Skip to main content

Biochemistry of Oxidative Stress

  • Chapter
  • First Online:
Book cover Advances in Clinical Science

Abstract

Generation of reactive oxygen species is a physiological process that take place in every aerobic organism. Oxidative stress is defined as a disturbance in the balance between the production of free radicals and antioxidants in favor of the oxidants. The imbalance between those two fractions may potentially lead to cell damage at molecular level. Since oxidants are formed at a different rate as a normal product of aerobic metabolism, complex biochemical mechanisms are required to regulate the entire process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397(2):342–344

    Article  CAS  PubMed  Google Scholar 

  • Bleier L, Drose S (2013) Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 1827(11–12):1320–1331

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767

    Article  CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10(2):389–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567(1):1–61

    Article  CAS  PubMed  Google Scholar 

  • Farrera C, Fadeel B (2013) Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191(5):2647–2656

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219(1):1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017

    CAS  PubMed  Google Scholar 

  • Han D, Williams E, Cadenas E (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 353(Pt 2):411–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haynes V, Elfering S, Traaseth N, Giulivi C (2004) Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation. J Bioenerg Biomembr 36(4):341–346

    Article  CAS  PubMed  Google Scholar 

  • Jezek P, Hlavata L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37(12):2478–2503

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD, Kamin H (1976) Adrenodoxin reductase. Properties of the complexes of reduced enzyme with NADP+ and NADPH. J Biol Chem 251(14):4299–4306

    CAS  PubMed  Google Scholar 

  • Lushchak VI (2007) Free radical oxidation of proteins and its relationship with functional state of organisms. Biochemistry (Mosc) 72(8):809–827

    Article  CAS  Google Scholar 

  • Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62(2):327–367

    Article  CAS  PubMed  Google Scholar 

  • Morrison RT, Boyd RN (1992) Organic chemistry, 6th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Nakaya H, Takeda Y, Tohse N, Kanno M (1992) Mechanism of the membrane depolarization induced by oxidative stress in guinea-pig ventricular cells. J Mol Cell Cardiol 24(5):523–534

    Article  CAS  PubMed  Google Scholar 

  • Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun 338(1):668–676

    Article  CAS  PubMed  Google Scholar 

  • Paselk R (2008) Biochemical toxicology. Humboldt State University. http://users.humboldt.edu/rpaselk/C451.S10/C451LecNotes/451nLec12.html. Accessed on 27 Mar 2015

  • Rieske JS, Maclennan DH, Coleman R (1964) Isolation and properties of an iron-protein from the (reduced coenzyme Q)-cytochrome C reductase complex of the respiratory chain. Biochem Biophys Res Commun 15(4):338–344

    Article  Google Scholar 

  • Rom O, Avezov K, Aizenbud D, Reznick AZ (2013) Cigarette smoking and inflammation revisited. Respir Physiol Neurobiol 187(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4):383–393

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    Article  CAS  PubMed  Google Scholar 

  • Takei H, Araki A, Watanabe H, Ichinose A, Sendo F (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 59(2):229–240

    CAS  PubMed  Google Scholar 

  • Takeshita M, Tamura M, Yubisui T (1983) Microsomal electron-transport reductase activities and fatty acid elongation in rat brain. Developmental changes, regional distribution and comparison with liver activity. Biochem J 214(3):751–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał P. Pruchniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pruchniak, M.P., Araźna, M., Demkow, U. (2015). Biochemistry of Oxidative Stress. In: Pokorski, M. (eds) Advances in Clinical Science. Advances in Experimental Medicine and Biology(), vol 878. Springer, Cham. https://doi.org/10.1007/5584_2015_161

Download citation

Publish with us

Policies and ethics