Skip to main content

Label-Free Biosensors Based on III-Nitride Semiconductors

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 16))

Abstract

Chip-based biosensor devices received an increased attention for medical and pharmaceutical screening as well as for environmental monitoring. Most semiconductor devices such as the highly developed Si-based ISFET are, however, not sufficiently stable up to date. Due to their superior chemical stability in electrolytes and their biocompatibility, group III-nitrides emerged as promising electronic transducer material for biosensors. Moreover, their transparency for visible light enables the simultaneous application of optical measurements, which are standard in biology and medicine. In this chapter, fabrication and properties of group III-nitride electronic biosensors are discussed with a main focus on AlGaN/GaN field-effect transistors. Using appropriate designs and functionalization, highly sensitive group III-nitride-based biosensors can be realized for a large variety of applications including detection of ions, biomolecules, toxins, deoxyribonucleic acid (DNA), proteins, and even explosives. In addition, other sensor concepts employing other members of the group III-nitride family (InN, AlN, and solid solutions) as well as alternative transducer concepts (optical, mechanical) are discussed shortly. Finally, the possibilities for the integration of such biosensors are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Calladine CR, Drew H, Luisi BF, Travers AA (2004) Understanding DNA: the molecule and how it works. Elsevier Academic Press, San Diego

    Google Scholar 

  2. Zourob M, Elwary S, Turner APF (eds) (2008) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer Science & Business Media LLC, New York

    Google Scholar 

  3. Tüdos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95

    Article  PubMed  Google Scholar 

  4. Rodriguez-Mozaz S, de Lopez Alda M, Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386:1025–1041

    Article  PubMed  CAS  Google Scholar 

  5. LaGier MJ, Fell JW, Goodwin KD (2007) Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Mar Pollut Bull 54:757–770

    Article  PubMed  CAS  Google Scholar 

  6. Yu D, Blankert B, Viré JC, Kauffmann JM (2005) Biosensors in drug discovery and drug analysis. Anal Lett 38:1687–1701

    Article  CAS  Google Scholar 

  7. Nic M, Jirat J, Kosata B (2016) IUPAC Compendium of Chemical Terminology. http://goldbook.iupac.org/html/B/B00663.html. Accessed 02 Nov 2016

  8. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  PubMed  CAS  Google Scholar 

  9. Bashir R (2004) BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev 56:1565–1586

    Article  PubMed  CAS  Google Scholar 

  10. Gooding J (2006) Biosensor technology for detecting biological warfare agents: recent progress and future trends. Anal Chim Acta 559:137–151

    Article  CAS  Google Scholar 

  11. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71

    Article  PubMed  CAS  Google Scholar 

  12. Madou MJ (1989) Chemical sensing with solid state devices. Academic Press, Boston

    Google Scholar 

  13. Chaniotakis N, Sofikiti N (2008) Novel semiconductor materials for the development of chemical sensors and biosensors: a review. Anal Chim Acta 615:1–9

    Article  PubMed  CAS  Google Scholar 

  14. Pearton SJ, Ren F, Wang YL, Chu BH, Chen KH, Chen KH, Chang CY, Lim W, Lin J, Norton DP (2010) Recent advances in wide bandgap semiconductor biological and gas sensors. Prog Mater Sci 55:1–59

    Article  Google Scholar 

  15. Gil B (ed) (1998) Group III nitride semiconductor compounds: physics and applications. Clarendon Press, Oxford

    Google Scholar 

  16. Maruska HP, Tietjen JJ (1969) The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett 15:327–329

    Article  CAS  Google Scholar 

  17. Nakamura S, Mukai T, Senoh M, Iwasa N (1992) Thermal annealing effects on p-type Mg-doped GaN films. Jpn J Appl Phys Part 2 31:L139–L142

    Article  CAS  Google Scholar 

  18. Nakamura S, Mukai T, Senoh M (1994) Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett 64:1687–1689

    Article  CAS  Google Scholar 

  19. Wu J, Walukiewicz W, KM Y, Ager III JW, Haller EE, Lu H, Schaff WJ, Saito Y, Nanishi Y (2002) Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80:3967–3969

    Article  CAS  Google Scholar 

  20. Yoshida S, Misawa S, Gonda S (1982) Properties of AlxGa1-xN films prepared by reactive molecular beam epitaxy. J Appl Phys 53:6844–6848

    Article  CAS  Google Scholar 

  21. Lebedev V, Cimalla I, Cimalla V, Wagner R, Kaiser U, Ambacher O (2005) Defect related absorption and emission in AlGaN solar-blind UV photodetectors. Phys Status Solidi C 2:1360–1365

    Article  CAS  Google Scholar 

  22. Monemar B (1974) Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys Rev B 10:676–681

    Article  CAS  Google Scholar 

  23. Cimalla I, Will F, Tonisch K, Niebelschütz M, Cimalla V, Lebedev V, Kittler G, Himmerlich M, Krischok S, Schaefer JA, Gebinoga M, Schober A, Friedrich T, Ambacher O (2007) AlGaN/GaN biosensor – effect of device processing steps on the surface properties and biocompatibility. Sensors Actuators B 123:740–748

    Article  CAS  Google Scholar 

  24. Neuberger A, Müller G, Ambacher O, Stutzmann M (2001) High-electron-mobility AlGaN/GaN transistors (HEMTs) for fluid monitoring applications. Phys Status Solidi A 185:85–89

    Article  CAS  Google Scholar 

  25. Alifragis Y, Georgakilas A, Konstantinidis G, Iliopoulos E, Kostopoulos A, Chaniotakis NA (2005) Response to anions of AlGaN/GaN high-electron-mobility transistors. Appl Phys Lett 87:253507

    Article  CAS  Google Scholar 

  26. Buchheim C, Kittler G, Cimalla V, Lebedev V, Fischer M, Krischok S, Yanev V, Himmerlich M, Ecke G, Schaefer JA, Ambacher O (2006) Tuning of surface properties of AlGaN/GaN sensors for nano- and picodroplets. IEEE Sensors J 6:881–886

