Skip to main content

Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis

  • Chapter
  • First Online:
Advances in Microbiology, Infectious Diseases and Public Health

Abstract

The accumulation of reactive oxygen species (ROS) in microbial biofilms has been recently recognized to play a role in promoting antibiotic resistance in biofilm-growing bacteria. ROS are also over-produced when a medical device is implanted and they can promote device susceptibility to infection or aseptic loosening. High levels of ROS seem also to be responsible for the establishment of chronic wounds.

In this study, a novel antioxidant polyacrylate was synthesized and investigated in terms of antimicrobial and antibiofilm activity. The polymer possesses in side-chain hydroxytyrosol (HTy), that is a polyphenolic compound extracted from olive oil wastewaters.

The obtained 60 nm in size polymer nanoparticles showed good scavenging and antibacterial activity versus a strain of Staphylococcus epidermidis. Microbial adherence assays evidenced that the hydroxytyrosol-containing polymer was able to significantly reduce bacterial adhesion compared to the control. These findings open novel perspective for a successful use of this antioxidant polymer for the prevention or treatment of biofilm-based infections as those related to medical devices or chronic wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Mohajer M, Darouiche RO (2012) Sepsis syndrome, bloodstream infections, and device-related infections. Med Clin N Am 96:1203–1223

    Article  PubMed  Google Scholar 

  • Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian V, Grusin NK, Bucher RW et al (1999) Residence-time dependent changes in fibrinogen adsorbed to polymeric biomaterials. J Biomed Mater Res 44:253–260

    Article  CAS  PubMed  Google Scholar 

  • Bernini R, Mincione E, Barontini M et al (2008) Convenient synthesis of hydroxytyrosol and its lipophilic derivatives from tyrosol or homovanillyl alcohol. J Agric Food Chem 56:8897–8904

    Article  CAS  PubMed  Google Scholar 

  • Biesalski HK (2007) Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10:724–728

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Singh PK (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 105:12503–12508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudreaux CJ, Bunyard WC, McCormick CL (1996) Controlled activity polymers. 8. Copolymers of acrylic acid and isomeric N-akylacrylamide with pendent beta-naphthol esters moieties: synthesis and characterization. J Control Release 40:223–233

    Article  CAS  Google Scholar 

  • Brandwilliams W, Cuvelier ME, Berset C (1995) Use of a free-radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30

    Article  CAS  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554

    Article  CAS  PubMed  Google Scholar 

  • Cap M, Vachova L, Palkova Z (2012) Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev 2012:976753

    Article  PubMed  PubMed Central  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52:1636–1653

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirillo G, Curcio M, Vittorio O et al (2014) Polyphenol conjugates and human health: a perspective review. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2012.752342

    Google Scholar 

  • Correa JAG, Lopez-Villodres JA, Asensi R et al (2009) Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid. Br J Nutr 101:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Montanaro L, Arciola CR (2007) Bacterial communications in implant infections: a target for an intelligence war. Int J Artif Organs 30:757–763

    CAS  PubMed  Google Scholar 

  • Curcio M, Puoci F, Iemma F et al (2009) Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J Agric Food Chem 57:5933–5938

    Article  CAS  PubMed  Google Scholar 

  • de Pinedo AT, Penalver P, Morales JC (2007) Synthesis and evaluation of new phenolic-based antioxidants: structure-activity relationship. Food Chem 103:55–61

    Article  Google Scholar 

  • Dhall S, Do D, Garcia M et al (2014a) A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity. Plos One 9:e109848

    Google Scholar 

  • Dhall S, Do DC, Garcia M et al (2014b) Generating and reversing chronic wounds in diabetic mice by manipulating wound redox parameters. J Diabetes Res http://dx.doi.org/10.1155/2014/562625

  • Donelli G, Vuotto C (2014) Biofilm-based infections in long-term care facilities. Future Microbiol 9:175–188

    Article  CAS  PubMed  Google Scholar 

  • Donelli G, Francolini I, Romoli D et al (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153–164

