β-Defensins: Work in Progress

  • Giovanna DonnarummaEmail author
  • Iole Paoletti
  • Alessandra Fusco
  • Brunella Perfetto
  • Elisabetta Buommino
  • Vincenza de Gregorio
  • Adone Baroni
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 901)


Defensins are a group of antimicrobial peptides (AMPs) found in different living organisms, and are involved in the first line of defense in the innate immune response against pathogens. The increase in the resistance of bacteria to conventional antibiotics and the need for new antibiotics has stimulated interest in the use of AMPs as new therapeutic agents. The inducible nature of human defensin genes suggests that it is possible to increase the endogenous production by utilizing small molecules of various origins to enhance, even selectively, the expression of these peptides. In the light of their role in immunomodulation, angiogenesis, wound healing, inflammation and cancer, as well as their antimicrobial activity, it is possible induce their expression or create analogs with increased specific activity or various degrees of selectivity, or obtain human defensins with genetic engineering to optimize the potency and safety in order to reduce cytotoxicity and potential proinflammatory activity and susceptibility to protease and salt. Restoring the balance between immunostimulating and immunosuppressive molecules may be an important strategy to correct expression defects in specific diseases.


Beta defensins Inflammatory mediators Angiogenesis Wound healing Cancer 



We thank Prof Maria Antonietta Tufano (Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples) for sharing its scientific expertise with us and for valuable discussions.

Competing Interests

The authors declare that they have no competing interests.


  1. Abiko Y, Saitoh M, Nishimura M, Yamazaki M, Sawamura D, Kaku T (2007) Role of beta-defensins in oral epithelial health and disease. Med Mol Morphol 40(4):179–184. doi: 10.1007/s00795-007-0381-8 PubMedCrossRefGoogle Scholar
  2. Albani D, Polito L, Signorini A, Forloni G (2010) Neuroprotective properties of resveratrol in different neurodegenerative disorders. Biofactors 36(5):370–376. Review. doi:  10.1002/biof.118 PubMedCrossRefGoogle Scholar
  3. Ashbee HR, Evans EG (2002) Immunology of diseases associated with Malassezia species. Clin Microbiol Rev 15(1):21–57. Review. doi: 10.1128/CMR.15.1.21-57.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bajaj-Elliott M, Fedeli P, Smith GV, Domizio P, Maher L, Ali RS, Quinn AG, Farthing MJ (2002) Modulation of host antimicrobial peptide (beta-defensins 1 and 2) expression during gastritis. Gut 51(3):356–361. PMID: 12171956PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balato A, Paoletti I, De Gregorio V, Cantelli M, Ayala F, Donnarumma G (2014) Tacrolimus does not alter the production of several cytokines and antimicrobial peptide in Malassezia furfur-infected-keratinocytes. Mycoses 57(3):176–183. doi: 10.1111/myc.12140 PubMedCrossRefGoogle Scholar
  6. Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102(5):874–880. PMID:9727055 DOI: 10.1172/JCI2410 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baroni A, Perfetto B, Paoletti I, Ruocco E, Canozo N, Orlando M, Buommino E (2001) Malassezia furfur invasiveness in a keratinocyte cell line (HaCat): effects on cytoskeleton and on adhesion molecule and cytokine expression. Arch Dermatol Res 293(8):414–419. PubMed PMID: 11686517PubMedCrossRefGoogle Scholar
  8. Baroni A, Paoletti I, Silvestri I, Buommino E, Carriero MV (2003) Early vitronectin receptor downregulation in a melanoma cell line during all-trans retinoic acid-induced apoptosis. Br J Dermatol 148(3):424–433. doi: 10.1046/j.1365-2133.2003.05165.x PubMedCrossRefGoogle Scholar
  9. Baroni A, Paoletti I, Ruocco E, Agozzino M, Tufano MA, Donnarumma G (2004) Possible role of Malassezia furfur in psoriasis: modulation of TGF-beta1, integrin, and HSP70 expression in human keratinocytes and in the skin of psoriasis-affected patients. J Cutan Pathol 31(1):35–42. doi: 10.1046/j.0303-6987.2004.0135.x PubMedCrossRefGoogle Scholar
  10. Baroni A, Orlando M, Donnarumma G, Farro P, Iovene MR, Tufano MA, Buommino E (2006) Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res 297(7):280–288. doi: 10.1007/s00403-005-0594-4 PubMedCrossRefGoogle Scholar
