Advertisement

Quorum Quenching Strategy Targeting Gram-Positive Pathogenic Bacteria

  • Ravindra Pal Singh
  • Said E. Desouky
  • Jiro NakayamaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 901)

Abstract

Quorum sensing (QS) is a cell density-dependent regulatory system that orchestrates the group behavior of unicellular organisms by synchronizing the expression of certain gene(s) within the clonal community of same species. Bacterial pathogens often employ QS system to establish efficiently an infection. A large part of low GC Gram-positive bacteria belonging to phylum Firmicutes use thiolactone/lactone peptides as communication signals so-called autoinducing peptides (AIPs) to coordinate QS circuit. In particular, QS of staphylococci, enterococci, and clostridia have been intensively studied in terms of alternative target of anti-pathogenic chemotherapy independent of bactericidal antibiotics. Thus far, a number of quorum quenching (QQ) agents that targeting the QS circuit of these Gram-positive pathogens have been developed by random screening of natural compounds or rationale design of AIP antagonists. This review summarizes those QQ agents and previews their potential as post-antibiotic drugs.

Keywords

Quorum sensing (QS) Quorum quenching (QQ) Autoinducing peptide (AIP) Gram-positive bacteria 

Notes

Acknowledgments

This research was supported in part by a Grant-in-Aid for Scientific Research No. 24380050 and 15H04480 for J. Nakayama and a Grant-in-Aid for JSPS Fellows No. 25–03389 for R. P. Singh. R. P. Singh is also gratefully acknowledging JSPS for providing the Post Doctoral Fellowship.

References

  1. Amara N, Krom BP, Kaufmann GF, Meijler MM (2011) Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Chem Rev 111:195–208. doi: 10.1021/cr100101c PubMedCrossRefGoogle Scholar
  2. Anguita-Alonso P, Giacometti A, Cirioni O, Ghiselli R, Orlando F, Saba V, Scalise G, Sevo M, Tuzova M, Patel R, Balaban N (2007) RNAIII-inhibiting-peptide-loaded polymethylmethacrylate prevents in vivo Staphylococcus aureus biofilm formation. Antimicrob Agents Chemother 51:2594–2596. doi: 10.1128/AAC.00580-06 PubMedCrossRefGoogle Scholar
  3. Auclair SM, Bhanu MK, Kendall DA (2012) Signal peptidase I: cleaving the way to mature proteins. Protein Sci 21:13–25. doi: 10.1002/pro.757 PubMedCrossRefGoogle Scholar
  4. Autret N, Raynaud C, Dubail I, Berche P, Charbit A (2003) Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 71:4463–4471PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ba-Thein W, Lyristis M, Ohtani K, Nisbet IT, Hayashi H, Rood JI, Shimizu T (1996) The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178:2514–2520PubMedPubMedCentralGoogle Scholar
  6. Balaban N, Goldkorn T, Nhan RT, Dang LB, Scott S, Ridgley RM, Rasooly A, Wright SC, Larrick JW, Rasooly R, Carlson JR (1998) Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 280:438–440. doi: 10.1126/science.280.5362.438 PubMedCrossRefGoogle Scholar
  7. Balaban N, Collins LV, Cullor JS, Hume EB, Medina-Acosta E, Da Motta OV, O’callaghan R, Rossitto PV, Shirtliff ME, Da Silveira LS, Tarkowski A, Torres JV (2000a) Prevention of diseases caused by Staphylococcus aureus using the peptide RIP. Peptides 21:1301–1311. doi: 10.1016/S0196-9781(00)00272-2 PubMedCrossRefGoogle Scholar
  8. Balaban N, Singh B, Goldkorn RT, Rasooly A, Torres JV, Uziel O (2000b) Activation and inhibition of the staphylococcal agr system [Technical comment: Response]. Science 287:391CrossRefGoogle Scholar
  9. Balaban N, Goldkorn T, Gov Y, Hirshberg M, Koyfman N, Matthews HR, Nhan RT, Singh B, Uziel O (2001) Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating Protein (TRAP). J Biol Chem 276:2658–2667PubMedCrossRefGoogle Scholar
