pp 1-31 | Cite as

Silicon Nanowire Field-Effect Biosensors

Chapter
Part of the Springer Series on Chemical Sensors and Biosensors book series

Abstract

Silicon (Si), still by far the most important semiconductor material in this day and age, is dominating the microelectronic industry for decades. Due to well-studied and firmly established processing methods, Si also serves as a robust technology platform for the development of new devices in different scientific areas such as optics, photovoltaics and sensor applications. One-dimensional forms of Si such as Si nanowires (SiNW), due to their high surface-to-volume ratio, well-controlled material properties and surfaces, are at the forefront of miniaturized sensor devices. In the recent years, many bottom-up and top-down methods of SiNW fabrication were established and utilized for state-of-the-art sensor platforms towards emerging sensor applications. In this chapter, we will discuss the evolution of the classical ion-sensitive field-effect transistor (ISFET) concept into its nanoscale versions. Firstly, we describe the basis of the ISFET operation and different readout methods for sensing of biomolecules of different sizes and surface charges. Then, we focus on SiNW sensor platforms that were used for the detection of various chemicals and biomolecules. Significant advances were made towards realizing single-cell assays as well as novel applications such as organ-on-a-chip. We discuss these new developments and the different detection methods utilized for SiNW sensors. Differences in bottom-up and top-down fabrication methods are summarized in brief. Further, the intrinsic limitations associated with SiNW sensors so far hindering their commercialization are discussed. In the end, other competing technologies and future prospects for the application of SiNW sensors are discussed.

Keywords

Electrical double layer Ion-sensitive field-effect transistors Silicon nanowires Surface potential Threshold voltage 

References

  1. 1.
    Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71Google Scholar
  2. 2.
    Bergveld P (2003) Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88:1–20Google Scholar
  3. 3.
    van Hal REG, Eijkel JCT, Bergveld P (1996) A general model to describe the electrostatic potential at electrolyte oxide interfaces. Adv Colloid Interf Sci 69:31–62Google Scholar
  4. 4.
    Afrasiabi R (2016) Silicon nanoribbon FET sensors: fabrication, surface modification and microfluidic integration. Dissertation, KTH Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  5. 5.
    Shinwari MW, Deen MJ, Landheer D (2007) Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron Reliab 47:2025–2057Google Scholar
  6. 6.
    Rani D, Pachauri V, Mueller A, Vu XT, Nguyen TC, Ingebrandt S (2016) On the use of scalable nanoISFET arrays of silicon with highly reproducible sensor performance for biosensor applications. ACS Omega 1:84–92Google Scholar
  7. 7.
    Ortiz-Conde A, García-Sánchez FJ, Muci J, Barrios AT, Liou JJ, Ho C-S (2013) Revisiting MOSFET threshold voltage extraction methods. Microelectron Reliab 53:90–104Google Scholar
  8. 8.
    Skoog DA, West DM, Holler FJ, Crouch SR (2013) Fundamentals of analytical chemistry, 9th edn. Brooks/Cole Cengage Learning, BelmontGoogle Scholar
  9. 9.
    Vu XT (2011) Silicon nanowire transistor arrays for biomolecular detection. Dissertation, RWTH Aachen University, Aachen, GermanyGoogle Scholar
  10. 10.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301Google Scholar
  11. 11.
    Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, Mooney DJ, Reed MA (2009) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142Google Scholar
  12. 12.
    Lin S-P, Pan C-Y, Tseng K-C, Lin M-C, Chen C-D, Tsai C-C, Yu S-H, Sun Y-C, Lin T-W, Chen Y-T (2009) A reversible surface functionalized nanowire transistor to study protein–protein interactions. Nano Today 4:235–243Google Scholar
  13. 13.
    Noor MO, Krull UJ (2014) Silicon nanowires as field-effect transducers for biosensor development: a review. Anal Chim Acta 825:1–25Google Scholar
  14. 14.
    Li B-R, Chen C-C, Kumar UR, Chen Y-T (2014) Advances in nanowire transistors for biological analysis and cellular investigation. Analyst 139:1589–1608Google Scholar
  15. 15.