  11. Baroni A, Brunetti G, Ruocco E (2011) Coexistence of malignancy (skin cancer) and immune disorder (discoid lupus erythematosus) on a burn scar: a concrete example of ‘immunocompromised district’. Br J Dermatol 164(3):673–675. doi: 10.1111/j.1365-2133.2010.10170.x PubMedGoogle Scholar
  12. Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R (2012) Structure and function of the epidermis related to barrier properties. Clin Dermatol 30(3):257–262. PMID:22507037. doi: 10.1016/j.clindermatol.2011.08.007 PubMedCrossRefGoogle Scholar
  13. Baroni A, Russo T, Piccolo V, Siano M, Russo D, Nacca L, Ruocco E (2013) Opportunistic metastatic porocarcinoma after saphenous venectomy for coronary bypass surgery. Clin Exp Dermatol 38(5):507–510. doi: 10.1111/ced.12032 PubMedCrossRefGoogle Scholar
  14. Baroni A, Buommino E, Piccolo V, Chessa MA, Russo T, Cozza V, Ruocco V (2014) Alterations of skin innate immunity in lymphedematous limbs: correlations with opportunistic diseases. Clin Dermatol 32(5):592–598. doi: 10.1016/j.clindermatol.2014.04.006 PubMedCrossRefGoogle Scholar
  15. Bastian A, Schäfer H (2001) Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept 101(1–3):157–161. doi: 10.1016/S0167-0115(01)00282-8 PubMedCrossRefGoogle Scholar
  16. Bauer B, Pang E, Holland C, Kessler M, Bartfeld S, Meyer TF (2012) The Helicobacter pylori virulence effector CagA abrogates human β-defensin 3 expression via inactivation of EGFR signaling. Cell Host Microbe 11(6):576–586. doi: 10.1016/j.chom.2012.04.013 PubMedCrossRefGoogle Scholar
  17. Becker MN, Diamond G, Verghese MW, Randell SH (2000) CD14-dependentlipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 275(38):29731–29736. doi: 10.1074/jbc.M000184200 PubMedCrossRefGoogle Scholar
  18. Bevins CL (2006) Paneth cell defensins: key effector molecules of innate immunity. Biochem Soc Trans 34(Pt 2):263–266. Review. doi: 10.1042/BST20060263 PubMedCrossRefGoogle Scholar
  19. Breitkreutz D, Mirancea N, Nischt R (2009) Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol 132(1):1–10. PMID:19333614. doi: 10.1007/s00418-009-0586-0 PubMedCrossRefGoogle Scholar
  20. Buommino E, De Filippis A, Parisi A, Nizza S, Martano M, Iovane G, Donnarumma G, Tufano MA, De Martino L (2013) Innate immune response in human keratinocytes infected by a feline isolate of Malassezia pachydermatis. Vet Microbiol 63(1–2):90–96. doi: 10.1016/j.vetmic.2012.12.001 CrossRefGoogle Scholar
  21. Buommino E, Di Domenico M, Paoletti I, Fusco A, De Gregorio V, Cozza V, Rizzo A, Tufano MA, Donnarumma G (2014) Alpha(v)beta5 integrins mediates Pseudomonas fluorescens interaction with A549 cells. Front Biosci (Landmark Ed) 19:408–415CrossRefGoogle Scholar
  22. Butmarc J, Yufit T, Carson P, Falanga V (2004) Human beta-defensin-2 expression is increased in chronic wounds. Wound Repair Regen 12(4):439–443. PMID: 15260809. doi: 10.1111/j.1067-1927.2004.12405.x PubMedCrossRefGoogle Scholar
  23. Carothers DG, Graham SM, Jia HP, Ackermann MR, Tack BF, McCray PB Jr (2001) Production of beta-defensin antimicrobial peptides by maxillary sinus mucosa. Am J Rhinol 15(3):175–179. PMID: 11453504 10.2500/105065801779954238 PubMedCrossRefGoogle Scholar
  24. Chapalain A, Rossignol G, Lesouhaitier O, Merieau A, Gruffaz C, Guerillon J, Meyer JM, Orange N, Feuilloley MG (2008) Comparative study of 7 fluorescent pseudomonad clinical isolates. Can J Microbiol 54(1):19–27. doi: 10.1139/w07-110 PubMedCrossRefGoogle Scholar
  25. Christophers E, Henseler T (1987) Contrasting disease patterns in psoriasis and atopic dermatitis. Arch Dermatol Res 279(Suppl):S48–S51. PubMed PMID: 3662604PubMedCrossRefGoogle Scholar
  26. Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, El Rawadi C, Guillot J, Ménard-Szczebara F, Breton L, Latgé JP, Mouyna I (2013) Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS ONE 8(3):e58203. doi: 10.1371/annotation/bcff4a59-10b7-442a-8181-12fa69209e57 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Corrales-Garcia LL, Possani LD, Corzo G (2011) Expression systems of human β-defensins: vectors, purification and biological activities. Amino Acids 40(1):5–13. PMID: 20306097. doi: 10.1007/s00726-010-0493-7 PubMedCrossRefGoogle Scholar