  10. Balaban N, Gov Y, Bitler A, Boelaert JR (2003) Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney Int 63:340–345. doi: 10.1046/j.1523-1755.2003.00733.x PubMedCrossRefGoogle Scholar
  11. Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchegiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229. doi: 10.1128/AAC.01097-06 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Baldassarre L, Fornasari E, Cornacchia C, Cirioni O, Silvestri C, Castelli P, Giocometti A, Cacciatore I (2013) Discovery of novel RIP derivatives by alanine scanning for the treatment of S aureus infections. Medchemcomm 4:1114–1117. doi: 10.1039/C3md00122a CrossRefGoogle Scholar
  13. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587PubMedCrossRefGoogle Scholar
  14. Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F (2000) Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6:668–679PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bierbaum G, Sahl HG (1993) Lantibiotics–unusually modified bacteriocin-like peptides from gram-positive bacteria. Zentralbl Bakteriol 278:1–22PubMedCrossRefGoogle Scholar
  16. Broderick AH, Stacy DM, Tal-Gan Y, Kratochvil MJ, Blackwell HE, Lynn DM (2014) Surface coatings that promote rapid release of peptide-based AgrC inhibitors for attenuation of quorum sensing in Staphylococcus aureus. Adv Healthcare Mater 3:97–105. doi: 10.1002/adhm.201300119 CrossRefGoogle Scholar
  17. Bronner S, Monteil H, Prevost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200. doi: 10.1016/j.femsre.2003.09.003 PubMedCrossRefGoogle Scholar
  18. Cheung JK, Awad MM, Mcgowan S, Rood JI (2009) Functional analysis of the VirSR phosphorelay from Clostridium perfringens. PLoS ONE 4:e5849. doi: 10.1371/journal.pone.0005849 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cirioni O, Giacometti A, Ghiselli R, Dell’acqua G, Orlando F, Mocchegiani F, Silvestri C, Licci A, Saba V, Scalise G, Balaban N (2006) RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter - associated Staphylococcus aureus infections. J Infect Dis 193:180–186. doi: 10.1086/498914 PubMedCrossRefGoogle Scholar
  20. Cisar EA, Geisinger E, Muir TW, Novick RP (2009) Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC. Mol Microbiol 74:44–57. doi: 10.1111/j.1365-2958.2009.06849.x CrossRefGoogle Scholar
  21. Cooksley CM, Davis IJ, Winzer K, Chan WC, Peck MW, Minton NP (2010) Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 76:4448–4460. doi: 10.1128/AEM.03038-09 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Daly SM, Elmore BO, Kavanaugh JS, Triplett KD, Figueroa M, Raja HA, El-Elimat T, Crosby HA, Femling JK, Cech NB, Horswill AR, Oberlies NH, Hall PR (2015) omega-Hydroxyemodin limits Staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrob Agents Chemother 59:2223–2235. doi: 10.1128/AAC.04564-14 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6:e1000989. doi: 10.1371/journal.ppat.1000989 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dell’acqua G, Giacometti A, Cirioni O, Ghiselli R, Saba V, Scalise G, Gov Y, Balaban N (2004) Suppression of drug-resistant staphylococcal infections by the quorum-sensing inhibitor RNAIII-inhibiting peptide. J Infect Dis 190:318–320. doi: 10.1086/386546 PubMedCrossRefGoogle Scholar
  25. Desouky SE, Nishiguchi K, Zendo T, Igarashi Y, Williams P, Sonomoto K, Nakayama J (2013) High-throughput screening of inhibitors targeting Agr/Fsr quorum sensing in Staphylococcus aureus and Enterococcus faecalis. Biosci Biotechnol Biochem 77:923–927. doi: 10.1271/bbb.120769 PubMedCrossRefGoogle Scholar
  26. Desouky SE, Shojima A, Singh RP, Matsufuji T, Igarashi Y, Suzuki T, Yamagaki T, Okubo K, Ohtani K, Sonomoto K, Nakayama J (2015) Cyclodepsipeptides produced by actinomycetes inhibit cyclic peptide-mediated quorum sensing in Gram-positive bacteria. FEMS Microbiol Lett 362:1–9. doi:http://dx.doi.org/10.1093/femsle/fnv109 CrossRefGoogle Scholar