    Article  CAS  Google Scholar 

  27. Steinhoff G, Baur B, Wrobel G, Ingebrandt S, Offenhäusser A, Dadgar A, Krost A, Stutzmann M, Eickhoff M (2005) Recording of cell action potentials with AlGaN/GaN field-effect transistors. Appl Phys Lett 86:033901

    Article  CAS  Google Scholar 

  28. Kang BS, Mehandru R, Kim S, Ren F, Fitch RC, Gillespie JK, Moser N, Jessen G, Jenkins T, Dettmer R, Via D, Crespo A, Gila BP, Abernathy CR, Pearton SJ (2004) Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors. Appl Phys Lett 84:46354637

    Google Scholar 

  29. Kokawa T, Sato T, Hasegawa H, Hashizume T (2006) Liquid-phase sensors using open-gate AlGaN/GaN high electron mobility transistor structure. J Vac Sci Technol B 24:1972–1976

    Article  CAS  Google Scholar 

  30. Hartmann C, Dittmar A, Wollweber J, Bickermann M (2014) Bulk AlN growth by physical vapour transport. Semicond Sci Technol 29:084002

    Article  CAS  Google Scholar 

  31. Ambacher O (1998) Growth and applications of group III-nitrides. J Phys D Appl Phys 31:2653–2710

    Article  CAS  Google Scholar 

  32. Cimalla V, Pezoldt J, Ambacher O (2007) Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J Phys D Appl Phys 40:6386–6434

    Article  CAS  Google Scholar 

  33. Ibbetson JP, Fini PT, Ness KD, DenBaars SP, Speck JS, Mishra UK (2000) Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett 77:250–252

    Article  CAS  Google Scholar 

  34. Flack TJ, Pushpakaran BN, Bayne AB (2016) GaN technology for power electronic applications: a review. J Electron Mater 45:2673–2682

    Article  CAS  Google Scholar 

  35. Mahboob I, Veal TD, Piper LFJ, McConville CF, Lu H, Schaff WJ, Furthmüller J, Bechstedt F (2004) Origin of electron accumulation at wurtzite InN surfaces. Phys Rev B 69:R201307

    Article  CAS  Google Scholar 

  36. Cimalla V, Niebelschütz M, Ecke G, Lebedev V, Ambacher O, Himmerlich M, Krischok S, Schaefer JA, Lu H, Schaff WJ (2006) Surface band bending at nominally undoped and Mg-doped InN by Auger Electron Spectroscopy. Phys Status Solidi A 203:59–65

    Article  CAS  Google Scholar 

  37. Eickhoff M, Schalwig J, Steinhoff G, Weidemann O, Görgens L, Neuberger R, Hermann M, Baur B, Müller G, Ambacher O, Stutzmann M (2003) Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures. Phys Status Solidi C 0:1908–1918

    Article  CAS  Google Scholar 

  38. Pearton SJ, Kang BS, Kim S, Ren F, Gila BP, Abernathy CR, Lin J, Chu SNG (2004) GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J Phys Condens Matter 16:R961–R994

    Article  CAS  Google Scholar 

  39. Ambacher O, Cimalla V (2008) Polarization induced effects in GaN-based heterostructures and novel sensors. In: Wood C, Jena D (eds) Polarization effects in semiconductors: from ab initio to device application. Springer, New York, pp 27–109

    Chapter  Google Scholar 

  40. Cimalla I, Lübbers B, Cimalla V, Gebinoga M, Schober A, Ambacher O (2009) Group III-nitride based sensors – advances towards a new generation of biosensors. In: Ho-Young C (ed) Advanced semiconductor materials and devices research: III-nitrides and SiC. Transworld Research Network, Trivandrum, pp 341–374

    Google Scholar 

  41. Pearton SJ, Zolper JC, Shul RJ, Ren F (1999) GaN: processing, defects, and devices. J Appl Phys 86:1–78

    Article  CAS  Google Scholar 

  42. Young TH, Chen CR (2006) Assessment of GaN chips for culturing cerebellar granule neurons. Biomaterials 27:3361–3367

    Article  PubMed  CAS  Google Scholar 

  43. Das A, Das A, Chang LB, Lai CS, Lin RM, Chu FC, Lin YH, Chow L, Jeng MJ (2013) GaN thin film based light addressable potentiometric sensor for pH sensing application. Appl Phys Express 6:036601

    Article  CAS  Google Scholar 

  44. Lübbers B, Kittler G, Ort P, Linkohr S, Wegener D, Baur B, Gebinoga M, Weise F, Eickhoff M, Maroldt S, Schober A, Ambacher O (2008) A novel GaN-based multiparameter sensor system for biochemical analysis. Phys Status Solidi C 5:2361–2363

    Article  CAS  Google Scholar 

  45. Wong KY, Tang W, Lau KM, Chen KJ (2007) Surface acoustic wave device on AlGaN/GaN heterostructure using two-dimensional electron gas interdigital transducers. Appl Phys Lett 90:213506

    Article  CAS  Google Scholar 

  46. Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W (2016) Progress of new label-free techniques for biosensors: a review. Crit Rev Biotechnol 36:465–468

    PubMed  CAS  Google Scholar 

  47. Chaniotakis NA, Alifragis Y, Konstantinidis G, Georgakilas A (2004) Gallium nitride-based potentiometric anion sensor. Anal Chem 76:5552–5556

    Article  PubMed  CAS  Google Scholar 

  48. Simpkins B, McCoy K, Whitman L, Pehrsson P (2007) Fabrication and characterization of DNA-functionalized GaN nanowires. Nanotechnology 18:355301

    Article  CAS  Google Scholar 

  49. Schöning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151

    Article  PubMed  Google Scholar 

  50. Neuberger R, Müller G, Eickhoff M, Ambacher O, Stutzmann M (2002) Observation of ion-induced changes in the channel current of high electron mobility AlGaN/GaN transistors (HEMT). Mater Sci Eng B 93:143–146

    Article  Google Scholar 

  51. Linkohr S, Pletschen W, Polyakov V, Himmerlich M, Lorenz P, Krischok S, Kirste L, Müller S, Ambacher O, Cimalla V (2012) Influence of plasma treatments on the properties of GaN/AlGaN/GaN HEMT structures. Phys Status Solidi C 9:1096–1098