    Kim A, Ah CS, Yu HY, Yang J-H, Baek I-B, Ahn C-G, Park CW, Jun MS, Lee S (2007) Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phys Lett 91:103901Google Scholar
  16. 16.
    Landheer D, Aers G, McKinnon WR, Deen MJ, Ranuarez JC (2005) Model for the field-effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors. J Appl Phys 98:044701Google Scholar
  17. 17.
    Landheer D, McKinnon WR, Aers G, Jiang W, Deen MJ, Shinwari MW (2007) Calculation of the response of field-effect transistors to charged biological molecules. IEEE Sensors J 7:1233–1242Google Scholar
  18. 18.
    Landheer D, McKinnon WR, Jiang WH, Aers G (2008) Effect of screening on the sensitivity of field-effect devices used to detect oligonucleotides. Appl Phys Lett 92:253901Google Scholar
  19. 19.
    McKinnon WR, Landheer D (2006) Sensitivity of a field-effect transistor in detecting DNA hybridization, calculated from the cylindrical Poisson-Boltzmann equation. J Appl Phys 100:054703Google Scholar
  20. 20.
    Poghossian A, Cherstvy A, Ingebrandt S, Offenhäusser A, Schöning MJ (2005) Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors Actuators B Chem 111–112:470–480Google Scholar
  21. 21.
    Schöning MJ, Poghossian A (2002) Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127:1137–1151Google Scholar
  22. 22.
    Zhang G-J, Zhang G, Chua JH, Chee R-E, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8:1066–1070Google Scholar
  23. 23.
    Huang W, Diallo AK, Dailey JL, Besar K, Katz HE (2015) Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. J Mater Chem C 3:6445–6470Google Scholar
  24. 24.
    Schasfoort RBM, Bergveld P, Kooyman RPH, Greve J (1990) Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor. Anal Chim Acta 238:323–329Google Scholar
  25. 25.
    De Vico L, Iversen L, Sorensen MH, Brandbyge M, Nygard J, Martinez KL, Jensen JH (2011) Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors. Nanoscale 3:3635–3640Google Scholar
  26. 26.
    Eicher D, Merten CA (2011) Microfluidic devices for diagnostic applications. Expert Rev Mol Diagn 11:505–519Google Scholar
  27. 27.
    Rim T, Meyyappan M, Baek C-K (2014) Optimized operation of silicon nanowire field effect transistor sensors. Nanotechnology 25:505501Google Scholar
  28. 28.
    Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104Google Scholar
  29. 29.
    Maedler C, Kim D, Spanjaard RA, Hong M, Erramilli S, Mohanty P (2016) Sensing of the melanoma biomarker TROY using silicon nanowire field-effect transistors. ACS Sens 1:696–701Google Scholar
  30. 30.
    Antonisse MMG, Snellink-Ruël BHM, Lugtenberg RJW, Engbersen JFJ, van den Berg A, Reinhoudt DN (2000) Membrane characterization of anion-selective CHEMFETs by impedance spectroscopy. Anal Chem 72:343–348Google Scholar
  31. 31.
    Kharitonov AB, Wasserman J, Katz E, Willner I (2001) The use of impedance spectroscopy for the characterization of protein-modified ISFET devices: application of the method for the analysis of biorecognition processes. J Phys Chem B 105:4205–4213Google Scholar
  32. 32.
    Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L, Jongsma MA, Widdershoven FP (2015) Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat Nanotechnol 10:791–795Google Scholar
  33. 33.
    Ingebrandt S (2015) Bioelectronics: sensing beyond the limit. Nat Nanotechnol 10:734–735Google Scholar
  34. 34.
    Susloparova A, Koppenhofer D, Law JKY, Vu XT, Ingebrandt S (2015) Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level. Lab Chip 15:668–679Google Scholar
  35. 35.
    Nguyen TC, Vu XT, Freyler M, Ingebrandt S (2013) PSPICE model for silicon nanowire field-effect transistor biosensors in impedimetric measurement mode. Phys Status Solidi A 210:870–876Google Scholar
  36. 36.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292Google Scholar
  37. 37.