  27. Domenico P, Gurzenda E, Giacometti A, Cirioni O, Ghiselli R, Orlando F, Korem M, Saba V, Scalise G, Balaban N (2004) BisEDT and RIP act in synergy to prevent graft infections by resistant staphylococci. Peptides 25:2047–2053. doi: 10.1016/j.peptides.2004.08.005 PubMedCrossRefGoogle Scholar
  28. Eguchi K, Kanazawa K, Eriguchi Y, Ueda Y (2009) Pharmacodynamics of SMP-601 (PTZ601) against vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus in neutropenic murine thigh infection models. Antimicrob Agents Chemother 53:3391–3398. doi: 10.1128/AAC.00972-08 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Elmore BO, Triplett KD, Hall PR (2015) Apolipoprotein B48, the Structural Component of Chylomicrons, Is Sufficient to Antagonize Staphylococcus aureus Quorum-Sensing. PLoS ONE 10:1–16. doi: 10.1371/journal.pone.0125027 Google Scholar
  30. Fowler SA, Stacy DM, Blackwell HE (2008) Design and synthesis of macrocyclic peptomers as mimics of a quorum sensing signal from Staphylococcus aureus. Org Lett 10:2329–2332. doi: 10.1021/ol800908h PubMedCrossRefGoogle Scholar
  31. Garcia-Contreras R, Maeda T, Wood TK (2013) Resistance to quorum-quenching compounds. Appl Environ Microbiol 79:6840–6846. doi: 10.1128/AEM.02378-13 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Garcia-Contreras R, Nunez-Lopez L, Jasso-Chavez R, Kwan BW, Belmont JA, Rangel-Vega A, Maeda T, Wood TK (2015) Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J 9:115–125. doi: 10.1038/ismej.2014.98 PubMedCrossRefGoogle Scholar
  33. Geisinger E, George EA, Chen J, Muir TW, Novick RP (2008) Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J Biol Chem 283:8930–8938. doi: 10.1074/jbc.M710227200 PubMedPubMedCentralCrossRefGoogle Scholar
  34. George EA, Muir TW (2007) Molecular mechanisms of agr quorum sensing in virulent staphylococci. Chembiochem 8:847–855. doi: 10.1002/cbic.200700023 PubMedCrossRefGoogle Scholar
  35. George EA, Novick RP, Muir TW (2008) Cyclic peptide inhibitors of staphylococcal virulence prepared by Fmoc-based thiolactone peptide synthesis. J Am Chem Soc 130:4914–4924. doi: 10.1021/ja711126e PubMedCrossRefGoogle Scholar
  36. Gholamiandehkordi A, Eeckhaut V, Lanckriet A, Timbermont L, Bjerrum L, Ducatelle R, Haesebrouck F, Van Immerseel F (2009) Antimicrobial resistance in Clostridium perfringens isolates from broilers in Belgium. Vet Res Commun 33:1031–1037. doi: 10.1007/s11259-009-9306-4 PubMedCrossRefGoogle Scholar
  37. Giacometti A, Cirioni O, Ghiselli R, Dell’acqua G, Orlando F, D’amato G, Mocchegiani F, Silvestri C, Del Prete MS, Rocchi M, Balaban N, Saba V, Scalise G (2005) RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of staphylococcal sepsis. Peptides 26:169–175. doi: 10.1016/j.peptides.2004.09.018 PubMedCrossRefGoogle Scholar
  38. Gordon CP, Williams P, Chan WC (2013) Attenuating Staphylococcus aureus virulence gene regulation: a medicinal chemistry perspective. J Med Chem 56:1389–1404. doi: 10.1021/jm3014635 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gov Y, Bitler A, Dell’acqua G, Torres JV, Balaban N (2001) RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis. Peptides 22:1609–1620PubMedCrossRefGoogle Scholar
  40. Grebe TW, Stock JB (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41:139–227PubMedCrossRefGoogle Scholar
  41. Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3:66–98PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hayashi K, Hashimoto M, Shigematsu N, Nishikawa M, Ezaki M, Yamashita M, Kiyoto S, Okuhara M, Kohsaka M, Imanaka H (1992) Ws9326a, a novel tachykinin antagonist isolated from Streptomyces-violaceusniger no-9326. J Antibiot 45:1055–1063PubMedCrossRefGoogle Scholar