    Article  CAS  Google Scholar 

  52. Binari SC, Dietrich HB, Kelner G, Rowland LB, Doverspike K, Wickenden DK (1995) H, He, and N implant isolation of n-type GaN. J Appl Phys 78:3008–3011

    Article  CAS  Google Scholar 

  53. Schober A, Kittler G, Buchheim C, Majdeddin A, Cimalla V, Fischer M, Yanev V, Himmerlich M, Krischok S, Schaefer JA, Romanus H, Sändig T, Burgold J, Weise F, Wurmus H, Drüe KH, Hintz M, Thust H, Gebinoga M, Kittler M, Spitznas A, Gottwald E, Weibezahn KF, Wegener D, Schwienhorst A, Ambacher O (2005) A novel class of sensors for system integrative concepts in biotechnological applications. In: Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, vol 1, pp 489–495

    Google Scholar 

  54. Fan Z, Mohammand SN, Kim W, Aktas O, Botchkarev AE, Morkoc H (1996) Very low resistance multilayer Ohmic contact to n-GaN. Appl Phys Lett 68:16721674

    Google Scholar 

  55. Kang BS, Pearton SJ, Chen JJ, Ren F, Johnson JW, Therrin RJ, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2006) Electrical detection of deoxyribonucleic acid hybridization with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 89:122102

    Article  CAS  Google Scholar 

  56. Kang BS, Ren F, Wang L, Lofton C, Tan WW, Pearton SJ, Dabiran A, Osinsky A, Chow PP (2005) Electrical detection of immobilized proteins with ungated AlGaN/GaN high-electron-mobility transistors. Appl Phys Lett 87:023508

    Article  CAS  Google Scholar 

  57. Kang BS, Wang HT, Lele TP, Tseng Y, Ren F, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2007) Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 91:112106

    Article  CAS  Google Scholar 

  58. Podolska A, Kocan M, Cabezas AMG, Wilson TD, Umana-Membreno GA, Nener BD, Parish G, Keller S, Mishra UK (2010) Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices. Appl Phys Lett 97:012108

    Article  CAS  Google Scholar 

  59. Steinhoff G, Hermann M, Schaff WJ, Eastman LF, Stutzmann M, Eickhoff M (2003) pH response of GaN surfaces and its application for pH-sensitive field-effect-transistors. Appl Phys Lett 83:177–179

    Article  CAS  Google Scholar 

  60. Kittler G (2007) GaN-basierte pH-Sensoren: Empfindlichkeit, Drift und Passivierungstechnologien. Thesis, TU Ilmenau. urn:nbn:de:gbv:ilm1-2008000012

    Google Scholar 

  61. Yates DE, Levine S, Healy TW (1974) Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans 1:1807–1818

    Article  Google Scholar 

  62. Bayer M, Uhl C, Vogl P (2005) Theoretical study of electrolyte gate AlGaN/GaN field effect transistors. J Appl Phys 97:33703

    Article  CAS  Google Scholar 

  63. Kang BS, Ren F, Kang MC, Lofton C, Ran W, Pearton SJ, Dabiran A, Osinsky A, Chow PP (2005) Detection of halide ions with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 86:173502

    Article  CAS  Google Scholar 

  64. Alifragis Y, Volosirakis A, Chaniotakis NA, Konstantinidis G, Adikimenakis A, Georgakilas A (2007) Potassium selective chemically modified field effect transistors based on AlGaN/GaN two-dimensional electron gas heterostructures. Biosens Bioelectron 22:2796–2801

    Article  PubMed  CAS  Google Scholar 

  65. Steinhoff G, Purrucker O, Tanaka M, Stutzmann M, Eickhoff M (2003) AlxGa1-xN – a new material for biosensors. Adv Funct Mater 13:841–846

    Article  CAS  Google Scholar 

  66. Mourzina YG, Schubert J, Zander W, Legin A, Vlasov YG, Lüth H, Schöning MJ (2001) Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions. Electrochim Acta 47:251–258

    Article  CAS  Google Scholar 

  67. Brazzini T, Bengoechea-Encabo A, Sánchez-García MA, Calle F (2013) Investigation of AlInN barrier ISFET structures with GaN capping for pH detection. Sensors Actuators B 176:704–707

    Article  CAS  Google Scholar 

  68. Lübbers B (2012) AlGaN-based pH-sensors. Impedance characterisation, optimisation and application for foetal blood sampling. Thesis, TU Ilmenau. urn:nbn:de:gbv:ilm1-2012000298

    Google Scholar 

  69. Kittler G, Spitznas A, Lübbers B, Lebedev V, Wegener D, Gebinoga M, Weise F, Schober A, Ambacher O (2007) Advances in III-V nitride semiconductor materials and devices. In: Materials Research Society Symposium Proceedings, Warrendale, PA I14-03

    Google Scholar 

  70. Chaniotakis NA, Alifragis Y, Georgakilas A, Konstantinidis G (2005) GaN-based anion selective sensor: probing the origin of the induced electrochemical potential. Appl Phys Lett 86:164103

    Article  CAS  Google Scholar 

  71. Kang BS, Wang HT, Ren F, Hlad M, Gila BP, Abernathy CR, Pearton SJ, Li C, Low ZN, Lin J, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) Role of gate oxide in AlGaN/GaN high-electron-mobility transistor pH sensors. J Electron Mater 37:550–553

    Article  CAS  Google Scholar 

  72. Baur B, Steinhoff G, Hernando J, Purrucker O, Tanaka M, Nickel B, Stutzmann M, Eickhoff M (2005) Chemical functionalization of GaN and AlN surfaces. Appl Phys Lett 87:263901

    Article  CAS  Google Scholar 

  73. Abe H, Esashi M, Matsuo T (1979) ISFET’s using inorganic gate films. IEEE Trans Electron Dev 26:1939–1944

    Article  Google Scholar 

  74. Prabhakaran K, Andersson T, Nozawa K (1996) Nature of native oxide on GaN surface and its reaction with Al. Appl Phys Lett 69:3212–3214

