Skip to main content

Promising Sensing Platforms Based on Nanocellulose

  • Chapter
  • First Online:
Carbon-Based Nanosensor Technology

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 17))

Abstract

Nanocelluloses, typically categorized into bacterial cellulose, crystalline nanocellulose, and cellulose nanofibers, are green lightweight materials with amazing properties that are emerging in modern technology as a result of their abundance, low toxicity, large surface area, and renewability. They already have shown great promise in a myriad of uses such as reinforcing agents, templates for tridimensional ordered architectures, rheological modifiers, emulsion stabilizers, and crystallization media. However, their outstanding properties and easy-to-modulate capabilities are opening new ways of applicability in the fields of medicine, forensic and food safety analyses, environmental protection, and energy storage among others. Although applications of NC are increasing over the years, there is still plenty to discover about their capabilities of such abundant nanoscale source. This chapter briefly reviews the most promising recent approaches in sensing applications, showing the advantages of each type of NC used. It is highlighted the diverse configurations of NC (as nanopowders, films, hydrogels, aerogels) found in the recent advances, mentioning their potential characteristics offered as well as the sensing mechanisms given (colorimetric, photoluminescence, mechanical deformation, and/or electrical responses). On track for a sustainable future, the complete replacement of plastics by NC is imminently owed to the great versatility, biocompatibility, abundance, degradability, and low cost of cellulose nanomaterials. Finally, an outlook on the future perspectives for filaments and paper-based and gel-like sensing platforms of NC is given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–215

    Article  CAS  Google Scholar 

  2. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose-a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  3. Corral ML, Cerrutti P, Vázquez A, Califano A (2017) Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocoll 67:189–196

    Article  CAS  Google Scholar 

  4. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, Fernandes de Souza C, Martin AA, da Silva R, Alves de Freitas R (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Y, Moser C, Lindström ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation–structure–film performance interrelation. ACS Appl Mater Interfaces 9(15):13508–13519

    Article  CAS  PubMed  Google Scholar 

  6. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858

    Article  CAS  Google Scholar 

  7. De France KJ, Yager K, Hoare TR, Cranston ED (2016) Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field. Langmuir 32(30):7564–7571

    Article  PubMed  Google Scholar 

  8. Kargarzadeh H, Ioelovich M, Ahmad I, Thomas S, Dufresne A (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of nanocellulose and cellulose nanocomposites, vol 1. Wiley-VCH Verlag GmbH, Weinheim Online ISBN: 9783527689972

    Chapter  Google Scholar 

  9. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotech 4:165–188

    Article  Google Scholar 

  10. Kim J, Shim BS, Kim HS, Lee Y, Min S, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf-Green Technol 2(2):197–213

    Article  Google Scholar 

  11. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  PubMed  Google Scholar 

  12. Navarro JRG, Conzatti G, Yu Y, Fall AB, Mathew R, Edén M, Bergström L (2015) Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry. Biomacromolecules 16(4):1293–1300

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz-Palomero C, Soriano ML, Valcárcel M (2015) β-Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst 140(10):3431–3438

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tinaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26(8):2659–2668

    Article  CAS  Google Scholar 

  15. Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12(7):2617–2625

    Article  CAS  PubMed  Google Scholar 

  16. Wang M, Jin HJ, Kaplan DJ, Rutledge GC (2004) Mechanical properties of electrospun silk fibers. Macromolecules 37(18):6856–6864

    Article  CAS  Google Scholar 

  17. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    Article  CAS  Google Scholar 

  18. Benmassaoud Y, Villaseñor MJ, Salghi R, Jodeh S, Algarra M, Zougagh M, Ríos Á (2017) Magnetic/non-magnetic argan press cake nanocellulose for the selective extraction of Sudan dyes in food samples prior to the determination by capillary liquid chromatograpy. Talanta 166:63–69

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Berry RM, Tam KC (2014) Synthesis of β-cyclodextrin-modified cellulose Nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng 2(4):951–958

    Article  CAS  Google Scholar 

  20. Chen W, Yu H, Lee S-Y, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872. https://doi.org/10.1039/C7CS00790F

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Kim SW, Park S et al (2013) Bacterial cellulose nanofibrillar patch as a wound healing platform of tympanic membrane perforation. Adv Healthc Mater 2(11):1525–1531