  43. Igarashi Y, Gohda F, Kadoshima T, Fukuda T, Hanafusa T, Shojima A, Nakayama J, Bills GF, Peterson S (2015) Avellanin C, an inhibitor of quorum-sensing signaling in Staphylococcus aureus, from Hamigera ingelheimensis. J Antibiot Tokyo 68:707–710. doi: 10.1038/ja.2015.50 PubMedCrossRefGoogle Scholar
  44. Janzon L, Arvidson S (1990) The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J 9:1391–1399PubMedPubMedCentralGoogle Scholar
  45. Jarraud S, Lyon GJ, Figueiredo AM, Lina G, Vandenesch F, Etienne J, Muir TW, Novick RP (2000) Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J Bacteriol 182:6517–6522PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jensen RO, Winzer K, Clarke SR, Chan WC, Williams P (2008) Differential recognition of Staphylococcus aureus quorum-sensing signals depends on both extracellular loops 1 and 2 of the transmembrane sensor AgrC. J Mol Biol 381:300–309. doi: 10.1016/j.jmb.2008.06.018 PubMedCrossRefGoogle Scholar
  47. Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276:2027–2030PubMedCrossRefGoogle Scholar
  48. Johnson JG, Wang B, Debelouchina GT, Novick RP, Muir TW (2015) Increasing AIP macrocycle size reveals key features of agr activation in Staphylococcus aureus. Chembiochem 16:1093–1100. doi: 10.1002/cbic.201500006 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kavanaugh JS, Thoendel M, Horswill AR (2007) A role for type I signal peptidase in Staphylococcus aureus quorum sensing. Mol Microbiol 65:780–798. doi: 10.1111/j.1365-2958.2007.05830.x PubMedCrossRefGoogle Scholar
  50. Khodaverdian V, Pesho M, Truitt B, Bollinger L, Patel P, Nithianantham S, Yu G, Delaney E, Jankowsky E, Shoham M (2013) Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:3645–3652. doi: 10.1128/AAC.00269-13 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kino T, Nishikawa M, Ezaki M, Kiyoto S, Okuhara M, Takase S, Okada S, Shigematsu N (1993) Peptides WS-9326a and WS-9326b, derivatives thereof and uses thereof: Google PatentsGoogle Scholar
  52. Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, Ghiselli R, Saba V, Orlando F, Shoham M, Balaban N (2008) Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Mol Pharmacol 73:1578–1586. doi: 10.1124/mol.107.044164 PubMedCrossRefGoogle Scholar
  53. Kjaerulff L, Nielsen A, Mansson M, Gram L, Larsen TO, Ingmer H, Gotfredsen CH (2013) Identification of four new agr quorum sensing-interfering cyclodepsipeptides from a marine Photobacterium. Mar Drugs 11:5051–5062. doi: 10.3390/md11125051 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kleerebezem M, Quadri LE, Kuipers OP, De Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904PubMedCrossRefGoogle Scholar
  55. Kratochvil MJ, Tal-Gan Y, Yang T, Blackwell HE, Lynn DM (2015) Nanoporous superhydrophobic coatings that promote the extended release of water-labile quorum sensing inhibitors and enable long-term modulation of quorum sensing in Staphylococcus aureus. ACS Biomater Sci Eng 1:1039–1049. doi: 10.1021/acsbiomaterials.5b00313 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kristich CJ, Rice LB, Arias CA (2014) Enterococcal infection-treatment and antibiotic resistance. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, BostonGoogle Scholar
  57. Kuo D, Yu G, Hoch W, Gabay D, Long L, Ghannoum M, Nagy N, Harding CV, Viswanathan R, Shoham M (2015) Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to beta-lactam antibiotics. Antimicrob Agents Chemother 59:1512–1518. doi: 10.1128/AAC.04767-14 PubMedCrossRefGoogle Scholar
  58. Lam YKT, Williams DL, Sigmund JM, Sanchez M, Genilloud O, Kong YL, Stevensmiles S, Huang LY, Garrity GM (1992) Cochinmicins, novel and potent cyclodepsipeptide endothelin antagonists from a Microbispora sp.1. production, isolation, and characterization. J Antibiot 45:1709–1716PubMedCrossRefGoogle Scholar