  28. Cover TL, Blaser MJ (2009) Helicobacter pylori in health and disease. Gastroenterology 136(6):1863–1873. doi: 10.1053/j.gastro.2009.01.073 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV Jr (1996) Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 109(4):1019–1029. doi: 10.1378/chest.109.4.1019 PubMedCrossRefGoogle Scholar
  30. Dale BA, Krisanaprakornkit S (2001) Defensin antimicrobial peptides in the oral cavity. J Oral Pathol Med 30(6):321–332. PMID:11459317. doi: 10.1034/j.1600-0714.2001.300601.x PubMedCrossRefGoogle Scholar
  31. Darveau RP, Cunningham MD, Seachord CL, Cassiano-Clough L, Cosand WL, Blake J, Watkins CS (1991) Beta-lactam antibiotics potentiate magainin 2 antimicrobial activity in vitro and in vivo. Antimicrob Agents Chemother 35(6):1153–1159. doi: 10.1128/AAC.35.6.1153 PubMedPubMedCentralCrossRefGoogle Scholar
  32. De Luca M, Pellegrini G, Zambruno G, Marchisio PC (1994) Role of integrins in cell adhesion and polarity in normal keratinocytes and human skin pathologies. J Dermatol 21(11):821–828. PubMed PMID: 7852642, ReviewPubMedCrossRefGoogle Scholar
  33. Do Monte FH, dos Santos JG Jr, Russi M, Lanziotti VM, Leal LK, Cunha GM (2004) Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense in mice. Pharmacol Res 49(3):239–243. doi: 10.1016/j.phrs.2003.10.002 PubMedCrossRefGoogle Scholar
  34. Donnarumma G, Paoletti I, Buommino E, Orlando M, Tufano MA, Baroni A (2004) Malassezia furfur induces the expression of beta-defensin-2 in human keratinocytes in a protein kinase C-dependent manner. Arch Dermatol Res 295(11):474–481. doi: 10.1007/s00403-003-0445-0 PubMedCrossRefGoogle Scholar
  35. Donnarumma G, Buommino E, Baroni A, Auricchio L, De Filippis A, Cozza V, Msika P, Piccardi N, Tufano MA (2007a) Effects of AV119, a natural sugar from avocado, on Malassezia furfur invasiveness and on the expression of HBD-2 and cytokines in human keratinocytes. Exp Dermatol 16(11):912–919. doi: 10.1111/j.1600-0625.2007.00613.x PubMedCrossRefGoogle Scholar
  36. Donnarumma G, Paoletti I, Buommino E, Iovene MR, Tudisco L, Cozza V, Tufano MA (2007b) Anti-inflammatory effects of moxifloxacin and human beta-defensin 2 association in human lung epithelial cell line (A549) stimulated with lipopolysaccharide. Peptides 28(12):2286–2292. doi: 10.1016/j.peptides.2007.09.009 PubMedCrossRefGoogle Scholar
  37. Donnarumma G, Buommino E, Fusco A, Paoletti I, Auricchio L, Tufano MA (2010) Effect of temperature on the shift of Pseudomonas fluorescens from an environmental microorganism to a potential human pathogen. Int J Immunopathol Pharmacol 23(1):227–234. PMID:20378008PubMedGoogle Scholar
  38. Donnarumma G, Perfetto B, Paoletti I, Oliviero G, Clavaud C, Del Bufalo A, Guéniche A, Jourdain R, Tufano MA, Breton L (2014a) Analysis of the response of humankeratinocytes to Malassezia globosa and restricta strains. Arch Dermatol Res 306(8):763–768. doi: 10.1007/s00403-014-1479-1 PubMedCrossRefGoogle Scholar
  39. Donnarumma G, Molinaro A, Cimini D, De Castro C, Valli V, De Gregorio V, De Rosa M, Schiraldi C (2014b) Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol 14:137. doi: 10.1186/1471-2180-14-137 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dorozynski A (1997) Wine may prevent dementia. BMJ 314(7086):997. PMID: 9112841PubMedPubMedCentralGoogle Scholar
  41. Dunsche A, Açil Y, Dommisch H, Siebert R, Schröder JM, Jepsen S (2002) The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci 110(2):121–124. PMID: 12013554. doi: 10.1034/j.1600-0722.2002.11186.x PubMedCrossRefGoogle Scholar
  42. Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W (2006) Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 50(4):1480–1488. PMID:16569868. doi: 10.1128/AAC.50.4.1480-1488.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Estrada G, Garcia BI, Schiavon E, Ortiz E, Cestele S, Wanke E, Possani LD, Corzo G (2007) Four disulfide-bridged scorpion beta neurotoxin CssII: heterologous expression and proper folding in vitro. Biochim Biophys Acta 1770(8):1161–1168. doi: 10.1016/j.bbagen.2007.04.006 PubMedCrossRefGoogle Scholar
  44. Fattorini L, Gennaro R, Zanetti M, Tan D, Brunori L, Giannoni F, Pardini M, Orefici G (2004) In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides 25(7):1075–1077. doi: 10.1016/j.peptides.2004.04.003 PubMedCrossRefGoogle Scholar
