kock JL, Ells R et al (2010) Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis. Mar Drugs 8(10):2597–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trindade LA, De Araújo OJ, De Castro RD et al (2015) Inhibition of adherence of C albicans to dental implants and cover screws by Cymbopogon nardus essential oil and citronellal. Clin Oral Investig. doi:10.1007/s00784-015-1450-3

    PubMed  Google Scholar 

  • Troskie AM, Rautenbach M, Delattin N et al (2014) Synergistic activity of the tyrocidines antimicrobial cyclodecapeptides from Bacillus aneurinolyticus with amphotericin B and caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 58(7):3697–3707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsang PW, Bandara HM, Fong WP (2012) Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS ONE 7(11):e50866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang PW, Wong AP, Yang HP et al (2013) Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms. PLoS ONE 8(12):e86032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vediyappan G, Dumontet V, Pelissier F et al (2013) Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS ONE 8(9):e74189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Du L, You J et al (2012a) Fungal biofilm inhibitors from a human oral microbiome-derived bacterium. Org Biomol Chem 10(10):2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Wang X, You J, King JB et al (2012b) Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. J Nat Prod 75(4):707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, You J, King JB et al (2014a) Polyketide glycosides from Bionectria ochroleuca inhibit Candida albicans biofilm formation. J Nat Prod 77(10):2273–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Yan J, Dang W et al (2014b) Dual antifungal properties of cationic antimicrobial peptides polybia-MPI: membrane integrity disruption and inhibition of biofilm formation. Peptides 56:22–29

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Schulz B, Ruhnke M (2010) The quorum-sensing molecule EE-farnesol--its variable secretion and its impact on the growth and metabolism of Candida species. Yeast 27(9):727–739

    Article  CAS  PubMed  Google Scholar 

  • Wei GX, Xu X, Wu CD (2011) In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Arch Oral Biol 56(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • White PA, Oliveira RC, Oliveira AP et al (2014) Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules 19(9):14496–14527

    Article  PubMed  CAS  Google Scholar 

  • Yala JF, Thebault P, Héquet A et al (2011) Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide. Appl Microbiol Biotechnol 89(3):623–634

    Article  CAS  PubMed  Google Scholar 

  • You J, Du L, King JB et al (2013) Small-molecule suppressors of Candida albicans biofilm formation synergistically enhance the antifungal activity of amphotericin B against clinical Candida isolates. ACS Chem Biol 8(4):840–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakaria Gomaa E (2013) Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates biofilm formation and aggregation ability. J Gen Appl Microbiol 59(6):425–436

    Article  PubMed  Google Scholar 

  • Zhang L, Chang W, Sun B (2011) Bisbibenzyls a new type of antifungal agent inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS ONE 6(12):e28953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao LX, Li DD, Hu DD et al (2013) Effect of tetrandrine against Candida albicans biofilms. PLoS ONE 8(11):e79671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mrs Deborah Bell Grascoeur for revising the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Girardot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Girardot, M., Imbert, C. (2016). Natural Sources as Innovative Solutions Against Fungal Biofilms. In: Imbert, C. (eds) Fungal Biofilms and related infections. Advances in Experimental Medicine and Biology(), vol 931. Springer, Cham. https://doi.org/10.1007/5584_2016_12

Download citation

Publish with us

Policies and ethics