  59. Leitner G, Krifucks O, Kiran MD, Balaban N (2011) Vaccine development for the prevention of Staphylococcal mastitis in dairy cows. Vet Immunol Immunopathol 142:25–35. doi: 10.1016/j.vetimm.2011.03.023 PubMedCrossRefGoogle Scholar
  60. Li JR, Wang WL, Xu SX, Magarvey NA, Mccormick JK (2011) Lactobacillus reuteri produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci U S A 108:3360–3365. doi: 10.1073/pnas.1017431108 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li JH, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, Mcclane BA (2013) Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev 77:208–233. doi: 10.1128/Mmbr.00062-12 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lopez-Leban F, Kiran MD, Wolcott R, Balaban N (2010) Molecular mechanisms of RIP, an effective inhibitor of chronic infections. Int J Artif Organs 33:582–589PubMedGoogle Scholar
  63. Luo M, Qiu J, Zhang Y, Wang J, Dong J, Li H, Leng B, Zhang Q, Dai X, Niu X, Zhao S, Deng X (2012) Alpha-cyperone alleviates lung cell injury caused by Staphylococcus aureus via attenuation of alpha-hemolysin expression. J Microbiol Biotechnol 22:1170–1176PubMedCrossRefGoogle Scholar
  64. Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403. doi: 10.1016/j.peptides.2003.11.026 PubMedCrossRefGoogle Scholar
  65. Lyon GJ, Mayville P, Muir TW, Novick RP (2000) Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci U S A 97:13330–13335. doi: 10.1073/pnas.97.24.13330 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lyon GJ, Wright JS, Muir TW, Novick RP (2002) Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41:10095–10104PubMedCrossRefGoogle Scholar
  67. Lyristis M, Bryant AE, Sloan J, Awad MM, Nisbet IT, Stevens DL, Rood JI (1994) Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12:761–777. doi: 10.1111/j.1365-2958.1994.tb01063.x PubMedCrossRefGoogle Scholar
  68. Ma P, Nishiguchi K, Yuille HM, Davis LM, Nakayama J, Phillips-Jones MK (2011) Anti-HIV siamycin I directly inhibits autophosphorylation activity of the bacterial FsrC quorum sensor and other ATP-dependent enzyme activities. FEBS Lett 585:2660–2664. doi: 10.1016/j.febslet.2011.07.026 PubMedCrossRefGoogle Scholar
  69. Ma M, Li J, Mcclane BA (2015) Structure-function analysis of peptide signaling in the Clostridium perfringens Agr-like quorum sensing system. J Bacteriol. doi: 10.1128/JB.02614-14 Google Scholar
  70. Maeda T, Garcia-Contreras R, Pu M, Sheng L, Garcia LR, Tomas M, Wood TK (2012) Quorum quenching quandary: resistance to antivirulence compounds. ISME J 6:493–501. doi: 10.1038/ismej.2011.122 PubMedCrossRefGoogle Scholar
  71. Mansson M, Nielsen A, Kjaerulff L, Gotfredsen CH, Wietz M, Ingmer H, Gram L, Larsen TO (2011) Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine photobacterium. Mar Drugs 9:2537–2552. doi: 10.3390/md9122537 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Marothi YA, Agnihotri H, Dubey D (2005) Enterococcal resistance--an overview. Indian J Med Microbiol 23:214–219PubMedGoogle Scholar
  73. Martin MJ, Clare S, Goulding D, Faulds-Pain A, Barquist L, Browne HP, Pettit L, Dougan G, Lawley TD, Wren BW (2013) The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J Bacteriol 195:3672–3681. doi: 10.1128/JB.00473-13 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mayville P, Ji G, Beavis R, Yang H, Goger M, Novick RP, Muir TW (1999) Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci U S A 96:1218–1223PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mcdowell P, Affas Z, Reynolds C, Holden MT, Wood SJ, Saint S, Cockayne A, Hill PJ, Dodd CE, Bycroft BW, Chan WC, Williams P (2001) Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus. Mol Microbiol 41:503–512CrossRefGoogle Scholar
