Advertisement

Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis

  • Fernanda Crisante
  • Vincenzo Taresco
  • Gianfranco Donelli
  • Claudia Vuotto
  • Andrea Martinelli
  • Lucio D’Ilario
  • Loris Pietrelli
  • Iolanda FrancoliniEmail author
  • Antonella PiozziEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 901)

Abstract

The accumulation of reactive oxygen species (ROS) in microbial biofilms has been recently recognized to play a role in promoting antibiotic resistance in biofilm-growing bacteria. ROS are also over-produced when a medical device is implanted and they can promote device susceptibility to infection or aseptic loosening. High levels of ROS seem also to be responsible for the establishment of chronic wounds.

In this study, a novel antioxidant polyacrylate was synthesized and investigated in terms of antimicrobial and antibiofilm activity. The polymer possesses in side-chain hydroxytyrosol (HTy), that is a polyphenolic compound extracted from olive oil wastewaters.

The obtained 60 nm in size polymer nanoparticles showed good scavenging and antibacterial activity versus a strain of Staphylococcus epidermidis. Microbial adherence assays evidenced that the hydroxytyrosol-containing polymer was able to significantly reduce bacterial adhesion compared to the control. These findings open novel perspective for a successful use of this antioxidant polymer for the prevention or treatment of biofilm-based infections as those related to medical devices or chronic wounds.

Keywords

Antioxidant polymers Hydroxytyrosol Medical device-related infections Microbial biofilm Nanoparticles 

Notes

Acknowledgments

The work was financially supported by the Italian Ministry of Education, University and Research.

