Comparative evaluation of the antimicrobial activity of 19 essential oils

  • Naouel ChaftarEmail author
  • Marion Girardot
  • Jérôme Labanowski
  • Tawfik Ghrairi
  • Khaled Hani
  • Jacques Frère
  • Christine Imbert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 901)


In our research on natural compounds efficient against human pathogen or opportunist microorganisms contracted by food or water, the antimicrobial activity of 19 essential oils (EOs) was investigated against 11 bacterial species (6 Gram positive, 5 Gram negative) and 7 fungal species (2 dermatophytes, 1 mould, 4 yeasts) using microdilution assays. Five essential oils were obtained from Tunisian plants (EOtun): Artemisia herba-alba Asso, Juniperus phoenicea L., Rosmarinus officinalis L., Ruta graveolens L. and Thymus vulgaris L., whereas others were commercial products (EOcom). Overall, T. vulgaris EOtun was the most efficient EO against both bacteria (Gram negative: MIC ≤ 0.34 mg/mL; Gram positive: MIC ≤ 0.70 mg/mL) and fungi (yeasts: MIC ≤ 0.55 mg/mL; mould: MIC = 0.30 mg/mL; dermatophytes: MIC ≤ 0.07 mg/mL). Two EOcom displayed both acceptable antibacterial and antifungal potency, although weaker than T. vulgaris EOtun activity: Origanum vulgare EOcom (bacteria: MIC ≤ 1.13 mg/mL, fungi: MIC ≤ 1.80 mg/mL), and Cymbopogon martinii var. motia EOcom (bacteria: MIC ≤ 1.00 mg/mL, fungi: MIC ≤ 0.80 mg/mL). Bacillus megaterium, Legionella pneumophila, Listeria monocytogenes and Trichophyton spp. were the most sensitive species to both EOcom and EOtun. This study demonstrated the noteworthy antimicrobial activity of two commercial EOs and points out the remarkable efficiency of T. vulgaris EOtun on all tested bacterial and fungal species, certainly associated with its high content in carvacrol (85 %). These three oils could thus represent promising candidates for applications in water and food protections.


Bacteria Fungi Essential oil GC-MS Antimicrobial activity MIC 



This Work was partially supported by grants from the CMCU (09G824), PHC Utique and the Ministry of Higher Education and Scientific Research of Tunisia. The authors would like to acknowledge Mrs. Florine Steinthal and Professor Vic Norris for revising the English text.

Conflict of Interest

The authors declare that they have no competing interests.