  76. Mitchell G, Seguin DL, Asselin AE, Deziel E, Cantin AM, Frost EH, Michaud S, Malouin F (2010) Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide. BMC Microbiol 10:1–15. doi: 10.1186/1471-2180-10-33 CrossRefGoogle Scholar
  77. Murray BE (2000) Vancomycin-resistant enterococcal infections. N Engl J Med 342:710–721. doi: 10.1056/NEJM200003093421007 PubMedCrossRefGoogle Scholar
  78. Murray EJ, Crowley RC, Truman A, Clarke SR, Cottam JA, Jadhav GP, Steele VR, O’shea P, Lindholm C, Cockayne A, Chhabra SR, Chan WC, Williams P (2014) Targeting Staphylococcus aureus quorum sensing with nonpeptidic small molecule inhibitors. J Med Chem 57:2813–2819. doi: 10.1021/jm500215s PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, De Vos WM, Nagasawa H (2001) Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol Microbiol 41:145–154PubMedCrossRefGoogle Scholar
  80. Nakayama J, Chen S, Oyama N, Nishiguchi K, Azab EA, Tanaka E, Kariyama R, Sonomoto K (2006) Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal agrD. J Bacteriol 188:8321–8326. doi: 10.1128/JB.00865-06 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Nakayama J, Tanaka E, Kariyama R, Nagata K, Nishiguchi K, Mitsuhata R, Uemura Y, Tanokura M, Kumon H, Sonomoto K (2007) Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J Bacteriol 189:1358–1365. doi: 10.1128/JB.00969-06 PubMedCrossRefGoogle Scholar
  82. Nakayama J, Uemura Y, Nishiguchi K, Yoshimura N, Igarashi Y, Sonomoto K (2009) Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrob Agents Chemother 53:580–586. doi: 10.1128/Aac.00995-08 PubMedCrossRefGoogle Scholar
  83. Nakayama J, Yokohata R, Sato M, Suzuki T, Matsufuji T, Nishiguchi K, Kawai T, Yamanaka Y, Nagata K, Tanokura M, Sonomoto K (2013) Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem Biol 8:804–811. doi: 10.1021/cb300717f PubMedCrossRefGoogle Scholar
  84. Nishiguchi K, Nagata K, Tanokura M, Sonomoto K, Nakayama J (2009) Structure-activity relationship of gelatinase biosynthesis-activating pheromone of Enterococcus faecalis. J Bacteriol 191:641–650. doi: 10.1128/JB.01029-08 PubMedCrossRefGoogle Scholar
  85. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449PubMedCrossRefGoogle Scholar
  86. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564. doi: 10.1146/annurev.genet.42.110807.091640 PubMedCrossRefGoogle Scholar
  87. Novick RP, Muir TW (1999) Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria. Curr Opin Microbiol 2:40–45PubMedCrossRefGoogle Scholar
  88. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA Molecule. EMBO J 12:3967–3975PubMedPubMedCentralGoogle Scholar
  89. Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248:446–458. doi: 10.1007/Bf02191645 PubMedCrossRefGoogle Scholar
  90. Ohtani K, Shimizu T (2014) Regulation of toxin gene expression in Clostridium perfringens. Res Microbiol. doi: 10.1016/j.resmic.2014.09.010 PubMedGoogle Scholar
  91. Ohtani K, Bhowmik SK, Hayashi H, Shimizu T (2002) Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. FEMS Microbiol Lett 209:113–118PubMedCrossRefGoogle Scholar
  92. Ohtani K, Yuan Y, Hassan S, Wang R, Wang Y, Shimizu T (2009) Virulence gene regulation by the agr system in Clostridium perfringens. J Bacteriol 191:3919–3927. doi: 10.1128/Jb.01455-08 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ohtani K, Hirakawa H, Tashiro K, Yoshizawa S, Kuhara S, Shimizu T (2010) Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe 16:258–264. doi: 10.1016/j.anaerobe.2009.10.003 PubMedCrossRefGoogle Scholar
  94. Otto M (2001) Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22:1603–1608PubMedCrossRefGoogle Scholar