References

  1. Al Mohajer M, Darouiche RO (2012) Sepsis syndrome, bloodstream infections, and device-related infections. Med Clin N Am 96:1203–1223CrossRefPubMedGoogle Scholar
  2. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100CrossRefPubMedGoogle Scholar
  3. Balasubramanian V, Grusin NK, Bucher RW et al (1999) Residence-time dependent changes in fibrinogen adsorbed to polymeric biomaterials. J Biomed Mater Res 44:253–260CrossRefPubMedGoogle Scholar
  4. Bernini R, Mincione E, Barontini M et al (2008) Convenient synthesis of hydroxytyrosol and its lipophilic derivatives from tyrosol or homovanillyl alcohol. J Agric Food Chem 56:8897–8904CrossRefPubMedGoogle Scholar
  5. Biesalski HK (2007) Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10:724–728CrossRefPubMedGoogle Scholar
  6. Boles BR, Singh PK (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 105:12503–12508CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boudreaux CJ, Bunyard WC, McCormick CL (1996) Controlled activity polymers. 8. Copolymers of acrylic acid and isomeric N-akylacrylamide with pendent beta-naphthol esters moieties: synthesis and characterization. J Control Release 40:223–233CrossRefGoogle Scholar
  8. Brandwilliams W, Cuvelier ME, Berset C (1995) Use of a free-radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30CrossRefGoogle Scholar
  9. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554CrossRefPubMedGoogle Scholar
  10. Cap M, Vachova L, Palkova Z (2012) Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev 2012:976753CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52:1636–1653CrossRefPubMedGoogle Scholar
  12. Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cirillo G, Curcio M, Vittorio O et al (2014) Polyphenol conjugates and human health: a perspective review. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2012.752342 Google Scholar
  14. Correa JAG, Lopez-Villodres JA, Asensi R et al (2009) Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid. Br J Nutr 101:1157–1164CrossRefPubMedGoogle Scholar
  15. Costerton JW, Montanaro L, Arciola CR (2007) Bacterial communications in implant infections: a target for an intelligence war. Int J Artif Organs 30:757–763PubMedGoogle Scholar
  16. Curcio M, Puoci F, Iemma F et al (2009) Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J Agric Food Chem 57:5933–5938CrossRefPubMedGoogle Scholar
  17. de Pinedo AT, Penalver P, Morales JC (2007) Synthesis and evaluation of new phenolic-based antioxidants: structure-activity relationship. Food Chem 103:55–61CrossRefGoogle Scholar
  18. Dhall S, Do D, Garcia M et al (2014a) A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity. Plos One 9:e109848Google Scholar
  19. Dhall S, Do DC, Garcia M et al (2014b) Generating and reversing chronic wounds in diabetic mice by manipulating wound redox parameters. J Diabetes Res http://dx.doi.org/10.1155/2014/562625
  20. Donelli G, Vuotto C (2014) Biofilm-based infections in long-term care facilities. Future Microbiol 9:175–188CrossRefPubMedGoogle Scholar
  21. Donelli G, Francolini I, Romoli D et al (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fialkow L, Wang Y, Downey GP (2007) Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153–164CrossRefPubMedGoogle Scholar
  23. Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–238CrossRefPubMedGoogle Scholar
  24. Francolini I, D’Ilario L, Guaglianone E et al (2010) Polyurethane anionomers containing metal ions with antimicrobial properties: thermal, mechanical and biological characterization. Acta Biomater 6:3482–3490CrossRefPubMedGoogle Scholar
  25. Francolini I, Taresco V, Crisante F et al (2013) Water soluble usnic acid-polyacrylamide complexes with enhanced antimicrobial activity against staphylococcus epidermidis. Int J Mol Sci 14:7356–7369CrossRefPubMedPubMedCentralGoogle Scholar
  26. Francolini I, Donelli G, Vuotto C et al (2014a) Antifouling polyurethanes to fight device-related staphylococcal infections: synthesis, characterization, and antibiofilm efficacy. Pathog Dis 70:401–407CrossRefPubMedGoogle Scholar
  27. Francolini I, Piozzi A, Donelli G (2014b) Efficacy evaluation of antimicrobial drug-releasing polymer matrices. Methods Mol Biol 1147:215–225CrossRefPubMedGoogle Scholar
  28. Francolini I, Donelli G, Crisante F et al (2015) Antimicrobial polymers for anti-biofilm medical devices: state-of-art and perspectives. Adv Exp Med Biol 831:93–117CrossRefPubMedGoogle Scholar
  29. Frigerio M, Santagostino M, Sputore S (1999) A user-friendly entry to 2-iodoxybenzoic acid (IBX). J Org Chem 64:4537–4538CrossRefGoogle Scholar
  30. Geier H, Mostowy S, Cangelosi GA et al (2008) Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl Environ Microbiol 74:1798–1804CrossRefPubMedPubMedCentralGoogle Scholar
  31. Granados-Principal S, Quiles JL, Ramirez-Tortosa CL et al (2010) Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68:191–206CrossRefPubMedGoogle Scholar
  32. Gristina AG (1994) Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin Orthop Relat Res 298:106–118PubMedGoogle Scholar
  33. Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device-related infections. J Clin Pharmacol 39:887–898CrossRefPubMedGoogle Scholar
  34. Hanna HA, Raad II, Hackett B et al (2003) Antibiotic-impregnated catheters associated with significant decrease in nosocomial and multidrug-resistant bacteremias in critically ill patients. Chest 124:1030–1038CrossRefPubMedGoogle Scholar
  35. Hoiby N, Bjarnsholt T, Givskov M et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332CrossRefPubMedGoogle Scholar
  36. Iemma F, Puoci F, Curcio M et al (2010) Ferulic acid as a comonomer in the synthesis of a novel polymeric chain with biological properties. J Appl Polym Sci 115:784–789CrossRefGoogle Scholar