  1. Ait-Ouazzou A, Lorán S, Arakrak A, Laglaoui A, Rota C, Herrera A, Pagan R, Conchello P (2012) Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res Int 45:313–319CrossRefGoogle Scholar
  2. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126CrossRefGoogle Scholar
  3. Baatour O, Tarchoune I, Mahmoudi H, Nassri N, Abidi W, Kaddour R, Hamdaoui G, Ben Nasri-Ayachi M, Lachaâl M, Marzouk B (2012) Culture conditions and salt effects on essential oil composition of sweet marjoram (Origanum majorana) from Tunisia. Acta Pharm 62:251–261CrossRefPubMedGoogle Scholar
  4. Bassolé IHN, Lamien-Meda A, Bayala B, Obame LC, Ilboudo AJ, Franz C, Novak J, Nebié RC, Dicko MH (2011) Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 18:1070–1074CrossRefPubMedGoogle Scholar
  5. Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manage 256:2166–2174CrossRefGoogle Scholar
  6. Bourgou S, Rahali FZ, Ourghemmi I, Saidani Tounsi M (2012) Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. ScientificWorldJournal 2012:528–593CrossRefGoogle Scholar
  7. Braga PC, Sasso MD, Culici M, Alfieri M (2007) Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia 78:396–400CrossRefPubMedGoogle Scholar
  8. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  9. Chaftar N, Girardot M, Quellard N, Labanowski J, Ghrairi T, Hani K, Frère J, Imbert C (2015) Anti Legionella pneumophila activity of six essential oils extracted from Tunisian plants. Chem Biodiv In press. doi: 10.1002/cbdv.201400343
  10. Chaieb K, Hajlaoui H, Zmantar T, Ben Kahla-Nakbi A, Rouabhia M, Mahdouani K, Bakhrouf A (2007) The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res 21:501–506CrossRefPubMedGoogle Scholar
  11. Chami F, Chami N, Bennis S, Bouchikhi T, Remmal A (2005) Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother Res 19:405–408CrossRefPubMedGoogle Scholar
  12. Damjanovic-Vratnica B, Dakov T, Sukovic D, Damjanovic J (2011) Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J Food Sci 29:277–284Google Scholar
  13. de Sousa JP, de Azeredo GA, de Araujo Torres R, da Silva Vasconcelos MA, da Conceicao ML, de Souza EL (2012) Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. Int J Food Microbiol 154:145–151CrossRefPubMedGoogle Scholar
  14. Edris AE, Malone CFR (2012) Preferential solubilization behaviours and stability of some phenolic-bearing essential oils formulated in different microemulsion systems. Int J Cosmet Sci 34:441–445CrossRefPubMedGoogle Scholar
  15. Espina L, Garcia-Gonzalo D, Laglaoui A, Mackey BM, Pagan R (2013) Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. Int J Food Microbiol 161:23–30CrossRefPubMedGoogle Scholar
  16. Fernandez-Pan I, Royo M, Ignacio Mate J (2012) Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. J Food Sci 77:M383–M390CrossRefPubMedGoogle Scholar
  17. Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65:1545–1560PubMedGoogle Scholar
  18. Fu Y, Zu Y, Chen L, Shi X, Wang Z, Sun S, Efferth T (2007) Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res 21:989–994CrossRefPubMedGoogle Scholar
  19. Giordani R, Regli P, Kaloustian J, Mikaïl C, Abou L, Portugal H (2004) Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res 18:990–995CrossRefPubMedGoogle Scholar
  20. Hammer KA, Carson CF, Riley TV (2012) Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother 56:909–915CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hulankova R, Borilova G, Steinhauserova I (2013) Combined antimicrobial effect of oregano essential oil and caprylic acid in minced beef. Meat Sci 95:190–194CrossRefPubMedGoogle Scholar
  22. Hussain AI, Anwar F, Sherazi STH, Przybylski R (2008) Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 108:986–995CrossRefPubMedGoogle Scholar
  23. Iscan G, Kirimer N, Kurkcuoglu M, Baser KHC, Demirci F (2002) Antimicrobial screening of Mentha piperita essential oils. J Agric Food Chem 50:3943–3946CrossRefPubMedGoogle Scholar
  24. Khan MS, Malik A, Ahmad I (2012) Anti-candidal activity of essential oils alone and in combination with amphotericin B or fluconazole against multi-drug resistant isolates of Candida albicans. Med Mycol 50:33–42CrossRefPubMedGoogle Scholar
  25. Kisko G, Roller S (2005) Carvacrol and ρ-cymene inactivate Escherichia coli O157:H7 in apple juice. BMC Microbiol 5:36CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lima IO, de Medeiros Nobrega F, de Oliveira WA, de Oliveira Lima E, Albuquerque Menezes E, Cunha FA, Formiga Melo Diniz Mde F (2012) Anti-Candida albicans effectiveness of citral and investigation of mode of action. Pharm Biol 50:1536–1541CrossRefPubMedGoogle Scholar
  27. López P, Sánchez C, Batlle R, Nerín C (2007) Development of flexible antimicrobial films using essential oils as active agents. J Agric Food Chem 55:8814–8824CrossRefPubMedGoogle Scholar
  28. Meepagala KM, Schrader KK, Wedge DE, Duke SO (2005) Algicidal and antifungal compounds from the roots of Ruta graveolens and synthesis of their analogs. Phytochem 66:2689–2695CrossRefGoogle Scholar