  95. Otto M, Sussmuth R, Vuong C, Jung G, Gotz F (1999) Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett 450:257–262PubMedCrossRefGoogle Scholar
  96. Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, Meijler MM, Ulevitch RJ, Janda KD (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127. doi: 10.1016/j.chembiol.2007.08.013 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Peterson MM, Mack JL, Hall PR, Alsup AA, Alexander SM, Sully EK, Sawires YS, Cheung AL, Otto M, Gresham HD (2008) Apolipoprotein B Is an Innate Barrier against Invasive Staphylococcus aureus Infection. Cell Host Microbe 4:555–566. doi: 10.1016/j.chom.2008.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Phillips-Jones MK, Patching SG, Edara S, Nakayama J, Hussain R, Siligardi G (2013) Interactions of the intact FsrC membrane histidine kinase with the tricyclic peptide inhibitor siamycin I revealed through synchrotron radiation circular dichroism. Phys Chem Chem Phys 15:444–447. doi: 10.1039/C2cp43722h PubMedCrossRefGoogle Scholar
  99. Qazi S, Middleton B, Muharram SH, Cockayne A, Hill P, O’shea P, Chhabra SR, Camara M, Williams P (2006) N-acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus. Infect Immun 74:910–919. doi: 10.1128/Iai.74.2.910-919.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Qiu R, Pei W, Zhang L, Lin J, Ji G (2005) Identification of the putative staphylococcal AgrB catalytic residues involving the proteolytic cleavage of AgrD to generate autoinducing peptide. J Biol Chem 280:16695–16704. doi: 10.1074/jbc.M411372200 PubMedCrossRefGoogle Scholar
  101. Qiu J, Luo M, Wang J, Dong J, Li H, Leng B, Zhang Q, Dai X, Zhang Y, Niu X, Deng X (2011) Isoalantolactone protects against Staphylococcus aureus pneumonia. FEMS Microbiol Lett 324:147–155. doi: 10.1111/j.1574-6968.2011.02397.x PubMedCrossRefGoogle Scholar
  102. Recsei P, Kreiswirth B, O’reilly M, Schlievert P, Gruss A, Novick RP (1986) Regulation of exoprotein gene expression in Staphylococcus aureus by agar. Mol Gen Genet 202:58–61PubMedCrossRefGoogle Scholar
  103. Rood JI (1998) Virulence genes of Clostridium perfringens. Annu Rev Microbiol 52:333–360. doi: 10.1146/annurev.micro.52.1.333 PubMedCrossRefGoogle Scholar
  104. Shaw LN, Jonsson IM, Singh VK, Tarkowski A, Stewart GC (2007) Inactivation of traP has no effect on the agr quorum-sensing system or virulence of Staphylococcus aureus. Infect Immun 75:4519–4527. doi: 10.1128/IAI.00491-07 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Shimizu T, Ba-Thein W, Tamaki M, Hayashi H (1994) The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J Bacteriol 176:1616–1623PubMedPubMedCentralGoogle Scholar
  106. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99:996–1001. doi: 10.1073/pnas.022493799 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shojima A, Nakayama J (2014) Quorum sensing in gram-positive bacteria: assay protocols for staphylococcal agr and enterococcal fsr systems. Methods Mol Biol 1147:33–41. doi: 10.1007/978-1-4939-0467-9_3 PubMedCrossRefGoogle Scholar
  108. Singh RP, Ohtani K, Yokohata R, Sonomoto K, Shimizu T, Nakayama J (2014) Identification of autoinducing peptide of Clostridium perfringens and development of its inhibitors. In: 5th ASM conference on cell-cell communication in bacteria. American Society for Microbiology, San AntonioGoogle Scholar
  109. Singh RP, Okubo K, Ohtani K, Adachi K, Sonomoto K, Nakayama J (2015) Rationale design of quorum-quenching peptides that target the VirSR system of Clostridium perfringens. FEMS Microbiol Lett 362:1–7. doi: 10.1093/femsle/fnv188 CrossRefGoogle Scholar
  110. Sklar LA, Gresham AHD (2011) A small molecule that targets a signaling pathway in aip-dependent bacterial quorum sensing of S. aureus Agr3 agr locus genotype 01. Probe report C094-0010, grant number NIH 1 X01 MH078952-01Google Scholar