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, D’Ilario L, Guaglianone E et al (2010) Polyurethane anionomers containing metal ions with antimicrobial properties: thermal, mechanical and biological characterization. Acta Biomater 6:3482–3490

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Taresco V, Crisante F et al (2013) Water soluble usnic acid-polyacrylamide complexes with enhanced antimicrobial activity against staphylococcus epidermidis. Int J Mol Sci 14:7356–7369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francolini I, Donelli G, Vuotto C et al (2014a) Antifouling polyurethanes to fight device-related staphylococcal infections: synthesis, characterization, and antibiofilm efficacy. Pathog Dis 70:401–407

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Piozzi A, Donelli G (2014b) Efficacy evaluation of antimicrobial drug-releasing polymer matrices. Methods Mol Biol 1147:215–225

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Donelli G, Crisante F et al (2015) Antimicrobial polymers for anti-biofilm medical devices: state-of-art and perspectives. Adv Exp Med Biol 831:93–117

    Article  PubMed  Google Scholar 

  • Frigerio M, Santagostino M, Sputore S (1999) A user-friendly entry to 2-iodoxybenzoic acid (IBX). J Org Chem 64:4537–4538

    Article  CAS  Google Scholar 

  • Geier H, Mostowy S, Cangelosi GA et al (2008) Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl Environ Microbiol 74:1798–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL et al (2010) Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68:191–206

    Article  PubMed  Google Scholar 

  • Gristina AG (1994) Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin Orthop Relat Res 298:106–118

    PubMed  Google Scholar 

  • Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 39:887–898

    Article  CAS  PubMed  Google Scholar 

  • Hanna HA, Raad II, Hackett B et al (2003) Antibiotic-impregnated catheters associated with significant decrease in nosocomial and multidrug-resistant bacteremias in critically ill patients. Chest 124:1030–1038

    Article  PubMed  Google Scholar 

  • Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  • Iemma F, Puoci F, Curcio M et al (2010) Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. J Appl Polym Sci 115:784–789

    Article  CAS  Google Scholar 

  • Jamal MA, Rosenblatt JS, Hachem RY et al (2014) Prevention of biofilm colonization by Gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine. Antimicrob Agents Chemother 58:1179–1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung LS, He X, Song C et al (2012) Antioxidant, antibiofilm, and anticholinesterase activities of fermented Deodeok (Codonopsis lanceolata) extracts. Food Sci Biotechnol 21:1413–1419

    Article  CAS  Google Scholar 

  • Mack D, Rohde H, Harris LG et al (2006) Biofilm formation in medical device-related infection. Int J Artif Organs 29:343–359

    CAS  PubMed  Google Scholar 

  • Mah TF (2012) Biofilm-specific antibiotic resistance. Future Microbiol 7:1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Manea AM, Vasile BS, Meghea A (2014) Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. C R Chim 17:331–341

    Article  CAS  Google Scholar 

  • Mansouri MD, Hull RA, Stager CE et al (2013) In vitro activity and durability of a combination of an antibiofilm and an antibiotic against vascular catheter colonization. Antimicrob Agents Chemother 57:621–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monzillo V, Corona S, Lanzarini P et al (2012) Chlorhexidine-silver sulfadiazine-impregnated central venous catheters: in vitro antibacterial activity and impact on bacterial adhesion. New Microbiol 35:175–182

    CAS  PubMed  Google Scholar 

  • Ortiz C, Vazquez B, San RJ (1999) Hydrophilic acrylic biomaterials derived from vitamin E with antioxidant properties. J Biomed Mater Res 45:184–191

    Article  CAS  PubMed  Google Scholar 

  • Piozzi A, Francolini I, Occhiaperti L et al (2004) Polyurethanes loaded with antibiotics: influence of polymer-antibiotic interactions on in vitro activity against Staphylococcus epidermidis. J Chemother 16:446–452

    Article  CAS  PubMed  Google Scholar 

  • Raad II, Darouiche RO, Hachem R et al (1998) Antimicrobial durability and rare ultrastructural colonization of indwelling central catheters coated with minocycline and rifampin. Crit Care Med 26:219–224

