Skip to main content

How Do Skeletal Muscles Die? An Overview

  • Chapter
  • First Online:
Respiratory Health

Part of the book series: Advances in Experimental Medicine and Biology ((NR,volume 861))

Abstract

Clarifying the confusion regarding the term “muscle death” is of great importance, especially for clinicians. In response to various stimuli, skeletal muscle may undergo pathological changes, leading to muscle atrophy and consequently resulting in the loss of muscle strength and function. Depending on the stimulus, skeletal muscles can be induced to die through different mechanisms mainly via apoptosis, autophagy and necrosis. Muscle death may occur secondary to various physiological and pathological conditions such as aging, starvation, immobilization, denervation, inflammation, muscle diseases and cancer. This overview aims to elucidate the medical terminology and pathways used to describe muscle death, which are commonly confused. In addition, some of the common pathological conditions that lead to muscle death such as cachexia and sarcopenia of aging are dwelled on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahv KS, Aggarwal BB (2005) Transcription factor NF-kB: a sensor for smoke and stress signals. Ann N Y Acad Sci 1056:218–233

    Article  Google Scholar 

  • Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B (2010) Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 285(51):39597–39608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrianjafiniony T, Dupré-Aucouturier S, Letexier D, Couchoux H, Desplanches D (2010) Oxidative stress, apoptosis, and proteolysis in skeletal muscle repair after unloading. Am J Physiol Cell Physiol 299(2):C307–C315

    Article  CAS  PubMed  Google Scholar 

  • Bar-Shai M, Carmeli E, Ljubuncic P, Reznick AZ (2008) Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation. Free Radic Biol Med 44(2):202–214

    Article  CAS  PubMed  Google Scholar 

  • Bossola M, Muscaritoli M, Costelli P, Bellantone R, Pacelli F, Busquets S, Argilès J, Lopez-Soriano FJ, Civello IM, Baccino FM, Rossi-Fanelli F, Doglietto GB (2001) Increased muscle ubiquitin mRNA levels in gastric cancer patients. Am J Physiol Regul Integr Comp Physiol 280(5):R1518–R1523

    CAS  PubMed  Google Scholar 

  • Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL (2013) The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol 169(Suppl 2):1–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breitbach S, Tug S, Simon P (2012) Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med 42(7):565–586

    Article  PubMed  Google Scholar 

  • Breitbach S, Sterzing B, Magallanes C, Tug S, Simon P (2014) Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise. J Appl Physiol 117(2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Brooks NE, Myburgh KH (2014) Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 5:99–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Busquets S, Deans C, Figueras M, Moore-Carrasco R, Lopez-Soriano FJ, Fearon KC, Argilés JM (2007) Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr 26(5):614–618

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKK-beta/NF kappa B activation causes severe muscle wasting in mice. Cell 119(2):285–298

    Article  CAS  PubMed  Google Scholar 

  • Carmeli E, Imam B, Merrick J (2012) The relationship of pre-sarcopenia (low muscle mass) and sarcopenia (loss of muscle strength) with functional decline in individuals with intellectual disability (ID). Arch Gerontol Geriatr 55(1):181–185

    Article  PubMed  Google Scholar 

  • Cesari M, Landi F, Vellas B, Bernabei R, Marzetti E (2014) Sarcopenia and physical frailty: two sides of the same coin. Front Aging Neurosci 6:192–196

    PubMed Central  PubMed  Google Scholar 

  • Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B (2006) Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev 127(10):794–801

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423

    Article  PubMed Central  PubMed  Google Scholar 

  • Dam AD, Mitchell AS, Rush JW, Quadrilatero J (2012) Elevated skeletal muscle apoptotic signaling following glutathione depletion. Apoptosis 17(1):48–60

    Article  CAS  PubMed  Google Scholar 

  • Danaila L, Popescu I, Pais V, Riga D, Riga S, Pais E (2013) Apoptosis, paraptosis, necrosis, and cell regeneration in posttraumatic cerebral arteries. Chirurgia (Bucur) 108(3):319–324