  45. Fehlbaum P, Rao M, Zasloff M, Anderson GM (2000) An essential amino acid induces epithelial beta -defensin expression. Proc Natl Acad Sci U S A 97(23):12723–12728. doi: 10.1073/pnas.220424597 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Frankel EN, Waterhouse AL, Kinsella JE (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 341:1103–1104. doi: 10.1016/0140-6736(93)92472-6 PubMedCrossRefGoogle Scholar
  47. George JT, Boughan PK, Karageorgiou H, Bajaj-Elliott M (2003) Host anti-microbial response to Helicobacter pylori infection. Mol Immunol 40(7):451–456. doi: 10.1016/S0161-5890(03)00158-5 PubMedCrossRefGoogle Scholar
  48. Gershman MD, Kennedy DJ, Noble-Wang J, Kim C, Gullion J, Kacica M, Jensen B, Pascoe N, Saiman L, McHale J, Wilkins M, Schoonmaker-Bopp D, Clayton J, Arduino M, Srinivasan A (2008) Pseudomonas fluorescens Investigation Team. Multistate outbreak of Pseudomonas fluorescens bloodstream infection after exposure to contaminated heparinized saline flush prepared by a compounding pharmacy. Clin Infect Dis 47(11):1372–1379. doi: 10.1086/592968 PubMedCrossRefGoogle Scholar
  49. Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, Del Prete MS, Viticchi C, Kamysz W, ŁEmpicka E, Saba V, Scalise G (2002) Potential therapeutic role of cationic peptides in three experimental models of septic shock. Antimicrob Agents Chemother 46(7):2132–2136. doi: 10.1128/AAC.46.7.2132-2136.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88(4):553–560. doi: 10.1016/S0092-8674(00)81895-4 PubMedCrossRefGoogle Scholar
  51. Grether-Beck S, Felsner I, Brenden H, Kohne Z, Majora M, Marini A, Jaenicke T, Rodriguez-Martin M, Trullas C, Hupe M, Elias PM, Krutmann J (2012) Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression. J Invest Dermatol 132(6):1561–1572. doi: 10.1038/jid.2012.42 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT, Kupper TS, Sehgal PB, Gottlieb AB (1989) Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci U S A 86(16):6367–6371. PubMed PMID: 2474833PubMedPubMedCentralCrossRefGoogle Scholar
  53. Grubman A, Kaparakis M, Viala J, Allison C, Badea L, Karrar A, Boneca IG, Le Bourhis L, Reeve S, Smith IA, Hartland EL, Philpott DJ, Ferrero RL (2010) The innate immune molecule, NOD1, regulates direct killing of Helicobacter pylori by antimicrobial peptides. Cell Microbiol 12(5):626–639. doi: 10.1111/j.1462-5822.2009.01421.x PubMedCrossRefGoogle Scholar
  54. Hamanaka Y, Nakashima M, Wada A, Ito M, Kurazono H, Hojo H, Nakahara Y, Kohno S, Hirayama T, Sekine I (2001) Expression of human beta-defensin 2 (hBD-2) in Helicobacter pylori induced gastritis: antibacterial effect of hBD-2 against Helicobacter pylori. Gut 49(4):481–487. PubMed PMID: 11559643PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hancock RE, Sahl HG (2000) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. Review. doi: 10.1038/nbt1267 CrossRefGoogle Scholar
  56. Harder J, Bartels J, Christophers E, Schröder JM (1997) A peptide antibiotic from human skin. Nature 387(6636):861. PubMed PMID: 9202117PubMedCrossRefGoogle Scholar
  57. Harder J, Meyer-Hoffert U, Teran LM, Schwichtenberg L, Bartels J, Maune S, Schröder JM (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22(6):714–721. PMID:10837369. doi: 10.1165/ajrcmb.22.6.4023 PubMedCrossRefGoogle Scholar
  58. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713. PMID:11085990. doi: 10.1074/jbc.M008557200 PubMedCrossRefGoogle Scholar
  59. Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schröder JM (2004) Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123(3):522–529. PMID:15304092. doi: 10.1111/j.0022-202X.2004.23234.x PubMedCrossRefGoogle Scholar
  60. Hiratsuka T, Nakazato M, Ihi T, Minematsu T, Chino N, Nakanishi T, Shimizu A, Kangawa K, Matsukura S (2000) Structural analysis of human beta-defensin-1 and its significance in urinary tract infection. Nephron 85(1):34–40. doi: 10.1159/000045627 PubMedCrossRefGoogle Scholar
  61. Hollox EJ, Huffmeier U, Zeeuwen PL, Palla R, Lascorz J, Rodijk-Olthuis D, van de Kerkhof PC, Traupe H, de Jongh G, den Heijer M, Reis A, Armour JA, Schalkwijk J (2008) Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 40(1):23–25. doi: 10.4049/jimmunol.171.6.3262 PubMedCrossRefGoogle Scholar
  62. Hooper DC, Wolfson JS (1991) Fluoroquinolone antimicrobial agents. N Engl J Med 324(6):384–394. Review. doi: 10.1056/NEJM199102073240606 PubMedCrossRefGoogle Scholar