    Article  CAS  Google Scholar 

  75. Eickhoff M, Neuberger R, Steinhoff G, Ambacher O, Müller G, Stutzmann M (2001) Wetting behaviour of GaN surfaces with Ga- or N-face polarity. Phys Status Solidi B 228:519–522

    Article  CAS  Google Scholar 

  76. Lide DR (2003) CRC handbook of chemistry and physics.84th edn. CRC Press, Boca Raton

    Google Scholar 

  77. Tajima M, Kotani J, Hashizume T (2009) Effects of surface oxidation of AlGaN on dc characteristics of AlGaN/GaN high-electron-mobility transistors. Jpn J Appl Phys 48:020203

    Article  CAS  Google Scholar 

  78. Linkohr S, Pletschen W, Kirste L, Himmerlich M, Lorenz P, Krischok S, Polyakov V, Müller S, Ambacher O, Cimalla V (2012) Plasma affected 2DEG properties on GaN/AlGaN/GaN HEMTs. Phys Status Solidi C 9:938–941

    Article  CAS  Google Scholar 

  79. Chen CC, Chen HI, Liu HY, Chou PC, Liou JK, Liu WC (2015) On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment. Sensors Actuators B 209:658–663

    Article  CAS  Google Scholar 

  80. Harada N, Hori Y, Azumaishi N, Ohi K, Hashizume T (2011) Formation of recessed-oxide gate for normally-off AlGaN/GaN high electron mobility transistors using selective electrochemical oxidation. Appl Phys Express 4:021002

    Article  CAS  Google Scholar 

  81. Foster CM, Collazo R, Sitar Z, Ivanisevic A (2012) Aqueous stability of Ga- and N-polar gallium nitride. Langmuir 29:216–220

    Article  PubMed  CAS  Google Scholar 

  82. King SW, Barnak JP, Bremser MD, Tracy KM, Ronning C, Davis RF, Nemanich RJ (1998) Cleaning of AlN and GaN surfaces. J Appl Phys 84:5248–5260

    Article  CAS  Google Scholar 

  83. Lee KN, Donovan SM, Gila B, Overberg M, Mackenzie JD, Abernathy CR, Wilson RG (2000) Surface chemical treatment for the cleaning of AlN and GaN surfaces. J Electrochem Soc 147:3087–3090

    Article  CAS  Google Scholar 

  84. Huh C, Kim SW, Kim HS, Lee IH, Park SJ (2000) Effective sulfur passivation of an n-type GaN surface by an alcohol-based sulfide solution. J Appl Phys 87:4591–4593

    Article  CAS  Google Scholar 

  85. Linkohr S, Pletschen W, Schwarz SU, Anzt J, Cimalla V, Ambacher O (2013) CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors. J Biotechnol 163:354–361

    Article  PubMed  CAS  Google Scholar 

  86. Li J, Han Q, Zhang Y, Zhang W, Dong M, Besenbacher F, Yang R, Wang C (2013) Optical regulation of protein adsorption and cell adhesion by photoresponsive GaN nanowires. ACS Appl Mater Interfaces 5:9816–9822

    Article  PubMed  CAS  Google Scholar 

  87. Hashizume T, Hasegawa H (2004) Effects of nitrogen deficiency on electronic properties of AlGaN surfaces subjected to thermal and plasma processes. Appl Surf Sci 234:387–394

    Article  CAS  Google Scholar 

  88. Kim HS, Lee YH, Yeom GY, Lee JW, Kim TI (1997) Effects of inductively coupled plasma conditions on the etch properties of GaN and ohmic contact formations. Mater Sci Eng B 50:82–87

    Article  Google Scholar 

  89. Cimalla V, Lebedev V, Linkohr S, Cimalla I, Lübbers B, Tonisch K, Brückner K, Niebelschütz F, Hein M, Ambacher O (2008) Nitride based sensors. In: Proceedings of the 17th European Workshop on Heterostructure Technology HETECH, Venice, Italy, 3–5 November, pp 33–40

    Google Scholar 

  90. Cimalla I (2011) AlGaN/GaN sensors for direct monitoring of fluids and bioreactions. Universitätsverlag Ilmenau, Ilmenau

    Google Scholar 

  91. Makowski MS, Kim S, Gaillard M, Janes D, Manfra MJ, Bryan I, Sitar Z, Arellano C, Xie J, Collazo R, Ivanisevic A (2013) Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications. Appl Phys Lett 102:074102

    Article  PubMed Central  CAS  Google Scholar 

  92. Guo Y, Wang X, Miao B, Li Y, Yao W, Xie Y, Li J, Wu D, Pei R (2015) An AuNPs-functionalized AlGaN/GaN high electron mobility transistor sensor for ultrasensitive detection of TNT. RSC Adv 5:98724–98729

    Article  CAS  Google Scholar 

  93. Bermudez V (2002) Functionalizing the GaN(0001)-(1×1) surface I. The chemisorption of aniline. Surf Sci 499:109–124

    Article  CAS  Google Scholar 

  94. Bermudez V (2002) Functionalizing the GaN(0001)-(1×1) surface II. Chemisorption of 3-pyrroline. Surf Sci 499:124–134

    Article  CAS  Google Scholar 

  95. Xu X, Jindal V, Shahedipour-Sandvik F, Bergkvist M, Cady NC (2009) Direct immobilization and hybridization of DNA on group III nitride semiconductors. Appl Surf Sci 255:5905–5909

    Article  CAS  Google Scholar 

  96. Yakimova R, Steinhoff G, Petoral RMJR, Vahlberg C, Khranovskyy V, Yazdi GR, Uvdal K, Lloyd Spetz A (2007) Novel material concepts of transducers for chemical and biosensors. Biosens Bioelectron 22:2780–2785

    Article  PubMed  CAS  Google Scholar 

  97. Kim H, Colavita PE, Paoprasert P, Gopalan P, Kuech TF, Hamers RJ (2008) Grafting of molecular layers to oxidized gallium nitride surfaces via phosphonic acid linkages. Surf Sci 602:2382–2388