    Hsu C-C, Yang CY, Lai C-J, Dai C-L (2014) Optimization of reusable polysilicon nanowire sensor for salt concentration measurement. Jpn J Appl Phys 53:06JE04Google Scholar
  38. 38.
    Krivitsky V, Zverzhinetsky M, Patolsky F (2016) Antigen-dissociation from antibody-modified nanotransistor sensor arrays as a direct biomarker detection method in unprocessed biosamples. Nano Lett 16:6272–6281Google Scholar
  39. 39.
    Salhi B, Hossain MK, Mukhaimer AW, Al-Sulaiman FA (2016) Nanowires: a new pathway to nanotechnology-based applications. J Electroceram 37:34–49Google Scholar
  40. 40.
    Stoop RL, Wipf M, Müller S, Bedner K, Wright IA, Martin CJ, Constable EC, Fu W, Tarasov A, Calame M, Schönenberger C (2015) Competing surface reactions limiting the performance of ion-sensitive field-effect transistors. Sensors Actuators B Chem 220:500–507Google Scholar
  41. 41.
    Amato M, Rurali R (2016) Surface physics of semiconducting nanowires. Prog Surf Sci 91:1–28Google Scholar
  42. 42.
    Chen S (2013) Electronic sensors based on nanostructured field-effect devices. Dissertation, Uppsala University, Uppsala, SwedenGoogle Scholar
  43. 43.
    Luye M, Ye C, Sawtelle SD, Wipf M, Xuexin D, Reed MA (2015) Silicon nanowire field-effect transistors – a versatile class of potentiometric nanobiosensors. IEEE 3:287–302Google Scholar
  44. 44.
    Trivedi K, Yuk H, Floresca HC, Kim MJ, Hu W (2011) Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett 11:1412–1417Google Scholar
  45. 45.
    Zeimpekis I, Sun K, Hu C, Thomas O, de Planque MRR, Chong HMH, Morgan H, Ashburn P (2015) Study of parasitic resistance effects in nanowire and nanoribbon biosensors. Nanoscale Res Lett 10:79Google Scholar
  46. 46.
    Nair PR, Alam MA (2007) Design considerations of silicon nanowire biosensors. IEEE Trans Electron Dev 54:3400–3408Google Scholar
  47. 47.
    Rajan NK, Routenberg DA, Reed MA (2011) Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. Appl Phys Lett 98:264107Google Scholar
  48. 48.
    Carmignani C, Rozeau O, Scheiblin P, Thuaire A, Reynaud P, Barraud S, Ernst T, Cheramy S, Vinet M (2016) Fine charge sensing using a silicon nanowire for biodetection. In: 2016 international symposium on VLSI technology, systems and application (VLSI-TSA), Hsinchu, 2016, pp 1–2Google Scholar
  49. 49.
    Abdul Rashid JI, Abdullah J, Yusof NA, Hajian R (2013) The development of silicon nanowire as sensing material and its applications. J Nanomater 2013:16Google Scholar
  50. 50.
    Adam T, Hashim U (2015) Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosens Bioelectron 67:656–661Google Scholar
  51. 51.
    Pui T-S, Agarwal A, Ye F, Tou Z-Q, Huang Y, Chen P (2009) Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays. Nanoscale 1:159–163Google Scholar
  52. 52.
    Lu N, Gao A, Zhou H, Wang Y, Yang X, Wang Y, Li T (2016) Progress in Silicon nanowire-based field-effect transistor biosensors for label-free detection of DNA. Chin J Chem 34:308–316Google Scholar
  53. 53.
    Li B-R, Hsieh Y-J, Chen Y-X, Chung Y-T, Pan C-Y, Chen Y-T (2013) An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J Am Chem Soc 135:16034–16037Google Scholar
  54. 54.
    Shen S-H, Cheng H, Kao T-Y, Chen M-J, Lin C-T (2014) Silicon-based multi-nanowire biosensor with high-k dielectric and stacked oxide sensing membrane for cardiac troponin I detection. Proc Eng 87:648–651Google Scholar
  55. 55.