  63. Hornsby MJ, Huff JL, Kays RJ, Canfield DR, Bevins CL, Solnick JV (2008) Helicobacter pylori induces an antimicrobial response in rhesus macaques in a cag pathogenicity island-dependent manner. Gastroenterology 134(4):1049–1057. doi: 10.1053/j.gastro.2008.01.018 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hostanska K, Melzer J, Amon A, Saller R (2011) Suppression of interleukin (IL)-8 and human beta defensin-2 secretion in LPS-and/or IL-1β-stimulated airway epithelial A549 cells by a herbal formulation against respiratory infections (BNO 1030). J Ethnopharmacol 134(2):228–233. doi: 10.1016/j.jep.2010.12.006 PubMedCrossRefGoogle Scholar
  65. Howell MD, Novak N, Bieber T, Pastore S, Girolomoni G, Boguniewicz M, Streib J, Wong C, Gallo RL, Leung DY (2005) Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol 125(4):738–745. doi: 10.1111/j.0022-202X.2005.23776.x PubMedCrossRefGoogle Scholar
  66. Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, Leung DY (2006) Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 121(3):332–338. doi: 10.1016/j.clim.2006.08.008 PubMedCrossRefGoogle Scholar
  67. Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133(1):170–181. doi: 10.1104/pp.103.024026 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jainkittivong A, Johnson DA, Yeh CK (1998) The relationship between salivary histatin levels and oral yeast carriage. Oral Microbiol Immunol 13(3):181–187. doi: 10.1111/j.1399-302X.1998.tb00730.x PubMedCrossRefGoogle Scholar
  69. Kao CY, Chen Y, Thai P, Wachi S, Huang F, Kim C, Harper RW, Wu R (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173(5):3482–3491. doi: 10.4049/jimmunol.173.5.3482 PubMedCrossRefGoogle Scholar
  70. Kim ST, Cha HE, Kim DY, Han GC, Chung YS, Lee YJ, Hwang YJ, Lee HM (2003) Antimicrobial peptide LL-37 is upregulated in chronic nasal inflammatory disease. Acta Otolaryngol 123(1):81–85. doi: 10.1080/0036554021000028089 PubMedCrossRefGoogle Scholar
  71. King AE, Fleming DC, Critchley HO, Kelly RW (2002) Regulation of natural antibiotic expression by inflammatory mediators and mimics of infection in human endometrial epithelial cells. Mol Hum Reprod 8(4):341–349. doi: 10.1093/molehr/8.4.341 PubMedCrossRefGoogle Scholar
  72. Kutta H, Steven P, Kohla G, Tillmann B, Paulsen F (2002) The human false vocal folds an analysis of antimicrobial defense mechanisms. Anat Embryol Berl 205(4):315–323. doi: 10.1007/s00429-002-0255-8 PubMedCrossRefGoogle Scholar
  73. Lai Y, Cogen AL, Radek KA, Park HJ, Macleod DT, Leichtle A, Ryan AF, Di Nardo A, Gallo RL (2010) Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 130(9):2211–2221. PMID:21085191. doi: 10.1038/jid.2010.123 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lanzilli G, Cottarelli A, Nicotera G, Guida S, Ravagnan G, Fuggetta MP (2012) Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation 35(1):240–248. doi: 10.1007/s10753-011-9310-z PubMedCrossRefGoogle Scholar
  75. Lee SH, Kim JE, Lim HH, Lee HM, Choi JO (2002) Antimicrobial defensin peptides of the human nasal mucosa. Ann Otol Rhinol Laryngol 111(2):135–141. doi: 10.1177/000348940211100205 PubMedCrossRefGoogle Scholar
  76. Lehmann J, Retz M, Harder J, Krams M, Kellner U, Hartmann J, Hohgräwe K, Raffenberg U, Gerber M, Loch T, Weichert-Jacobsen K, Stöckle M (2002) Expression of human beta-defensins 1 and 2 in kidneys with chronic bacterial infection. BMC Infect Dis 18:2. doi: 10.1186/1471-2334-2-20 Google Scholar
  77. Lieberman D (2003) Pseudomonal infections in patients with COPD: epidemiology and management. Am J Respir Med 2(6):459–468. Review. doi: 10.1007/BF03256673 PubMedCrossRefGoogle Scholar
  78. Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L, Ganz T (2002) Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 118(2):275–281. PMID: 11841544 DOI: 10.1046/j.0022-202x.2001.01651.x PubMedCrossRefGoogle Scholar
  79. Liu L, Roberts AA, Ganz T (2003) By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide. J Immunol 170(1):575–580. PMID:12496445. doi: 10.4049/jimmunol.170.1.575 PubMedCrossRefGoogle Scholar
  80. Liu LL, Yang JL, Shi YP (2010) Phytochemicals and biological activities of Pulicaria species. Chem Biodivers 7(2):327–349. doi: 10.1080/10286020903496455 PubMedCrossRefGoogle Scholar
  81. Liu Y, Chan F, Sun H, Yan J, Fan D, Zhao D, An J, Zhou D (2011) Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression. Eur J Pharmacol 650(1):130–137. doi: 10.1016/j.ejphar.2010.10.009 PubMedCrossRefGoogle Scholar