    Article  CAS  Google Scholar 

  98. Arranz A, Palacio C, García-Fresnadillo D, Orellana G, Navarro A, Munoz E (2008) Influence of surface hydroxylation on 3-aminopropyltriethoxysilane growth mode during chemical functionalization of GaN surfaces: an angle-resolved x-ray photoelectron spectroscopy study. Langmuir 24:8667–8671

    Article  PubMed  CAS  Google Scholar 

  99. Arisio C, Cassou CA, Lieberman M (2013) Loss of siloxane monolayers from GaN surfaces in water. Langmuir 29:5145–5149

    Article  PubMed  CAS  Google Scholar 

  100. Schwarz SU (2013) Biofunktionalisierung und -sensorik mit AlGaN/GaN-Feldeffekttransistoren. Thesis, Albert-Ludwigs-Universität Freiburg URN: urn:nbn:de:bsz:25-opus-93594

    Google Scholar 

  101. Rohrbaugh N, Bryan I, Bryan Z, Arellano C, Collazo R, Ivanisevic A (2014) AlGaN/GaN field effect transistors functionalized with recognition peptides. Appl Phys Lett 105:134103

    Article  CAS  Google Scholar 

  102. Stine R, Simpkins BS, Mulvaney SP, Whitman LJ, Tamanaha CR (2010) Formation of amine groups on the surface of GaN: a method for direct biofunctionalization. Appl Surf Sci 256:4171–4175

    Article  CAS  Google Scholar 

  103. Berg NG, Nolan M, Paskova T, Ivanisevic A (2014) Characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation. Langmuir 30:15477–15485

    Article  PubMed  CAS  Google Scholar 

  104. Kim H, Colavita PE, Metz KM, Nichols BM, Sun B, Uhlrich J, Wang X, Kuech TF, Hamers RJ (2006) Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers. Langmuir 22(19):8121–8126

    Article  PubMed  CAS  Google Scholar 

  105. Wang C, Zhuang H, Huang N, Heuser S, Schlemper C, Zhai Z, Liu B, Staedler T, Jiang X (2016) Photochemical modification of single crystalline GaN film using n-alkene with different carbon chain lengths as biolinker. Langmuir 32:5731–5737

    Article  PubMed  CAS  Google Scholar 

  106. Caras S, Janata J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52:1935–1937

    Article  CAS  Google Scholar 

  107. Linkohr S, Schwarz SU, Krischok S, Lorenz P, Nakamura T, Polyakov V, Cimalla V, Nebel CE, Ambacher O (2010) A novel functionalization of AlGaN/GaN-pH-Sensors for DNA-sensors. Mater Res Soc Symp Proc 1202:I06–I02

    Google Scholar 

  108. Schwarz SU, Linkohr S, Lorenz P, Krischok S, Nakamura T, Cimalla V, Nebel CE, Ambacher O (2011) DNA-sensor based on AlGaN/GaN high electron mobility transistor. Phys Status Solidi A 208:1626–1629

    Article  CAS  Google Scholar 

  109. Wilkins SJ, Paskova T, Reynolds Jr CL, Ivanisevic A (2015) Comparison of the stability of functionalized GaN and GaP. ChemPhysChem 16:1687–1694

    Article  PubMed  CAS  Google Scholar 

  110. Chiu CS, Lee HM, Gwo S (2010) Site-selective biofunctionalization of aluminum nitride surfaces using patterned organosilane self-assembled monolayers. Langmuir 26:2969–2974

    Article  PubMed  CAS  Google Scholar 

  111. Chan EHM (2015) Surface functionalization of piezoelectric aluminum nitride with selected amino acid and peptides. Thesis, University of Toronto

    Google Scholar 

  112. Chen CF, CL W, Gwo S (2006) Organosilane functionalization of InN surface. Appl Phys Lett 89:252109

    Article  CAS  Google Scholar 

  113. Kao KW, Su YW, Lu YS, Yao DJ, Gwo S, Yeh JA (2012) Calcium ions detection using miniaturized InN-based sensor. In: Proceedings of MEMS, Paris, France, 29 January, pp 781–783

    Google Scholar 

  114. Bain LE, Jewett SA, Mukund AH, Bedair SM, Paskova TM, Ivanisevic A (2013) Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1−xN surfaces. ACS Appl Mater Interfaces 5:7236–7243

    Article  PubMed  CAS  Google Scholar 

  115. Baur B, Howgate J, von Ribbeck HG, Gawlina Y, Bandalo V, Steinhoff G, Stutzmann M, Eickhoff M (2006) Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors. Appl Phys Lett 89:183901

    Article  CAS  Google Scholar 

  116. Müntze GM, Baur B, Schäfer W, Sasse A, Howgate J, Röth K, Eickhoff M (2015) Quantitative analysis of immobilized penicillinase using enzyme-modified AlGaN/GaN field-effect transistors. Biosens Bioelectron 64:605–610

    Article  PubMed  CAS  Google Scholar 

  117. Chu BH, Kang BS, Ren F, Chang CY, Wang YL, Pearton SJ, Glushakov AV, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) Enzyme-based lactic acid detection using AlGaN/GaN high electron mobility transistors with ZnO nanorods grown on the gate region. Appl Phys Lett 93:042114

    Article  CAS  Google Scholar 

  118. Kang BS, Wang HT, Ren F, Pearton SJ, Morey LTE, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2007) Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Appl Phys Lett 91:252103

    Article  CAS  Google Scholar 

  119. Makowski MS, Bryan I, Sitar Z, Arellano C, Xie JQ, Collazo R, Ivanisevic A (2013) Kinase detection with gallium nitride based high electron mobility transistors. Appl Phys Lett 103:013701

    Article  PubMed Central  CAS  Google Scholar 

  120. Wang YL, Chu BH, Chen KH, Chang CY, Lele TP, Tseng Y, Pearton SJ, Ramage J, Hooten D, Dabiran A, Chow PP, Ren F (2008) Botulinum toxin detection using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 93:262101