    Article  CAS  PubMed  Google Scholar 

  • Ramos ER, Reitzel R, Jiang Y et al (2011) Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med 39:245–251

    Article  PubMed  Google Scholar 

  • Rupp ME, Lisco SJ, Lipsett PA et al (2005) Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med 143:570–580

    Article  CAS  PubMed  Google Scholar 

  • Serpen A, Capuano E, Fogliano V et al (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55:7676–7681

    Article  CAS  PubMed  Google Scholar 

  • Siedenbiedel F, Tiller J (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4:46–71

    Article  CAS  Google Scholar 

  • Stickler DJ, Morris NS, Williams TJ (1996) An assessment of the ability of a silver-releasing device to prevent bacterial contamination of urethral catheter drainage systems. Br J Urol 78:579–588

    Article  CAS  PubMed  Google Scholar 

  • Stutz H, Illers KH, Mertes J (1990) A generalized theory for the glass-transition temperature of cross-linked and uncrosslinked polymers. J Polym Sci Polym Phys 28:1483–1498

    Article  CAS  Google Scholar 

  • Sutherland K, Mahoney JR, Coury AJ et al (1993) Degradation of biomaterials by phagocyte-derived oxidants. J Clin Invest 92:2360–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Sheu MS, Chu T et al (1999) Anti-inflammatory properties of triblock siloxane copolymer-blended materials. Biomaterials 20:1365–1370

    Article  CAS  PubMed  Google Scholar 

  • Taresco V, Crisante F, Francolini I, Martinelli A, D’Ilario L, Ricci-Vitiani L, Buccarelli M, Pietrelli L, Piozzi A (2015a) Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater 22:131–140

    Article  CAS  PubMed  Google Scholar 

  • Taresco V, Gontrani L, Crisante F, Francolini I, Martinelli A, D’Ilario L, Bordi F, Piozzi A (2015b) Self-assembly of catecholic moiety-containing cationic random acrylic copolymers. J Phys Chem B 119:8369–8379

    Article  CAS  PubMed  Google Scholar 

  • Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13:636–644

    Article  CAS  PubMed  Google Scholar 

  • Villa F, Remelli W, Forlani F et al (2012) Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. Biofouling 28:823–833

    Article  CAS  PubMed  Google Scholar 

  • Visioli F, Poli A, Galli C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Neoh KG, Kang ET et al (2015) Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J Biomed Mater Res B Appl Biomater 103:519–528

    Article  PubMed  Google Scholar 

  • Wattamwar PP, Biswal D, Cochran DB et al (2012) Synthesis and characterization of poly(antioxidant beta-amino esters) for controlled release of polyphenolic antioxidants. Acta Biomater 8:2529–2537

    Article  CAS  PubMed  Google Scholar 

  • Williams SR, Lepene BS, Thatcher CD et al (2009) Synthesis and characterization of poly(ethylene glycol)-glutathione conjugate self-assembled nanoparticles for antioxidant delivery. Biomacromolecules 10:155–161

    Article  CAS  PubMed  Google Scholar 

  • Wolcott R, Costerton JW, Raoult D et al (2013) The polymicrobial nature of biofilm infection. Clin Microbiol Infect 19:107–112

    Article  CAS  PubMed  Google Scholar 

  • Xu CM, Yagiz Y, Hsu WY et al (2014) Antioxidant, antibacterial, and antibiofilm activities of muscadine grape (Vitis rotundifolia) polyphenols against selected foodborne pathogens. J Agric Food Chem 62:6640–6649

    Article  CAS  PubMed  Google Scholar 

  • Yu ME, Hwang JY, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Italian Ministry of Education, University and Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iolanda Francolini or Antonella Piozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crisante, F. et al. (2015). Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis . In: Donelli, G. (eds) Advances in Microbiology, Infectious Diseases and Public Health. Advances in Experimental Medicine and Biology(), vol 901. Springer, Cham. https://doi.org/10.1007/5584_2015_5013

Download citation

Publish with us

Policies and ethics