    Xiaofeng G, Rui Z, Xiaomei Y (2015) High sensitive detections of norovirus DNA and IgG by using multi-SiNW-FET biosensors. 2015 Transducers – 2015 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), Anchorage, AK, 2015, pp 1537–1540Google Scholar
  56. 56.
    Zheng G, Lieber CM (2009) Nanowire biosensors for label-free, real-time, ultrasensitive protein detection. Methods Mol Biol 790:223–237Google Scholar
  57. 57.
    Regonda S, Tian R, Gao J, Greene S, Ding J, Hu W (2013) Silicon multi-nanochannel FETs to improve device uniformity/stability and femtomolar detection of insulin in serum. Biosens Bioelectron 45:245–251Google Scholar
  58. 58.
    Zhang A, Lieber CM (2016) Nano-bioelectronics. Chem Rev 116:215–257Google Scholar
  59. 59.
    Shehada N, Cancilla JC, Torrecilla JS, Pariente ES, Brönstrup G, Christiansen S, Johnson DW, Leja M, Davies MPA, Liran O, Peled N, Haick H (2016) Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 10:7047–7057Google Scholar
  60. 60.
    Hwang S-W, Lee CH, Cheng H, Jeong J-W, Kang S-K, Kim J-H, Shin J, Yang J, Liu Z, Ameer GA, Huang Y, Rogers JA (2015) Biodegradable elastomers and Silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett 15:2801–2808Google Scholar
  61. 61.
    Kim A, Ah CS, Park CW, Yang J-H, Kim T, Ahn C-G, Park SH, Sung GY (2010) Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosens Bioelectron 25:1767–1773Google Scholar
  62. 62.
    Pui T-S, Agarwal A, Ye F, Huang Y, Chen P (2011) Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. Biosens Bioelectron 26:2746–2750Google Scholar
  63. 63.
    Mao Y, Shin K-S, Wang X, Ji Z, Meng H, Chui CO (2016) Semiconductor electronic label-free assay for predictive toxicology. Sci Rep 6:24982Google Scholar
  64. 64.
    Zhang G-J, Chai KTC, Luo HZH, Huang JM, Tay IGK, Lim AE-J, Je M (2012) Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens Bioelectron 35:218–223Google Scholar
  65. 65.
    Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4:245–247Google Scholar
  66. 66.
    Xie P, Xiong Q, Fang Y, Qing Q, Lieber CM (2011) Local electrical potential detection of DNA by nanowire–nanopore sensors. Nat Nanotechnol 7:119–125Google Scholar
  67. 67.
    Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci U S A 101:14017–14022Google Scholar
  68. 68.
    Qing Q, Jiang Z, Xu L, Gao R, Mai L, Lieber CM (2014) Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat Nanotechnol 9:142–147Google Scholar
  69. 69.
    Dai X, Zhou W, Gao T, Liu J, Lieber CM (2016) Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat Nanotechnol 11:776–782Google Scholar
  70. 70.
    Timko BP, Cohen-Karni T, Yu G, Qing Q, Tian B, Lieber CM (2009) Electrical recording from hearts with flexible nanowire device arrays. Nano Lett 9:914–918Google Scholar
  71. 71.
    Schuhmann TG, Yao J, Hong G, Fu T-M, Lieber CM (2017) Syringe-injectable electronics with a plug-and-play input/output interface. Nano Lett 17:5836–5842.  https://doi.org/10.1021/acs.nanolett.7b03081CrossRefGoogle Scholar
  72. 72.
    Zhou W, Dai X, Lieber CM (2017) Advances in nanowire bioelectronics. Rep Prog Phys 80:016701Google Scholar
  73. 73.
    Lin S-P, Vinzons LU, Kang Y-S, Lai T-Y (2015) Non-faradaic electrical impedimetric investigation of the interfacial effects of neuronal cell growth and differentiation on silicon nanowire transistors. ACS Appl Mater Interfaces 7:9866–9878Google Scholar
  74. 74.
    Puppo F, Traversa FL, Di Ventra M, De Micheli G, Carrara S (2016) Surface trap mediated electronic transport in biofunctionalized silicon nanowires. Nanotechnology 27:345503Google Scholar
  75. 75.