    Article  CAS  Google Scholar 

  121. Chen KH, Kang BS, Wang HT, Lele TP, Ren F, Wang YL, Chang CY, Pearton SJ, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection. Appl Phys Lett 92:192103

    Article  CAS  Google Scholar 

  122. Espinosa N (2016) Dynamic detection of target-DNA with AlGaN/GaN high electron mobility transistors. Thesis, Albert-Ludwigs-Universität Freiburg. https://doi.org/10.6094/UNIFR/11557

  123. Chen KH, Wang HW, Kang BS, Chang CY, Wang YL, Lele TP, Ren F, Pearton SJ, Dabiran A, Osinsky A, Chow PP (2008) Low Hg(II) ion concentration electrical detection with AlGaN/GaN high electron mobility transistors. Sens Actuators B 134:386–389

    Article  CAS  Google Scholar 

  124. Bergveld P (1996) The future of biosensors. Sens Actuators A Phys 56:65–73

    Article  CAS  Google Scholar 

  125. Thapa R, Alur S, Kim K, Tong F, Sharma Y, Kim M, Ahyi C, Dai J, Hong JW, Bozack M, Williams J, Son A, Dabiran A, Park M (2012) Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Appl Phys Lett 100:232109

    Article  CAS  Google Scholar 

  126. Espinosa N, Schwarz SU, Cimalla V, Podolska A, Ambacher O (2015) Dynamic detection of target-DNA with AlGaN/GaN high electron mobility transistors. Proc Eng 120:908–911

    Article  CAS  Google Scholar 

  127. Espinosa N, Schwarz SU, Cimalla V, Podolska A, Ambacher O (2015) Impedance characterization of DNA-functionalization layers on AlGaN/GaN high electron mobility transistors. Proc Eng 120:912–915

    Article  CAS  Google Scholar 

  128. Zeggai O, Ould-Abbas A, Bouchaour M, Zeggai H, Sahouane N, Madani M, Trari D, Boukais M, Chabane-Sari NE (2014) Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. Phys Status Solidi C 11:274–279

    Article  CAS  Google Scholar 

  129. Wen XJ, Gupta S, Wang YJ, Nicholson TR, Lee SC, Lu W (2011) High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the subthreshold regime by a control gate electrode. Appl Phys Lett 99:043701

    Article  CAS  Google Scholar 

  130. Gupta S, Elias M, Wen X, Shapiro J, Brillson L, Lu W, Lee SC (2008) Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors. Biosens Bioelectron 24:505–511

    Article  PubMed  CAS  Google Scholar 

  131. Huang CC, Lee GY, Chyi JI, Cheng HT, Hsu CP, Hsu YR, Hsu CH, Huang YF, Sun YC, Chen CC, Li SS, Yeh JA, Yao DJ, Ren F, Wang YL (2013) AlGaN/GaN high electron mobility transistors for protein-peptide binding affinity study. Biosens Bioelectron 41:717–722

    Article  PubMed  CAS  Google Scholar 

  132. Li JD, Cheng JJ, Miao B, Wei XW, Xie J, Zhang JC, Zhang ZQ, DM W (2014) Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors. J Micromech Microeng 24:075023

    Article  CAS  Google Scholar 

  133. Huq HF, Trevino IIH, Castillo J (2016) Characteristics of AlGaN/GaN HEMTs for detection of MIG. J Mod Phys 7:1712–1724

    Article  CAS  Google Scholar 

  134. Casal P, Wen XJ, Gupta S, Nicholson T, Wang YJ, Theiss A, Bhushan B, Brillson L, Lu W, Lee SC (2012) Immuno FET feasibility in physiological salt environments. Phil Trans R Soc A 370:2474–2488

    Article  PubMed  CAS  Google Scholar 

  135. Chu BH, Chang CY, Kroll K, Denslow N, Wang YL, Pearton SJ, Dabiran AM, Wowchak AM, Cui B, Chow PP, Ren F (2010) Detection of an endocrine disrupter biomarker, vitellogenin, in largemouth bass serum using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 96:013701

    Article  CAS  Google Scholar 

  136. Wang HT, Kang BS, Ren F, Pearton SJ, Johnson JW, Wang HT, Kang BS, Ren F, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2007) Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors. Appl Phys Lett 91:222101

    Article  CAS  Google Scholar 

  137. Ren F, Pearton SJ, Kang BS, Chu BW (2011) AlGaN/GaN high electron mobility transistor based sensors for bio-applications. In: Serra PA (ed) Biosensors for health, environment and biosecurity. InTech, Rijeka, ISBN: 978-953-307-443-6

    Google Scholar 

  138. Lee HH, Bae M, Jo SH, Shin JK, Son DH, Won CH, Jeong HM, Lee JH, Kang SW (2015) AlGaN/GaN high electron mobility transistor-based biosensor for the detection of C-reactive protein. Sensors 15:18416–18426

    Article  PubMed  CAS  Google Scholar 

  139. Wang Y, Lu W (2011) AlGaN/GaN FET for DNA hybridization detection. Phys Status Solidi A 208:1623–1625

    Article  CAS  Google Scholar 

  140. Espinosa N, Schwarz SU, Cimalla V, Ambacher O (2015) Detection of different target-DNA concentrations with highly sensitive AlGaN/GaN high electron mobility transistors. Sens Actuators B 210:633–639

    Article  CAS  Google Scholar 

  141. Fahrenkopf NM, Shahedipour-Sandvik F, Tokranova N, Bergkvist M, Cady NC (2010) Direct attachment or DNA to semiconducting surfaces for biosensor applications. J Biotechnol 150:312–314

    Article  PubMed  CAS  Google Scholar 

  142. Gao XPA, Zheng G, Lieber CM (2010) Subthreshold regime has the optimal sensitivity for nanowire biosensors. Nano Lett 10:547–552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Ingebrandt S, Han Y, Nakamura F, Poghossian A, Schöning MJ, Offenhäusser A (2007) Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosens Bioelectron 22:2834–2840

    Article  CAS  PubMed  Google Scholar 

  144. Witte H, Lippelt T, Warnke C, Dadgar A, Hauser MJB, Krost A (2014) High-frequency detection of cell activity of Physarum polycephalum by a planar open gate AlGaN/GaN HEMT. J Phys D Appl Phys 47:425401

