Skip to main content

Reactive Oxygen Species, Granulocytes, and NETosis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((NR,volume 836))

Abstract

When pathogens invade the body, neutrophils create the first line of defense. Basic weaponry consists of phagocytosis and degranulation, but these cells have yet another ace in the sleeve, a unique strategy in which invading microorganisms are being destroyed. These cellular warriors are able to release nuclear chromatin and form extracellular structure, known as neutrophil extracellular traps (NET). NET formation is connected with the presence of free radicals. Research has shown that inhibition of free radical formation leads to suppression of NET release. The exact mechanisms controlling cooperation of free radicals with NET still remain unclear. New investigations in this field may contribute to discovery of NET etiology and put a new light on related disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akong-Moore K, Chow OA, von Köckritz-Blickwede M, Nizet V (2012) Influences of chloride and hypochlorite on neutrophil extracellular trap formation. PLoS One 7:e42984. doi:10.1371/journal.pone.0042984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  • Hansson M, Olsson I, Nauseef WM (2006) Biosynthesis, processing, and sorting of human myeloperoxidase. Arch Biochem Biophys 445:214–224

    Article  CAS  PubMed  Google Scholar 

  • Imada I, Sato EF, Miyamoto M, Ichimori Y, Minamiyama Y, Konaka R, Inoue M (1999) Analysis of reactive oxygen species generated by neutrophils using a chemiluminescence probe L-012. Anal Biochem 271:53–58

    Article  CAS  PubMed  Google Scholar 

  • Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J, Barthwal MK, Dikshit M (2012) Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. Clin Exp Immunol 168:153–163

    Article  Google Scholar 

  • Kirchner T, Möller S, Klinger M, Solbach W, Laskay T, Behnen M (2012) The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediators Inflamm 2012:1615–1623

    Article  Google Scholar 

  • Lushchak VI (2007) Free radical oxidation of proteins and its relationship with functional state of organisms. Biochem Mosc 72:809–827

    Article  CAS  Google Scholar 

  • Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L, Wiedenbauer EM, Krautgartner WD, Stoiber W, Belohradsky BH, Reiber N, Kormann M, Koller B, Roscher A, Roos D, Griese M, Eickelberg O, Doring G, Mall MA, Harti D (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nat Med 16:1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V, Zychlinsky A (2011) Myeloperoxidae is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117:953–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakaya H, Takeda Y, Tohse N, Kanno M (1992) Mechanism of the membrane depolarization induced by oxidative stress in guinea-pig ventricular cells. J Mol Cell Cardiol 24:523–534

    Article  CAS  PubMed  Google Scholar 

  • Nishinaka Y, Arai T, Adachi S, Takaori–Konodo A, Yamashita K (2011) Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun 413:75–79

    Article  CAS  PubMed  Google Scholar 

  • Palmer LJ, Cooper PR, Ling MR, Wright HJ, Huissoon A, Chapple IL (2012) Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin Exp Immunol 167:261–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patel S, Kumar S, Jyoti A, Srinag BS, Keshari RS, Saluja R, Verma A, Mitra K, Barthwal MK, Krishnamurthy H, Bajpai VK, Dikshit M (2010) Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 22:226–234

    Article  CAS  PubMed  Google Scholar 

  • Petrides PE (1998) Molecular genetics of peroxidase deficiency. J Mol Med 76:688–698

    Article  CAS  PubMed  Google Scholar 

  • Pruchniak MP, Arazna M, Demkow U (2013) Life of neutrophil: from stem cell to neutrophil extracellular trap. Respir Physiol Neurobiol 187:68–73

    Article  CAS  PubMed  Google Scholar 

  • Qui H, Edmunds T, Baker-Malcolm J, Karey KP, Estes S (2003) Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J Biol Chem 278:32744–32752

    Article  Google Scholar 

  • Remijsen Q, Berghe TV, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21:290–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawada M, Nakashima S, Kiyono T, Nakagawa M, Yamada J, Yamakawa H, Banno Y, Shinoda J, Nishimura Y, Nozawa Y, Sakai N (2001) p53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Cell Death Differ 11:853–861

    Google Scholar 

  • Scheel-Toellner D, Wang K, Craddock R, Webb PR, McGettrick HM, Assi LK, Parkes N, Clough LE, Gulbins E, Salmon M, Lord JM (2004) Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104:2557–2564

    Article  CAS  PubMed  Google Scholar 

  • Takei H, Araki A, Watanabe H, Ichinose A, Sendo F (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 59:229–240

    CAS  PubMed  Google Scholar 

  • Tsan MF (1980) Phorbol myristate acetate induced neutrophil autotoxicity. J Cell Physiol 105:327–334

    Article  CAS  PubMed  Google Scholar 

  • Yipp BG, Kubes P (2013) Netosis: how vital is it? Blood 122:2784–2794

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest in relation this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Araźna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Araźna, M., Pruchniak, M.P., Demkow, U. (2014). Reactive Oxygen Species, Granulocytes, and NETosis. In: Pokorski, M. (eds) Respiratory Virology and Immunogenicity. Advances in Experimental Medicine and Biology(), vol 836. Springer, Cham. https://doi.org/10.1007/5584_2014_12

Download citation

Publish with us

Policies and ethics