    Choi HM, Shin DJ, Lee JH, Mo H-S, Park TJ, Park B-G, Kim DM, Choi S-J, Kim DH, Park J (2016) The analysis of characteristics in dry and wet environments of silicon nanowire-biosensor. J Nanosci Nanotechnol 16:4901–4905Google Scholar
  76. 76.
    Heller I, Janssens AM, Männik J, Minot ED, Lemay SG, Dekker C (2008) Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett 8:591–595Google Scholar
  77. 77.
    Schwartz M, Nguyen TC, Vu XT, Weil M, Wilhelm J, Wagner P, Thoelen R, Ingebrandt S (2016) DNA detection with top–down fabricated silicon nanowire transistor arrays in linear operation regime. Phys Status Solidi A 213:1510–1519Google Scholar
  78. 78.
    Namdari P, Daraee H, Eatemadi A (2016) Recent advances in silicon nanowire biosensors: synthesis methods, properties, and applications. Nanoscale Res Lett 11:406Google Scholar
  79. 79.
    Kim S, Rim T, Kim K, Lee U, Baek E, Lee H, Baek C-K, Meyyappan M, Deen MJ, Lee J-S (2011) Silicon nanowire ion-sensitive field-effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics. Analyst 136:5012–5016Google Scholar
  80. 80.
    Dehzangi A, Larki F, Naseri MG, Navasery M, Majlis BY, Wee MFR, Halimah MK, Islam MS, Ali SHM, Saion E (2015) Fabrication and simulation of single crystal p-type Si nanowire using SOI technology. Appl Surf Sci 334:87–93Google Scholar
  81. 81.
    Nuzaihan MMN, Hashim U, Ruslinda AR, Arshad MK, Baharin MHA (2015) Fabrication of silicon nanowires array using E-beam lithography integrated with microfluidic channel for pH sensing. Curr Nanosci 11:239–244Google Scholar
  82. 82.
    Tong HD, Chen S, van der Wiel WG, Carlen ET, van den Berg A (2009) Novel top-down wafer-scale fabrication of single crystal Silicon nanowires. Nano Lett 9:1015–1022Google Scholar
  83. 83.
    Balla T, Spearing SM, Monk A (2008) An assessment of the process capabilities of nanoimprint lithography. J Phys D Appl Phys 41:174001Google Scholar
  84. 84.
    Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445:519–522Google Scholar
  85. 85.
    Gao A, Lu N, Dai P, Li T, Pei H, Gao X (2011) Silicon nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11:3974–3978Google Scholar
  86. 86.
    Li J, Pud S, Petrychuk M, Offenhäusser A, Vitusevich S (2014) Sensitivity enhancement of Si nanowire field-effect transistor biosensors using single trap phenomena. Nano Lett 14:3504–3509Google Scholar
  87. 87.
    Gao XPA, Zheng G, Lieber CM (2010) Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett 10:547–552Google Scholar
  88. 88.
    Gao A, Lu N, Wang Y, Li T (2016) Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci Rep 6:22554Google Scholar
  89. 89.
    Li B-R, Chen C-W, Yang W-L, Lin T-Y, Pan C-Y, Chen Y-T (2013) Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens Bioelectron 45:252–259Google Scholar
  90. 90.
    Chu C-J, Yeh C-S, Liao C-K, Tsai L-C, Huang C-M, Lin H-Y, Shyue J-J, Chen Y-T, Chen C-D (2013) Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano Lett 13:2564–2569Google Scholar
  91. 91.
    Park I, Li Z, Pisano AP, Williams RS (2007) Selective surface functionalization of silicon nanowires via nanoscale Joule heating. Nano Lett 7:3106–3111Google Scholar
  92. 92.
    Bergveld P (1996) The future of biosensors. Sensors Actuators A Phys 56:65–73Google Scholar
  93. 93.
    Morrison SR, Madou MJ, Frese KW (1980) Imperfections in and ion diffusion through oxide layers on silicon. Appl Surf Sci 6:138–148Google Scholar
  94. 94.
    Zhou W, Dai X, Fu TM, Xie C, Liu J, Lieber CM (2014) Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett 14:1614–1619Google Scholar
  95. 95.