  111. Srivastava A, Singh BN, Deepak D, Rawat AK, Singh BR (2015) Colostrum hexasaccharide, a novel Staphylococcus aureus quorum-sensing inhibitor. Antimicrob Agents Chemother 59:2169–2178. doi: 10.1128/AAC.03722-14 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sully E (2011) Small molecule inhibitor of Staphylococcus aureus virulence. Ph.D. dissertation, The University of New Mexico, AlbuquerqueGoogle Scholar
  113. Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, Deleo FR, Otto M, Cheung AL, Edwards BS, Sklar LA, Horswill AR, Hall PR, Gresham HD (2014) Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog 10:1–14. doi: 10.1371/journal.ppat.1004174 CrossRefGoogle Scholar
  114. Tal-Gan Y, Ivancic M, Cornilescu G, Cornilescu CC, Blackwell HE (2013a) Structural characterization of native autoinducing peptides and abiotic analogues reveals key features essential for activation and inhibition of an AgrC quorum sensing receptor in Staphylococcus aureus. J Am Chem Soc 135:18436–18444. doi: 10.1021/ja407533e PubMedCrossRefGoogle Scholar
  115. Tal-Gan Y, Stacy DM, Foegen MK, Koenig DW, Blackwell HE (2013b) Highly potent inhibitors of quorum sensing in Staphylococcus aureus revealed through a systematic synthetic study of the group-III autoinducing peptide. J Am Chem Soc 135:7869–7882. doi: 10.1021/ja3112115 PubMedCrossRefGoogle Scholar
  116. Tal-Gan Y, Stacy DM, Blackwell HE (2014) N-Methyl and peptoid scans of an autoinducing peptide reveal new structural features required for inhibition and activation of AgrC quorum sensing receptors in Staphylococcus aureus. Chem Commun (Camb) 50:3000–3003. doi: 10.1039/c4cc00117f CrossRefGoogle Scholar
  117. Tsang LH, Daily ST, Weiss EC, Smeltzer MS (2007) Mutation of traP in Staphylococcus aureus has no impact on expression of agr or biofilm formation. Infect Immun 75:4528–4533. doi: 10.1128/IAI.00603-07 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Uzal FA, Mcclane BA (2011) Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections. Vet Microbiol 153:37–43. doi: 10.1016/j.vetmic.2011.02.048 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wang H, Provan GJ, Helliwell K (2003) Determination of hamamelitannin, catechins and gallic acid in witch hazel bark, twig and leaf by HPLC. J Pharm Biomed Anal 33:539–544PubMedCrossRefGoogle Scholar
  120. Wang J, Qiu J, Dong J, Li H, Luo M, Dai X, Zhang Y, Leng B, Niu X, Zhao S, Deng X (2011) Chrysin protects mice from Staphylococcus aureus pneumonia. J Appl Microbiol 111:1551–1558. doi: 10.1111/j.1365-2672.2011.05170.x PubMedCrossRefGoogle Scholar
  121. Wright JS 3rd, Lyon GJ, George EA, Muir TW, Novick RP (2004) Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc Natl Acad Sci U S A 101:16168–16173. doi: 10.1073/pnas.0404039101 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang L, Ji G (2004) Identification of a staphylococcal AgrB segment(s) responsible for group-specific processing of AgrD by gene swapping. J Bacteriol 186:6706–6713. doi: 10.1128/JB.186.20.6706-6713.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zink D, Hensens OD, Lam YKT, Reamer R, Liesch JM (1992) Cochinmicins, novel and potent cyclodepsipeptide endothelin antagonists from a Microbispora Sp.2. Structure Determination. J Antibiot 45:1717–1722PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ravindra Pal Singh
    • 1
  • Said E. Desouky
    • 1
    • 2
  • Jiro Nakayama
    • 1
    Email author
  1. 1.Laboratory of Microbial Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate SchoolKyushu UniversityFukuokaJapan
  2. 2.Department of Botany and Microbiology, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt

Personalised recommendations