    CAS  Google Scholar 

  • Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R (2013) Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 70(15):2713–2741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dupont-Versteegden EE (2006) Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 12(46):7463–7466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ebner N, Springer J, Kalantar-Zadeh K, Lainscak M, Doehner W, Anker SD, von Haehling S (2013) Mechanism and novel therapeutic approaches to wasting in chronic disease. Maturitas 75(3):199–206

    Article  CAS  PubMed  Google Scholar 

  • Edström E, Altun M, Hägglund M, Ulfhake B (2006) Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 61(7):663–674

    Article  PubMed  Google Scholar 

  • Foletta VC, White LJ, Larsen AE, Léger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461:325–335

    Article  CAS  PubMed  Google Scholar 

  • Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984

    Article  CAS  PubMed  Google Scholar 

  • Goldspink G (1985) Malleability of the motor system: a comparative approach. J Exp Biol 115:375–391

    CAS  PubMed  Google Scholar 

  • Gumucio JP, Mendias CL (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43(1):12–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209(Pt 12):2265–2275

    Article  CAS  PubMed  Google Scholar 

  • Janssen-Heininger YM, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28(9):1317–1327

    Article  CAS  PubMed  Google Scholar 

  • Johns N, Stephens NA, Fearon KC (2013) Muscle wasting in cancer. Int J Biochem Cell Biol 45(10):2215–2229

    Article  CAS  PubMed  Google Scholar 

  • Kattapuram TM, Suri R, Rosol MS, Rosenberg AE, Kattapuram SV (2005) Idiopathic and diabetic skeletal muscle necrosis: evaluation by magnetic resonance imaging. Skeletal Radiol 434(4):203–209

    Article  Google Scholar 

  • Khal J, Hine AV, Fearon KC, Dejong CH, Tisdale MJ (2005) Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight loss. Int J Biochem Cell Biol 37(10):2196–2206

    Article  CAS  PubMed  Google Scholar 

  • Kimura N, Kumamoto T, Kawamura Y, Himeno T, Nakamura KI, Ueyama H, Arakawa R (2007) Expression of autophagy-associated genes in skeletal muscle: an experimental model of chloroquine-induced myopathy. Pathobiol 74(3):169–176

    Article  CAS  Google Scholar 

  • Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8(8):739–758

    Article  CAS  PubMed  Google Scholar 

  • Kob R, Bollheimer LC, Bertsch T, Fellner C, Djukic M, Sieber CC, Fischer BE (2015) Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis? Biogerontology 16(1):15–29

    Article  CAS  PubMed  Google Scholar 

  • Marzetti E, Privitera G, Simili V, Wohlgemuth SE, Aulisa L, Pahor M, Leeuwenburgh C (2010) Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. Scientific World Journal 10:340–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marzetti E, Calvani R, Bernabei R, Leeuwenburgh C (2012) Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty – a mini-review. Gerontology 58(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Matsakas A, Patel K (2009) Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol Histopathol 24(5):611–619

    PubMed  Google Scholar 

  • Mendelsohn AR, Larrick JW (2014) Partial reversal of skeletal muscle aging by restoration of normal NAD+ levels. Rejuvenation Res 17(1):62–69

    Article  CAS  PubMed  Google Scholar 

  • Meng SJ, Yu LJ (2010) Oxidative stress, molecular inflammation, and sarcopenia. Int J Mol Sci 11:1509–1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murton AJ, Constantin D, Greenhaff PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodeling and atrophy. Biochim Biophys Acta 1782(12):730–743

    Article  CAS  PubMed  Google Scholar 

  • Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 24(12):635–643

    Article  CAS  PubMed  Google Scholar 

  • Ogata T, Machida S, Oishi Y, Higuchi M, Muraoka I (2009) Differential cell death regulation between adult-unloaded and aged rat soleus muscle. Mech Ageing Dev 130(5):328–336