  82. MacRedmond R, Greene C, Taggart CC, McElvaney N, O’Neill S (2005) Respiratory epithelial cells require Toll-like receptor 4 for induction of human beta-defensin 2 by lipopolysaccharide. Respir Res 6:116. doi: 10.1186/1465-9921-6-116 PubMedPubMedCentralCrossRefGoogle Scholar
  83. MacRedmond RE, Greene CM, Dorscheid DR, McElvaney NG, O’Neill SJ (2007) Epithelial expression of TLR4 is modulated in COPD and by steroids, salmeterol and cigarette smoke. Respir Res 8:84. doi: 10.1186/1465-9921-8-84 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Maisetta G, Batoni G, Esin S, Luperini F, Pardini M, Bottai D, Florio W, Giuca MR, Gabriele M, Campa M (2003) Activity of human beta-defensin 3 alone or combined with other antimicrobial agents against oral bacterial. Antimicrob Agents Chemother 47(10):3349–3351. PMID: 14506056. doi: 10.1128/AAC.47.10.3349-3351.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6(5):468–472. Review. doi: 10.1016/j.coph.2006.04.006 PubMedCrossRefGoogle Scholar
  86. McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, Proske RJ (2003) Defensin expression by the cornea: multiple signalling pathways mediate IL-1beta stimulation of hBD-2 expression by human corneal epithelial cells. Invest Ophthalmol Vis Sci 44(5):1859–1865. PMID: 12714616. doi: 10.1167/iovs.02-0787 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nakajima K, Terao M, Takaishi M, Kataoka S, Goto-Inoue N, Setou M, Horie K, Sakamoto F, Ito M, Azukizawa H, Kitaba S, Murota H, Itami S, Katayama I, Takeda J, Sano S (2013) Barrier abnormality due to ceramide deficiency leads to psoriasiform inflammation in a mouse model. J Invest Dermatol 133(11):2555–2565. doi: 10.1038/jid.2013.199 PubMedCrossRefGoogle Scholar
  88. Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I (2001) Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31(4):1066–1075. doi: 10.1002/1521-4141(200104). PMID: 11298331. doi: 10.1002/1521-4141(200104)PubMedCrossRefGoogle Scholar
  89. Niyonsaba F, Ogawa H, Nagaoka I (2004) Human beta-defensin-2 functions as a chemotactic agent for tumour necrosis factor-alpha-treated human neutrophils. Immunology 111(3):273–281. doi: 10.1111/j.0019-2805.2004.01816.xPMID:15009427 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine Milieu of Atopic Dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171(6):3262–3269. doi: 10.4049/jimmunol.171.6.3262 PubMedCrossRefGoogle Scholar
  91. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160. doi: 10.1056/NEJMoa021481 PubMedCrossRefGoogle Scholar
  92. Paoletti I, Buommino E, Tudisco L, Baudouin C, Msika P, Tufano MA, Baroni A, Donnarumma G (2010) Patented natural avocado sugars modulate the HBD-2 expression in human keratinocytes through the involvement of protein kinase C and protein tyrosine kinases. Arch Dermatol Res 302(3):201–209. doi: 10.1007/s00403-009-0991-1 PubMedCrossRefGoogle Scholar
  93. Paoletti I, Buommino E, Fusco A, Baudouin C, Msika P, Tufano MA, Baroni A, Donnarumma G (2012) Patented natural avocado sugar modulates the HBD-2 and HBD-3 expression in human keratinocytes through toll-like receptor-2 and ERK/MAPK activation. Arch Dermatol Res 304(8):619–625. doi: 10.1007/s00403-012-1237-1 PubMedCrossRefGoogle Scholar
  94. Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63(11):1294–1313. Review PMID:16710608. doi: 10.1007/s00018-005-5540-2 PubMedCrossRefGoogle Scholar
  95. Pechkovsky DV, Zissel G, Ziegenhagen MW, Einhaus M, Taube C, Rabe KF, Magnussen H, Papadopoulos T, Schlaak M, Müller-Quernheim J (2000) Effect of proinflammatory cytokines on interleukin-8 mRNA expression and protein production by isolated human alveolar epithelial cells type II in primary culture. Eur Cytokine Netw 11(4):618–625. PMID: 11125305PubMedGoogle Scholar
  96. Poiraud C, Quereux G, Knol AC, Zuliani T, Allix R, Khammari A, Dreno B (2012) Human β defensin-2 and psoriasin, two new innate immunity targets of zinc gluconate. Eur J Dermatol 22(5):634–639. doi: 10.1684/ejd.2012.1800 PubMedGoogle Scholar
  97. Prado-Montes de Oca E, García-Vargas A, Lozano-Inocencio R, Gallegos-Arreola MP, Sandoval-Ramírez L, Dávalos-Rodríguez NO, Figuera LE (2007) Association of beta-defensin 1 single nucleotide polymorphisms with atopic dermatitis. Int Arch Allergy Immunol 142(3):211–218. PMID:17108702 DOI: 10.1159/000097023 PubMedCrossRefGoogle Scholar