    Article  CAS  PubMed  Google Scholar 

  22. Cai H, Sharma S, Liu W et al (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15(7):2540–2547

    Article  CAS  PubMed  Google Scholar 

  23. Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496

    Article  CAS  PubMed  Google Scholar 

  24. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  25. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  26. Tournilhac FC, Lorant R (2000) Oil-in-water emulsion composition containing cellulose fibrils and cosmetic use thereof. EP1057477A1

    Google Scholar 

  27. Ruiz-Palomero C, Kennedy SR, Soriano ML, Jones CD, Valcárcel M, Steed JW (2016) Pharmaceutical crystallization with nanocellulose organogels. Chem Commun 52:7741–7894

    Article  Google Scholar 

  28. Ruiz-Palomero C, Soriano ML, Valcárcel M (2017) Nanocellulose as analyte and analytical tool: opportunities and challenges. TrAC Trends Anal Chem 87:1–18

    Article  CAS  Google Scholar 

  29. Ruiz-Palomero C, Soriano ML, Valcárcel M (2014) Ternary composites of nanocellulose, carbonanotubes and ionic liquids as new extractants for direct immersion single drop microextraction. Talanta 125:72–77

    Article  CAS  PubMed  Google Scholar 

  30. Cayuela A, Benítez-Martínez S, Soriano ML (2016) Carbon nanotools as sorbents and sensors of nanosized objects: the third way of analytical nanoscience and nanotechnology. TrAC Trends Anal Chem 84:172–180

    Article  CAS  Google Scholar 

  31. López-Lorente AI, Valcárcel M (2016) The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. TrAC Trends Anal Chem 75:1–9

    Article  Google Scholar 

  32. Dueñas-Mas MJ, Soriano ML, Ruiz-Palomero C, Valcárcel M (2018) Modified nanocellulose as promising material for the extraction of gold nanoparticles. Microchem J 138:379–383

    Article  Google Scholar 

  33. Ruiz-Palomero C, Soriano ML, Valcárcel M (2016) Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. J Chromatogr A 1428:352–358

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto M, Kitaoka T (2016) Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater 28(9):1765–1769

    Article  CAS  PubMed  Google Scholar 

  35. Zhu H, Yang X, Cranston ED, Zhu S (2016) Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv Mater 28:7652–7657

    Article  CAS  PubMed  Google Scholar 

  36. Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26(20):6016–6025

    Article  CAS  Google Scholar 

  37. Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8(4):2732–2740

    Article  CAS  PubMed  Google Scholar 

  38. Kan KHM, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromolecules 14(9):3130–3139

    Article  CAS  PubMed  Google Scholar 

  39. Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29(13):5426–5446

    Article  CAS  Google Scholar 

  40. Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces 9(24):20330–20339

    Article  CAS  PubMed  Google Scholar 

  41. Yao J, Ji P, Wang B, Wang H, Chen S (2018) Color-tunable luminescent macrofibers based on CdTe QDs-loaded bacterial cellulose nanofibers for pH and glucose sensing. Sens Actuators B 254:110–119

    Article  CAS  Google Scholar 

  42. Vuoriluoto M, Orelma H, Lundahl M, Borghei M, Rojas OJ (2017) Filaments with affinity binding and wet strength can be achieved by spinning bifunctional cellulose nanofibrils. Biomacromolecules 18(6):1803–1813

    Article  CAS  PubMed  Google Scholar 

  43. Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A (2015) Nanopaper as an optical sensing platform. ACS Nano 9(7):7296–7305

    Article  PubMed  Google Scholar 

  44. Pourreza N, Golmohammadi H, Naghdi T, Yousefi H (2016) Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Nanoscale 8:7984–7991

    Article  Google Scholar 

  45. Heli B, Morales-Narváez E, Golmohammadi H, Ajji A, Merkoçi A (2016) Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale 8:7984–7991

    Article  CAS  PubMed  Google Scholar 

  46. Zor E, Alaydin S, Arici A, Saglam ME, Bingol H (2018) Photoluminescent nanopaper-based microcuvette for iodide detection in seawater. Sens Actuators B 254:1216–1224

    Article  CAS  Google Scholar 

  47. Abbasi-Moayed S, Golmohammadi H, Hormozi-Nezhad MR (2018) A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale 10:2492–2502

    Article  CAS  PubMed  Google Scholar 

  48. Weishaupt R, Siqueira G, Schubert M, Kämpf MM, Zimmermann T, Maniura-Weber K, Faccio G (2017) A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Adv Funct Mater 27(4):1604291

    Article  Google Scholar 

  49. Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2013) Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens Actuators B 176:692–697