    Article  CAS  Google Scholar 

  145. Ozasa K, Nemoto S, Hara M, Maeda M (2006) Modification/oxidation of GaAs surface in electrolytes for cell-culture bio-sensing devices. Phys Status Solidi A 203:2287–2293

    Article  CAS  Google Scholar 

  146. Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A (2012) Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater 8:728–733

    Article  PubMed  CAS  Google Scholar 

  147. Foster CM, Collazo R, Sitar Z, Ivanisevic A (2013) Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization. Langmuir 29:837783–837784

    Google Scholar 

  148. Podolska A, Tham S, Hart RD, Seeber RM, Kocan M, Kocan M, Mishra UK, Pfleger KDG, Parish G, Nener PD (2012) Biocompatibility of semiconducting AlGaN/GaN material with living cells. Sens Actuators B 169:401–406

    Article  CAS  Google Scholar 

  149. Gebinoga M, Cimalla I, Silveira L, Klett M, Lebedev V, Tonisch K, Will F, Ambacher O, Schober A (2009) Response of nerve cell to inhibitor recorded by aluminum-gallium-nitride FET. In: Baraton MI (ed) Sensors for environment, health and security: advanced materials and technologies. Springer, New York, pp 311–318

    Chapter  Google Scholar 

  150. Podolska A, Hool LC, Pfleger KDG, Mishra UK, Parish G, Nener BD (2013) AlGaN/GaN-based biosensor for label-free detection of biological activity. Sens Actuators B 177:577–582

    Article  CAS  Google Scholar 

  151. Kumari TV, Vasudev U, Anil K, Menon B (2002) Cell surface interaction in the study of biocompatibility. Trends Biomater Artif Organs 15:37–41

    Google Scholar 

  152. Yu J, Jha SK, Xiao L, Liu Q, Wang P, Surya C, Yang M (2007) AlGaN/GaN heterostructures for non-invasive cell electrophysiological measurements. Biosens Bioelectron 23:513–519

    Article  PubMed  CAS  Google Scholar 

  153. Hofstetter M, Howgate J, Schmid M, Schoell S, Sachsenhauser M, Adigüzel D, Stutzmann M, Sharp ID, Thalhammer S (2012) In vitro bio-functionality of gallium nitride sensors for radiation biophysics. Biochem Biophys Res Commun 424:348–353

    Article  PubMed  CAS  Google Scholar 

  154. Cimalla V, Niebelschutz F, Tonisch K, Foerster C, Brueckner K, Cimalla I, Friedrich T, Pezoldt J, Stephan R, Hein M, Ambacher O (2007) Nanoelectromechanical devices for sensing applications. Sens Actuators B 126:24–34

    Article  CAS  Google Scholar 

  155. Linkohr S (2011) AlGaN/GaN-basierte-pH-Sensoren für biochemische Anwendungen. Thesis, Albert Ludwig Universität Freiburg. URN: urn:nbn:de:bsz:25-opus-84035

    Google Scholar 

  156. Anzt J, unpublished results

    Google Scholar 

  157. Berg NG, Paskova T, Ivanisevic A (2017) Tuning the biocompatibility of aluminum nitride. Mater Lett 189:1–4

    Article  CAS  Google Scholar 

  158. Bain LE, Collazo R, Hsu SH, Pfiester LN, Manfra MJ, Ivanisevic A (2014) Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors. Acta Biomater 10:2455–2462

    Article  PubMed  CAS  Google Scholar 

  159. Cimalla I, Gebinoga M, Schober A, Polyakov V, Lebedev V, Cimalla V (2011) AlGaN/GaN sensors for direct monitoring of nerve cell response to inhibitors. In: Ren F, Pearton SJ (eds) Semiconductor device-based sensors for gas, chemical, and biomedical applications. CRC Press, Boca Raton, pp 1–43

    Google Scholar 

  160. Gebinoga M, Mai P, Donahue M, Kittler M, Cimalla I, Lübbers B, Klett M, Lebedev V, Silveira L, Singh S, Schober A (2012) Nerve cell response to inhibitors recorded with an aluminum-galliumnitride/galliumnitride field-effect transistor. J Neurosci Methods 206:195–199

    Article  PubMed  CAS  Google Scholar 

  161. Gebinoga M, Silveira L, Cimalla I, Dumitrescu A, Kittler M, Lübbers B, Becker A, Lebedev V, Schober A (2010) Nanosensors for label-free measurement of sodium ion fluxes of neuronal cells. Mater Sci Eng B 169:182–185

    Article  CAS  Google Scholar 

  162. Warnke C, Witte H, Mair T, Hauser MJB, Dadgar A, Krost A (2010) Monitoring glycolytic oscillations using AlGaN/GaN high electron mobility transistors (HEMTs). Sens Actuators B 149:310–313

    Article  CAS  Google Scholar 

  163. Wang YL, Chu BH, Chen KH, Chang CY, Lele TP, Papad G, Coleman JK, Sheppard BJ, Dungen CF, Pearton SJ, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ, Ren F (2009) Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Appl Phys Lett 94:243901

    Article  CAS  Google Scholar 

  164. Kang YW, Lee GY, Chyi JI, Hsu CP, Hsu YR, Hsu CH, Huang YF, Sun YC, Chen CC, Hung SC, Ren F, Yeh JA, Wang YL (2013) Human immunodeficiency virus drug development assisted with AlGaN/GaN high electron mobility transistors and binding-site models. Appl Phys Lett 102:173704

    Article  CAS  Google Scholar 

  165. Chen CP, Ganguly A, Wang CH, Hsu CW, Chattopadhyay S, Hsu YK, Chang YC, Chen KH, Chen LC (2009) Label-free dual sensing of DNA molecules using GaN nanowires. Anal Chem 81:36–42

    Article  PubMed  CAS  Google Scholar 

  166. Chen CP, Ganguly A, Lu CY, Chen TY, Kuo CC, Chen RS, Tu WH, Fischer WB, Chen KH, Chen LC (2011) Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Anal Chem 83:1938–1943