  98. Prohic A, Kasumagic-Halilovic E (2009) Identification of Malassezia pachydermatis from healthy and diseased human skin. Med Arh 63(6):317–319. doi: 10.1007/s00403-014-1479-1 PubMedGoogle Scholar
  99. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 7(12):1063–1072. Review PMID: 19043850. doi: 10.1111/j.1600-0625.2008.00786.x CrossRefGoogle Scholar
  100. Proud D, Sanders SP, Wiehler S (2004) Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo. J Immunol 172(7):4637–4645. doi: 10.4049/jimmunol.172.7.4637 PubMedCrossRefGoogle Scholar
  101. Quiñones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P, Medvik K, Sieg SF, Weinberg A (2003) Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17(16):F39–F48. doi: 10.1097/01.aids.0000096878.73209.4f PubMedCrossRefGoogle Scholar
  102. Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29(1):27–43. Review PMID:17621952. doi: 10.1007/s00281-007-0064-5 PubMedCrossRefGoogle Scholar
  103. Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B (2003) Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A 100(16):9482–9487. PMID: 12874388PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ryan CA, Kimber I, Basketter DA, Pallardy M, Gildea LA, Gerberick GF (2007) Dendritic cells and skin sensitization: biological roles and uses in hazard identification. Toxicol Appl Pharmacol 221(3):384–394. Review. doi: 10.1016/j.taap.2007.03.006 PubMedCrossRefGoogle Scholar
  105. Sanford JA, Gallo RL (2013) Functions of the skin microbiota in health and disease. Semin Immunol 25(5):370–377. PMID: 24268438. doi: 10.1016/j.smim.2013.09.005 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Sass V, Schneider T, Wilmes M, Körner C, Tossi A, Novikova N, Shamova O, Sahl HG (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 78(6):2793–2800. doi: 10.1128/IAI.00688-09 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Schaller-Bals S, Schulze A, Bals R (2002) Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165(7):992–995. doi: 10.1164/ajrccm.165.7.200110-020 PubMedCrossRefGoogle Scholar
  108. Schutte BC, McCray PB Jr (2002) [beta]-defensins in lung host defense. Annu Rev Physiol 64:709–748. Review. doi: 10.1146/annurev.physiol.64.081501.134340 PubMedCrossRefGoogle Scholar
  109. Scola N, Gambichler T, Saklaoui H, Bechara FG, Georgas D, Stücker M, Gläser R, Kreuter A (2012) The expression of antimicrobial peptides is significantly altered in cutaneous squamous cell carcinoma and precursor lesions. Br J Dermatol 167(3):591–597. doi: 10.1111/j.1365-2133.2012.11110.x PubMedCrossRefGoogle Scholar
  110. Shanahan F (2002) Probiotics and inflammatory bowel disease: from fads and fantasy to facts and future. Br J Nutr 88(Suppl 1):S5–S9. PMID:12215176PubMedCrossRefGoogle Scholar
  111. Sharma S, Verma I, Khuller GK (2000) Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study. Eur Respir J 16(1):112–117. PMID: 10933095PubMedCrossRefGoogle Scholar
  112. Signat B, Roques C, Poulet P, Duffaut D (2011) Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol 13(2):25–36. PMID: 21220789PubMedGoogle Scholar
  113. Sinha S, Cheshenko N, Lehrer RI, Herold BC (2003) NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother 47(2):494–500. doi: 10.1128/AAC.47.2.494-500.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Situ H, Balasubramanian SV, Bobek LA (2000) Role of alpha-helical conformation of histatin-5 in candidacidal activity examined by proline variants. Biochim Biophys Acta 1475(3):377–382. doi: 10.1016/S0304-4165(00)00096-9 PubMedCrossRefGoogle Scholar
  115. Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85(2):229–236. doi: 10.1016/S0092-8674(00)81099-5 PubMedCrossRefGoogle Scholar
  116. Sørensen OE, Thapa DR, Roupé KM, Valore EV, Sjöbring U, Roberts AA, Schmidtchen A, Ganz T (2006) Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 116(7):1878–1885. doi: 10.1172/JCI28422. PMID: 16778986PubMedPubMedCentralCrossRefGoogle Scholar
  117. Stevens DL (1996) Immune modulatory effects of antibiotics. Curr Opin Infect Dis 46:98–102Google Scholar
  118. Svanborg C, Godaly G, Hedlund M (1999) Cytokine responses during mucosal infections: role in disease pathogenesis and host defence. Curr Opin Microbiol 2(1):99–105. Review PMID:10047563. doi: 10.1016/S0952-7915(00)00187-4 PubMedCrossRefGoogle Scholar