  37. Jamal MA, Rosenblatt JS, Hachem RY et al (2014) Prevention of biofilm colonization by Gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine. Antimicrob Agents Chemother 58:1179–1182CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jung LS, He X, Song C et al (2012) Antioxidant, antibiofilm, and anticholinesterase activities of fermented Deodeok (Codonopsis lanceolata) extracts. Food Sci Biotechnol 21:1413–1419CrossRefGoogle Scholar
  39. Mack D, Rohde H, Harris LG et al (2006) Biofilm formation in medical device-related infection. Int J Artif Organs 29:343–359PubMedGoogle Scholar
  40. Mah TF (2012) Biofilm-specific antibiotic resistance. Future Microbiol 7:1061–1072CrossRefPubMedGoogle Scholar
  41. Manea AM, Vasile BS, Meghea A (2014) Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. C R Chim 17:331–341CrossRefGoogle Scholar
  42. Mansouri MD, Hull RA, Stager CE et al (2013) In vitro activity and durability of a combination of an antibiofilm and an antibiotic against vascular catheter colonization. Antimicrob Agents Chemother 57:621–625CrossRefPubMedPubMedCentralGoogle Scholar
  43. Monzillo V, Corona S, Lanzarini P et al (2012) Chlorhexidine-silver sulfadiazine-impregnated central venous catheters: in vitro antibacterial activity and impact on bacterial adhesion. New Microbiol 35:175–182PubMedGoogle Scholar
  44. Ortiz C, Vazquez B, San RJ (1999) Hydrophilic acrylic biomaterials derived from vitamin E with antioxidant properties. J Biomed Mater Res 45:184–191CrossRefPubMedGoogle Scholar
  45. Piozzi A, Francolini I, Occhiaperti L et al (2004) Polyurethanes loaded with antibiotics: influence of polymer-antibiotic interactions on in vitro activity against Staphylococcus epidermidis. J Chemother 16:446–452CrossRefPubMedGoogle Scholar
  46. Raad II, Darouiche RO, Hachem R et al (1998) Antimicrobial durability and rare ultrastructural colonization of indwelling central catheters coated with minocycline and rifampin. Crit Care Med 26:219–224CrossRefPubMedGoogle Scholar
  47. Ramos ER, Reitzel R, Jiang Y et al (2011) Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med 39:245–251CrossRefPubMedGoogle Scholar
  48. Rupp ME, Lisco SJ, Lipsett PA et al (2005) Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med 143:570–580CrossRefPubMedGoogle Scholar
  49. Serpen A, Capuano E, Fogliano V et al (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55:7676–7681CrossRefPubMedGoogle Scholar
  50. Siedenbiedel F, Tiller J (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4:46–71CrossRefGoogle Scholar
  51. Stickler DJ, Morris NS, Williams TJ (1996) An assessment of the ability of a silver-releasing device to prevent bacterial contamination of urethral catheter drainage systems. Br J Urol 78:579–588CrossRefPubMedGoogle Scholar
  52. Stutz H, Illers KH, Mertes J (1990) A generalized theory for the glass-transition temperature of cross-linked and uncrosslinked polymers. J Polym Sci Polym Phys 28:1483–1498CrossRefGoogle Scholar
  53. Sutherland K, Mahoney JR, Coury AJ et al (1993) Degradation of biomaterials by phagocyte-derived oxidants. J Clin Invest 92:2360–2367CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tang L, Sheu MS, Chu T et al (1999) Anti-inflammatory properties of triblock siloxane copolymer-blended materials. Biomaterials 20:1365–1370CrossRefPubMedGoogle Scholar
  55. Taresco V, Crisante F, Francolini I, Martinelli A, D’Ilario L, Ricci-Vitiani L, Buccarelli M, Pietrelli L, Piozzi A (2015a) Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater 22:131–140CrossRefPubMedGoogle Scholar
  56. Taresco V, Gontrani L, Crisante F, Francolini I, Martinelli A, D’Ilario L, Bordi F, Piozzi A (2015b) Self-assembly of catecholic moiety-containing cationic random acrylic copolymers. J Phys Chem B 119:8369–8379CrossRefPubMedGoogle Scholar
  57. Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13:636–644CrossRefPubMedGoogle Scholar
  58. Villa F, Remelli W, Forlani F et al (2012) Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. Biofouling 28:823–833CrossRefPubMedGoogle Scholar
  59. Visioli F, Poli A, Galli C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75CrossRefPubMedGoogle Scholar
  60. Wang R, Neoh KG, Kang ET et al (2015) Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J Biomed Mater Res B Appl Biomater 103:519–528CrossRefPubMedGoogle Scholar
  61. Wattamwar PP, Biswal D, Cochran DB et al (2012) Synthesis and characterization of poly(antioxidant beta-amino esters) for controlled release of polyphenolic antioxidants. Acta Biomater 8:2529–2537CrossRefPubMedGoogle Scholar
  62. Williams SR, Lepene BS, Thatcher CD et al (2009) Synthesis and characterization of poly(ethylene glycol)-glutathione conjugate self-assembled nanoparticles for antioxidant delivery. Biomacromolecules 10:155–161CrossRefPubMedGoogle Scholar
  63. Wolcott R, Costerton JW, Raoult D et al (2013) The polymicrobial nature of biofilm infection. Clin Microbiol Infect 19:107–112CrossRefPubMedGoogle Scholar
  64. Xu CM, Yagiz Y, Hsu WY et al (2014) Antioxidant, antibacterial, and antibiofilm activities of muscadine grape (Vitis rotundifolia) polyphenols against selected foodborne pathogens. J Agric Food Chem 62:6640–6649CrossRefPubMedGoogle Scholar
  65. Yu ME, Hwang JY, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fernanda Crisante
    • 1
  • Vincenzo Taresco
    • 2
  • Gianfranco Donelli
    • 3
  • Claudia Vuotto
    • 3
  • Andrea Martinelli
    • 1
  • Lucio D’Ilario
    • 1
  • Loris Pietrelli
    • 4
  • Iolanda Francolini
    • 1
    Email author
  • Antonella Piozzi
    • 1
    Email author
  1. 1.Department of ChemistrySapienza University of RomeRomeItaly
  2. 2.School of PharmacyUniversity of NottinghamNottinghamUK
  3. 3.Microbial Biofilm LaboratoryFondazione Santa Lucia IRCCSRomeItaly
  4. 4.ENEA-UTTAMB, C. R. CasacciaRomeItaly

Personalised recommendations