    Article  PubMed  CAS  Google Scholar 

  167. Williams EH, Davydov AV, Oleshko VP, Steffens KL, Levin I, Lin NJ, Bertness KA, Manocchi AK, Schreifels JA, Rao MV (2014) Solution-based functionalization of galliumnitride nanowires for protein sensor development. Surf Sci 627:23–28

    Article  CAS  Google Scholar 

  168. Sahoo P, Suresh S, Dhara S, Saini G, Rangarajan S, Tyagi AK (2013) Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires. Biosens Bioelectron 44:164–170

    Article  PubMed  CAS  Google Scholar 

  169. Bo L, Xiao C, Hualin C, Mohammad MA, Xiangguang T, Luqi T, Yi Y, Tianling R (2016) Surface acoustic wave devices for sensor applications. J Semicond 37:021001

    Article  CAS  Google Scholar 

  170. Cai HL, Yang Y, Chen X, Mohammad MA, Ye TX, Guo CR, Yi LT, Zhou CJ, Liu J, Ren TL (2015) A third-order mode high frequency biosensor with atomic resolution. Biosens Bioelectron 71:261–268

    Article  PubMed  CAS  Google Scholar 

  171. Chiu CS, Lee HM, Kuo CT, Gwo S (2008) Immobilization of DNA-Au nanoparticles on aminosilane-functionalized aluminum nitride epitaxial films for surface acoustic wave sensing. Appl Phys Lett 93:163106

    Article  CAS  Google Scholar 

  172. Shigekawa N, Nishimura K, Yokoyama H, Hohkawa K (2008) Surface acoustic waves in reverse-biased AlGaN/GaN heterostructures. IEEE Trans Electron Dev 55:1585–1591

    Article  CAS  Google Scholar 

  173. Lalinský T, Rýger I, Vanko G, Tomáška M, Kostic I, Hašcíka Š, Vallo M (2010) AlGaN/GaN based SAW-HEMT structures for chemical gas sensors. Proc Eng 5:152–155

    Article  CAS  Google Scholar 

  174. Duhamel R, Robert L, Jia H, Li F, Lardet-Vieudrin F, Manceau J-F, Bastien F (2006) Sensitivity of a Lamb wave sensor with 2 μm AlN membrane. Ultrasonics 44:e893–e897

    Article  PubMed  Google Scholar 

  175. Rey-Mermet S, Lanz R, Muralt P (2006) Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films. Sens Actuators B 114:681–686

    Article  CAS  Google Scholar 

  176. YQ F, Cherng JS, Luo JK, Desmulliez MPY, Li Y, Walton AJ, Placido F (2010) Aluminium nitride thin film acoustic wave device for microfluidic and biosensing applications. In: Dissanayake DW (ed) Acoustic waves. Sciyo, Rijeka, pp 263–298

    Google Scholar 

  177. Shih HY, Chen TT, Wang CH, Chen KY, Chen YF (2008) Optical detection of deoxyribonucleic acid hybridization with InGaN/GaN multiple quantum wells. Appl Phys Lett 92:261910

    Article  CAS  Google Scholar 

  178. Heinz D, Huber F, Spiess M, Asad M, Wu L, Rettig O, Wu D, Neuschl B, Bauer S, Wu Y, Chakrabortty S, Hibst N, Strehle S, Weil T, Thonke K, Scholz F (2017) GaInN quantum wells as optochemical transducers for chemical sensors and biosensors. IEEE J Sel Top Quantum Electron 23:1900109

    Article  Google Scholar 

  179. Berg NG, Franke A, Kirste R, Collazo R, Ivanisevic A (2016) Photoluminescence changes of III-nitride lateral polarity structures after chemical functionalization. Mater Res Exp 3:125906

    Article  CAS  Google Scholar 

  180. Weidemann O, Kandaswamy PK, Monroy E, Jegert G, Stutzmann M, Eickhoff M (2009) GaN quantum dots as optical transducers for chemical sensors. Appl Phys Lett 94:113108

    Article  CAS  Google Scholar 

  181. Maier K, Helwig A, Müller G, Becker P, Hille P, Schörmann J, Teubert J, Eickhoff M (2014) Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires. Sens Actuators B 197:87–94

    Article  CAS  Google Scholar 

  182. Kleindienst R, Becker P, Cimalla V, Grewe A, Hille P, Krüger M, Schörmann J, Schwarz UT, Teubert J, Eickhoff M, Sinzinger S (2015) Integration of an opto-chemical detector based on group III-nitride nanowire heterostructures. Appl Opt 54:839–847

    Article  PubMed  CAS  Google Scholar 

  183. Riedel M, Hölzel S, Hille P, Schörmann J, Eickhoff M, Lisdat F (2017) InGaN/GaN nanowires as a new platform for photoelectrochemical sensors – detection of NADH. Biosens Bioelectron 94:298–304

    Article  PubMed  CAS  Google Scholar 

  184. Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek Jr RF, Chow TP (2013) Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 102:192107

    Article  CAS  Google Scholar 

  185. Hofmann M, Hauguth-Frank S, Lebedev V, Ambacher O, Sinzinger S (2008) Sapphire-GaN-based planar integrated free-space optical system. Appl Opt 47:2950–2955

    Article  PubMed  CAS  Google Scholar 

  186. Lu YS, Ho CL, Yeh JA, Lin HW, Gwo S (2008) Anion detection using ultrathin InN ion selective field effect transistors. Appl Phys Lett 92:212102

    Article  CAS  Google Scholar 

  187. Stutzmann M, Garrido JA, Eickhoff M, Brandt MS (2006) Direct biofunctionalization of semiconductors. A survey. Phys Status Solidi A 203:3424–3437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Cimalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cimalla, V. (2017). Label-Free Biosensors Based on III-Nitride Semiconductors. In: Schöning, M., Poghossian, A. (eds) Label-Free Biosensing. Springer Series on Chemical Sensors and Biosensors, vol 16. Springer, Cham. https://doi.org/10.1007/5346_2017_20

Download citation

Publish with us

Policies and ethics