  119. Travis SM, Singh PK, Welsh MJ (2001) Antimicrobial peptides and proteins in the innate defense of the airway surface. Curr Opin Immunol 13(1):89–95. Review PMID:11154923 DOI: 10.1016/S0952-7915(00)00187-4 PubMedCrossRefGoogle Scholar
  120. Tsai H, Bobek LA (1998) Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med 9(4):480–497. doi: 10.1177/10454411980090040601 PubMedCrossRefGoogle Scholar
  121. Tsutsumi-Ishii Y, Nagaoka I (2003) Modulation of human beta-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J Immunol 170(8):4226–4236. doi: 10.4049/jimmunol.170.8.4226 PubMedCrossRefGoogle Scholar
  122. Uehara N, Yagihashi A, Kondoh K, Tsuji N, Fujita T, Hamada H, Watanabe N (2003) Human beta-defensin-2 induction in Helicobacter pylori-infected gastric mucosal tissues: antimicrobial effect of overexpression. J Med Microbiol 52(Pt 1):41–45. doi: 10.1099/jmm.0.04985- PubMedCrossRefGoogle Scholar
  123. Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB Jr, Ganz T (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101(8):1633–1642. doi: 10.1172/JCI1861 PubMedPubMedCentralCrossRefGoogle Scholar
  124. van’t Hof W, Reijnders IM, Helmerhorst EJ, Walgreen-Weterings E, Simoons-Smit IM, Veerman EC, Amerongen AV (2000) Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B anti-mycotic activity. Antonie Van Leeuwenhoek 78(2):163–169. PubMed. doi: 10.1023/A:1026572128004 CrossRefGoogle Scholar
  125. VanderSpek JC, Wyandt HE, Skare JC, Milunsky A, Oppenheim FG, Troxler RF (1989) Localization of the genes for histatins to human chromosome 4q13 and tissue distribution of the mRNAs. Am J Hum Genet 45(3):381–387. PMID: 2773933PubMedPubMedCentralGoogle Scholar
  126. Wanke I, Steffen H, Christ C, Krismer B, Götz F, Peschel A, Schaller M, Schittek B (2011) Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J Invest Dermatol 131(2):382–390. PMID:21048787. doi: 10.1038/jid.2010.328 PubMedCrossRefGoogle Scholar
  127. Watanabe S, Kano R, Sato H, Nakamura Y, Hasegawa A (2001) The effects of Malassezia yeasts on cytokine production by human keratinocytes. J Invest Dermatol 116(5):769–773. doi: 10.1046/j.1523-1747.2001.01321.x PubMedCrossRefGoogle Scholar
  128. Wehkamp J, Fellermann K, Herrlinger KR, Baxmann S, Schmidt K, Schwind B, Duchrow M, Wohlschläger C, Feller AC, Stange EF (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14(7):745–752. PMID:12169983PubMedCrossRefGoogle Scholar
  129. Whitsett JA (2002) Intrinsic and innate defenses in the lung: intersection of pathways regulating lung morphogenesis, host defense, and repair. J Clin Invest 109(5):565–569. Review. doi: 10.1172/JCI15209 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wiechuła BE, Friedek DA, Ekiel AM, Romanik MK, Martirosian G (2007) Human neutrophil peptides in vaginitis/cervicitis of different etiology. Pol J Microbiol 56(3):185–189. PMID: 18062652PubMedGoogle Scholar
  131. Yamaguchi Y, Nagase T, Makita R, Fukuhara S, Tomita T, Tominaga T, Kurihara H, Ouchi Y (2002) Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. J Immunol 169(5):2516–2523. doi: 10.4049/jimmunol.169.5.2516 PubMedCrossRefGoogle Scholar
  132. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schröder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286(5439):525–528. PMID: 10521347. doi: 10.1126/science.286.5439.525 PubMedCrossRefGoogle Scholar
  133. Yoshio H, Tollin M, Gudmundsson GH, Lagercrantz H, Jornvall H, Marchini G, Agerberth B (2003) Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense. Pediatr Res 53(2):211–216. doi: 10.1203/01.PDR.0000047471.47777.B0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giovanna Donnarumma
    • 1
    Email author
  • Iole Paoletti
    • 1
  • Alessandra Fusco
    • 1
  • Brunella Perfetto
    • 1
  • Elisabetta Buommino
    • 1
  • Vincenza de Gregorio
    • 2
  • Adone Baroni
    • 3
  1. 1.Department of Experimental Medicine, Section of Microbiology and Clinical MicrobiologySecond University of NaplesNaplesItaly
  2. 2.Center for Advanced Biomaterial for Health Care TechnologyItalian Institute of TechnologyNaplesItaly
  3. 3.Multidisciplinary Department of Medical-Surgical and Dental Speciality-DermatologySecond University of NaplesNaplesItaly

Personalised recommendations