    Article  CAS  PubMed  Google Scholar 

  • Otrocka-Domagała I (2011) Sensitivity of skeletal muscle to pro-apoptotic factors. Pol J Vet Sci 14(4):683–694

    PubMed  Google Scholar 

  • Palus S, von Haehling S, Springer J (2014) Muscle wasting: an overview of recent developments in basic research. Int J Cardiol 176(3):640–644

    Article  PubMed  Google Scholar 

  • Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30(11):513–521

    Article  CAS  PubMed  Google Scholar 

  • Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P (2013) Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 182(4):1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Nongthomba U, Grounds MD (2014) Skeletal muscle degeneration and regeneration in mice and flies. Curr Top Dev Biol 108:247–281

    Article  CAS  PubMed  Google Scholar 

  • Rom O, Kaisari S, Aizenbud D, Reznick AZ (2012) Lifestyle and sarcopenia – etiology, prevention, and treatment. Rambam Maimonides Med J 3(4):24–26

    Article  Google Scholar 

  • Rothstein JM, Rose SJ (1982) Muscle mutability. Part 2. Adaptation to drugs, metabolic factors, and aging. Phys Ther 62(12):1788–1798

    CAS  PubMed  Google Scholar 

  • Sakuma K, Aoi W, Yamaguchi A (2015) Current understanding of sarcopenia: possible candidates modulating muscle mass. Pflugers Arch 467(2):213–229

    Article  CAS  PubMed  Google Scholar 

  • Sandri M (2010) Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 298(6):C1291–C1297

    Article  CAS  PubMed  Google Scholar 

  • Schwartz LM (2008) Atrophy and programed cell death of skeletal muscle. Cell Death Differ 15:1163–1169

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Tajrishi MM, Ogura Y, Kumar A (2013) Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 45(10):2266–2279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira Vde O, Filippin LI, Xavier RM (2012) Mechanisms of muscle wasting in sarcopenia. Rev Bras Reumatol 52(2):252–259

    Article  PubMed  Google Scholar 

  • Thalacker-Mercer AE, Drummond MJ (2014) The importance of dietary protein for muscle health in inactive, hospitalized older adults. Ann NY Acad Sci 1328:1–9

    Article  CAS  PubMed  Google Scholar 

  • Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T, Laporte J, Deretic V (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO J 28(15):2244–2258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Pessin JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16(3):243–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hypothesis of structure-function relationship. Proc Natl Acad Sci U S A 88(22):10357–10361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wohlgemuth SE, Seo AY, Marzetti E, Lees HA, Leeuwenburgh C (2010) Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp Gerontol 45(2):138–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yosef-Brauner O, Adi N, Ben Shahar T, Yehezkel E, Carmeli E (2015) Effect of physical therapy on muscle strength, respiratory muscles and functional parameters in patients with intensive care unit-acquired weakness. Clin Respir J 9(1):1–6

    Article  PubMed  Google Scholar 

  • Zhang S, Lu X, Shu X, Tian X, Yang H, Yang W, Zhang Y, Wang G (2014) Elevated plasma cfDNA may be associated with active lupus nephritis and partially attributed to abnormal regulation of neutrophil extracellular traps (NETs) in patients with systemic lupus erythematosus. Intern Med 53(24):2763–2771

    Article  PubMed  Google Scholar 

  • Zimmerman JL, Shen MC (2009) Rhabdomyolysis. Chest 144(3):1058–1065

    Article  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Carmeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carmeli, E., Aizenbud, D., Rom, O. (2015). How Do Skeletal Muscles Die? An Overview. In: Pokorski, M. (eds) Respiratory Health. Advances in Experimental Medicine and Biology(), vol 861. Springer, Cham. https://doi.org/10.1007/5584_2015_140

Download citation

Publish with us

Policies and ethics