    Article  CAS  Google Scholar 

  50. Santos MV, Tercjak A, Gutierrez J, Barud HS, Napoli M, Nalin M, Ribeiro SJL (2017) Optical sensor platform based on cellulose nanocrystals (CNC)-4′(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydr Polym 168:346–355

    Article  CAS  PubMed  Google Scholar 

  51. Zhao Y, Gao G, Liu D, Tian D, Zhu Y, Chang Y (2017) Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals. Carbohydr Polym 174:39–47

    Article  CAS  PubMed  Google Scholar 

  52. Dai S, Prempeh N, Liu D, Fan Y, Gu M, Chang Y (2017) Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr Polym 174:531–539

    Article  CAS  PubMed  Google Scholar 

  53. Ruiz-Palomero C, Soriano ML, Valcárcel M (2016) Gels based on nanocellulose with photosensitive ruthenium bipyridine moieties as sensors for silver nanoparticles in real samples. Sens Actuator B 229:31–37

    Article  CAS  Google Scholar 

  54. Ruiz-Palomero C, Soriano ML, Benítez-Martínez S, Valcárcel M (2017) Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. Sens Actuator B 245:946–953

    Article  CAS  Google Scholar 

  55. Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing enzyme laccase. Anal Chim Acta 974:93–99

    Article  CAS  PubMed  Google Scholar 

  56. Park M, Chang H, Jeong DH, Hyan J (2013) Spatial deformation of nanocellulose hydrogel enhances SERS. Biochip J 7(3):234–241

    Article  CAS  Google Scholar 

  57. Zhang J, Jiang G, Goledzinowski M, Comeau FJE, Li K, Cumberland T, Lenos J, Xu P, Li M, Yu A, Chen Z (2017) Green solid electrolyte with cofunctionalized nanocellulose/graphene oxide interpenetrating network for electrochemical gas sensors. Small Methods 1(11):1700237

    Article  Google Scholar 

  58. Bazhenov V, Piezoelectric A (1961) Properties of woods. Consultants Bureau, New York

    Google Scholar 

  59. Kim J-H, Yun S, Kim J-H, Kim J (2009) Fabrication of piezoelectric cellulose paper and audio application. J Bionic Eng 6:18–21

    Article  Google Scholar 

  60. Csoka L, Hoeger C, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1(7):867–870

    Article  CAS  Google Scholar 

  61. Mangayil R, Rajala S, Pammo A, Sarlin E, Luo J, Santala V, Karp M, Tuukkanen S (2017) Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl Mater Interfaces 9:19048–19056

    Article  CAS  PubMed  Google Scholar 

  62. Rajala S, Siponkoski T, Sarlin E, Mettänen M, Vuoriluoto M, Pammo A, Juuti J, Rojas OJ, Franssila S, Tuukkanen S (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8(24):15607–15614

    Article  CAS  PubMed  Google Scholar 

  63. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  64. Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Mater 6:e93

    Article  CAS  Google Scholar 

  65. Han W, Lin Z (2012) Learning from “coffee rings”: ordered structures enabled by controlled evaporative self-assembly. Angew Chem Int Ed 51:1534–1546

    Article  CAS  Google Scholar 

  66. Fang Z, Zhu H, Preston C, Han X, Li Y, Lee S, Chai X, Chen G, Hu L (2013) Highly transparent and writable wood all-cellulose hybrid nanostructured paper. J Mater Chem C 1:6191–6197

    Article  CAS  Google Scholar 

  67. Jung Y, Chang T, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho S, Park D, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ji S, Hyun BG, Kim K, Lee SY, Kim S-H, Kim J-Y, Song MH, Park J-U (2016) Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Mater 8:e299

    Article  CAS  Google Scholar 

  69. Jung M, Kim K, Kim B, Lee KJ, Kang JW, Jeon S (2017) Vertically stacked nanocellulose tactile sensor. Nanoscale 9(44):17212–17219

    Article  CAS  PubMed  Google Scholar 

  70. Wu J, Lin LY (2017) Ultrathin (<1 μm) substrate-free flexible photodetector on quantum dot-nanocellulose paper. Sci Rep 7:43898

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laura Soriano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soriano, M.L., Dueñas-Mas, M.J. (2018). Promising Sensing Platforms Based on Nanocellulose. In: Kranz, C. (eds) Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, vol 17. Springer, Cham. https://doi.org/10.1007/5346_2018_26

Download citation

Publish with us

Policies and ethics