    Liu J, Xie C, Dai X, Jin L, Zhou W, Lieber CM (2013) Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc Natl Acad Sci 110:6694–6699Google Scholar
  96. 96.
    Poghossian A, Schöning MJ (2014) Label-free sensing of biomolecules with field-effect devices for clinical spplications. Electroanalysis 26:1197–1213Google Scholar
  97. 97.
    Huang Y-W, Wu C-S, Chuang C-K, Pang S-T, Pan T-M, Yang Y-S, Ko F-H (2013) Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Anal Chem 85:7912–7918Google Scholar
  98. 98.
    Cheng S, Hotani K, Hideshima S, Kuroiwa S, Nakanishi T, Hashimoto M, Mori Y, Osaka T (2014) Field-effect transistor biosensor using antigen binding fragment for detecting tumor marker in human serum. Materials 7:2490–2500Google Scholar
  99. 99.
    Kim KS, Lee H-S, Yang J-A, Jo M-H, Han S-K (2009) The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology 20:235501Google Scholar
  100. 100.
    Presnova G, Presnov D, Krupenin V, Grigorenko V, Trifonov A, Andreeva I, Ignatenkoa O, Egorova A, Rubtsovaa M (2017) Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens Bioelectron 88:283–289Google Scholar
  101. 101.
    Elnathan R, Kwiat M, Pevzner A, Engel Y, Burstein L, Khatchtourints A, Lichtenstein A, Kantaev R, Patolsky F (2012) Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett 12:5245–5254Google Scholar
  102. 102.
    Gao N, Zhou W, Jiang X, Hong G, Fu T-M, Lieber CM (2015) General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett 15:2143–2148Google Scholar
  103. 103.
    Ingebrandt S, Han Y, Nakamura F, Poghossian A, Schöning MJ, Offenhäusser A (2007) Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. Biosens Bioelectron 22:2834–2840Google Scholar
  104. 104.
    Susloparova A, Koppenhöfer D, Vu XT, Weil M, Ingebrandt S (2013) Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens Bioelectron 40:50–56Google Scholar
  105. 105.
    Pandya HJ, Kim HT, Roy R, Chen W, Cong L, Zhong H, Foran DJ, Desai JP (2014) Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements. Sensors Actuators B Chem 199:259–268Google Scholar
  106. 106.
    Balasubramanian K, Kern K (2014) 25th anniversary article: label-free electrical biodetection using carbon nanostructures. Adv Mater 26:1154–1175Google Scholar
  107. 107.
    Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102–1120Google Scholar
  108. 108.
    Khung YL, Narducci D (2013) Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosens Bioelectron 50:278–293Google Scholar
  109. 109.
    Lin T-Y, Li B-R, Tsai S-T, Chen C-W, Chen C-H, Chen Y-T, Pan C-Y (2012) Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening. Lab Chip 13:676–684Google Scholar
  110. 110.
    Krivitsky V, Hsiung L-C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F (2012) Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all. Nano Lett 12:4748–4756Google Scholar
  111. 111.
    Tsai C-C, Chiang P-L, Sun C-J, Lin T-W, Tsai M-H, Chang Y-C, Chen Y-T (2011) Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology 22:135503Google Scholar
  112. 112.
    McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 6:379–384Google Scholar
  113. 113.
    Hoffman JM, Stayton PS, Hoffman AS, Lai JJ (2015) Stimuli-responsive reagent system for enabling microfluidic immunoassays with biomarker purification and enrichment. Bioconjug Chem 26:29–38Google Scholar
  114. 114.
    Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang P-H, Huang TJ (2014) In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced raman scattering systems. ACS Nano 8:12175–12184Google Scholar
  115. 115.
    Kuan D-H, Wang IS, Lin J-R, Yang C-H, Huang C-H, Lin Y-H, Lin C-T, Huang N-T (2016) A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes. Lab Chip 16:3105–3113Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Biomedical Signalling Group, Informatics and Microsystem TechnologyUniversity of Applied Sciences KaiserslauternZweibrückenGermany
  2. 2.Institute of Materials in Electrical Engineering 1RWTH Aachen UniversityAachenGermany

Personalised recommendations