  29. Mighri H, Akrout A, El-jeni H, Zaidi S, Tomi F, Casanova J, Neffati M (2010a) Composition and intraspecific chemical variability of the essential oil from Artemisia herba-alba growing wild in a Tunisian arid zone. Chem Biodivers 7:2709–2717CrossRefPubMedGoogle Scholar
  30. Mighri H, Hajlaoui H, Akrout A, Najjaa H, Neffati M (2010b) Antimicrobial and antioxidant activities of Artemisia herba-alba essential oil cultivated in Tunisian arid zone. C R Chim 13:380–386CrossRefGoogle Scholar
  31. Mohsen H, Ali F (2009) Essential oil composition of Artemisia herba-alba from southern Tunisia. Molecules 14:1585–1594CrossRefPubMedGoogle Scholar
  32. Muriel-Galet V, López-Carballo G, Gavara R, Hernández-Muñoz P (2012) Antimicrobial food packaging film based on the release of LAE from EVOH. Int J Food Microbiol 157:239–244CrossRefPubMedGoogle Scholar
  33. Nenoff P, Haustein UF, Brandt W (1996) Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Skin Pharmacol 9:388–394CrossRefPubMedGoogle Scholar
  34. Park MJ, Gwak KS, Yang I, Kim KW, Jeung EB, Chang JW, Choi IG (2009) Effect of citral, eugenol, nerolidol and alpha-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia 80:290–296CrossRefPubMedGoogle Scholar
  35. Pattnaik S, Subramanyam VR, Bapaji M, Kole CR (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89:39–46PubMedGoogle Scholar
  36. Pinto E, Pina-Vaz C, Salgueiro L, Goncalves MJ, Costa-de-Oliveira S, Cavaleiro C, Palmeira A, Rodrigues A, Martinez-de-Oliveira J (2006) Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol 55:1367–1373CrossRefPubMedGoogle Scholar
  37. Pisseri F, Bertoli A, Nardoni S, Pinto L, Pistelli L, Guidi G, Mancianti F (2009) Antifungal activity of tea tree oil from Melaleuca alternifolia against Trichophyton equinum: an in vivo assay. Phytomedicine 16:1056–1058CrossRefPubMedGoogle Scholar
  38. Raman A, Weir U, Bloomfield SF (1995) Antimicrobial effects of tea-tree oil and its major components on Staphylococcus aureus, Staph. epidermidis and Propionibacterium acnes. Lett Appl Microbiol 21:242–245CrossRefPubMedGoogle Scholar
  39. Rattanachaikunsopon P, Phumkhachorn P (2010) Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J Biosci Bioeng 110:614–619CrossRefPubMedGoogle Scholar
  40. Rouis Z, Elaissi A, Abid NB, Lassoued MA, Cioni PL, Flamini G, Aouni M (2012) Chemical composition and intraspecific variability of the essential oils of five populations of Hypericum triquetrifolium Turra growing in North Tunisia. Chem Biodivers 9:806–816CrossRefPubMedGoogle Scholar
  41. Shah B, Davidson PM, Zhong Q (2012) Nanocapsular dispersion of thymol for enhanced dispersibility and increased antimicrobial effectiveness against Escherichia coli O157:H7 and Listeria monocytogenes in model food systems. Appl Environ Microbiol 78:8448–8453CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stashenko EE, Acosta R, Martinez JR (2000) High-resolution gas-chromatographic analysis of the secondary metabolites obtained by subcritical-fluid extraction from Colombian rue (Ruta graveolens L.). J Biochem Biophys Methods 43:379–390CrossRefPubMedGoogle Scholar
  43. Sudjana AN, Carson CF, Carson KC, Riley TV, Hammer KA (2012) Candida albicans adhesion to human epithelial cells and polystyrene and formation of biofilm is reduced by sub-inhibitory Melaleuca alternifolia (tea tree) essential oil. Med Mycol 50:863–870CrossRefPubMedGoogle Scholar
  44. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ultee A, Slump RA, Steging G, Smid EJ (2000) Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J Food Prot 63:620–624PubMedGoogle Scholar
  46. Vale-Silva L, Silva MJ, Oliveira D, Goncalves MJ, Cavaleiro C, Salgueiro L, Pinto E (2012) Correlation of the chemical composition of essential oils from Origanum vulgare subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. J Med Microbiol 61:252–260CrossRefPubMedGoogle Scholar
  47. Verdon J, Berjeaud JM, Lacombe C, Héchard Y (2008) Characterization of anti-Legionella activity of warnericin RK and delta-lysin I from Staphylococcus warneri. Peptides 29:978–984CrossRefPubMedGoogle Scholar
  48. Xu J, Zhou F, Ji BP, Pei RS, Xu N (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47:174–179CrossRefPubMedGoogle Scholar
  49. Zouari N, Ayadi I, Fakhfakh N, Rebai A, Zouari S (2012) Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. et Reut., a North African endemic species. Lipids Health Dis 11:28CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Naouel Chaftar
    • 1
    • 2
    • 3
    Email author
  • Marion Girardot
    • 1
  • Jérôme Labanowski
    • 4
  • Tawfik Ghrairi
    • 2
  • Khaled Hani
    • 2
  • Jacques Frère
    • 1
  • Christine Imbert
    • 1
  1. 1.Laboratoire Ecologie Biologie des InteractionsUniversité de Poitiers, UMR CNRS 7267Poitiers Cedex 9France
  2. 2.Faculté de Médecine, UR08-45Département de BiochimieSousseTunisie
  3. 3.Université de Rouen, LMSM - EA 4312, UFR des Sciences et TechniquesMont-Saint-Aignan CedexFrance
  4. 4.Université de Poitiers, IC2MP, UMR CNRS 7285Poitiers CedexFrance

Personalised recommendations