Skip to main content

Percolation Effects in Metal Oxide Gas Sensors and Related Systems

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 15))

Abstract

The percolation model has successfully been applied to gas sensors in the past few years. We will describe which kind of sensor properties have been explained or predicted by percolation effects, as, e.g., digital sensor characteristics, tailor-made sensor properties, and resettable dosimeters. Clearly, it is a challenging and nontrivial task to reduce the whole complexity of an experimental system to fit into a mathematical model, as the percolation model. By giving a comprehensive introduction, we will point out which properties of the percolation theory are universal and therefore best suited for the comparison to the experimental results. Furthermore, practical hints for the fitting procedure will be discussed. The focus will be on the metal oxide gas sensors, but we keep in mind that there are further interesting examples for percolation gas sensors and sketch important related systems. We believe that a combined understanding of theoretical and experimental aspects will open new fields for the utilization of percolation effects for metal oxide gas sensor and beyond.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34(11):1502–1503

    Article  CAS  Google Scholar 

  2. Morrison SR (1982) Semiconductor gas sensors. Sens Actuators 2:329–341

    Article  CAS  Google Scholar 

  3. Kohl D (2001) Function and applications of gas sensors. J Phys D Appl Phys 34:R125–R149

    Article  CAS  Google Scholar 

  4. Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839

    Google Scholar 

  5. Sahner K, Matam RMM, Tunney JJ, Post M (2005) Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials. Sens Actuators B 108:102–112

    Article  CAS  Google Scholar 

  6. Savage N, Chwieroth B, Ginwalla A, Patton BR, Akbar SA, Dutta PK (2001), Composite n−p semiconducting titanium oxides as gas sensors. Sens Actuators B 79:17

    Google Scholar 

  7. Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation. J Am Chem Soc 63:3083

    Google Scholar 

  8. Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched chain polymers. J Chem Phys 11:45

    CAS  Google Scholar 

  9. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  10. Bunde A, Havlin S (1996) Percolation I and percolation II. In: Bunde A, Havlin S (eds) Fractals and disordered systems, 2nd edn, Springer, Berlin

    Google Scholar 

  11. Sahimi M (1994) Application to percolation theory. Taylor and Francis, London

    Google Scholar 

  12. Broadbent SR, Hammersley JM (1957) Percolation processes. Math Proc Cambridge Philos Soc 53:629641. doi:10.1017/S0305004100032680

    Article  Google Scholar 

  13. Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman, San Francisco

    Google Scholar 

  14. Bunde A, Kantelhardt L (1996) Introduction to percolation theory. In: Kärger J, Haberlandt R (eds) Diffusion in condensed matter. Vieweg Verlag, Wiesbaden

    Google Scholar 

  15. Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Bunde A, Havlin S (eds) (1999) Percolation and disordered systems: theory and applications. In: Proceedings of the international conference on percolation and disordered systems, Schloss Rauischholzhausen, University of Giessen, Giessen, 14–17 July 1998, Elsevier Science B.V., Oxford

    Google Scholar 

  17. Bisquert J (2008) Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states. Phys Chem Chem Phys 10:3175

    Google Scholar 

  18. Dräger J, Russ S, Bunde A (1995) Localization in random self-similar structures: universal behaviour. Europhys Lett 31:425

    Google Scholar 

  19. Dumpich G (1991) Anomalous electron diffusion in fractal systems at low temperatures. Adv Solid State Phys 31:59

    Article  CAS  Google Scholar 

  20. Polley MH, Boonstra BBST (1957) Carbon Blacks for highly conductive rubber. Rubber Chem Technol 30(170):179

    Google Scholar 

  21. Andrade JS, Ito N, Shibusa Y (1996) Percolation transition in conducting polymer networks. Phys Rev B 54:3910–3915

    Article  CAS  Google Scholar 

  22. Sau KP, Chaki TK, Khastgir D (1997) Conductive rubber composites from different blends of ethylene–propylene–diene rubber and nitrile rubber. J Mater Sci 32:5717–5724

    Article  CAS  Google Scholar 

  23. Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7(10):3182–3188

    Google Scholar 

  24. Sysoev VV, Schneider T, Goschnick J, Kiselev I, Habicht W, Hahn H, Strelcov E, Kolmakov A (2009) Percolating SnO2 nanowire network as a stable gas sensor: direct comparison of long-term performance versus SnO2 nanoparticle film. Sens Actuators B 139:699–703

    Article  CAS  Google Scholar 

  25. Go J, Sysoev VV, Kolmakov A, Pimparkar N, Alam MA (2009) A novel model for (percolating) nanonet chemical sensors for microarray-based E-nose applications’ ECE Faculty Publications. Paper 57. doi:10.1109/IEDM.2009.5424266

  26. Yamazoe N, Shimanoe K (2012) Proposal of contact potential promoted oxide semiconductor gas sensor. Sens Actuators B. doi:10.1016/j.snb.2012.10.048

  27. Moos KSJSR (2006) Cuprate-ferrate compositions for temperature independent resistive oxygen. Sensors 16:179–186

    Google Scholar 

  28. Nagarajan L, De Souza RA, Samuelis D, Valov I, Börger A, Janek J, Becker KD, Schmidt PC, Martin M (2008) Highly non-stoichiometric amorphous gallium oxide – prototype material for a chemically driven insulator-metal transition. Nat Mater 7(5):391–398

    CAS  Google Scholar 

  29. Höfer U, Frank J, Fleischer M (2001) High temperatures Ga2O3-gas sensors and SnO2-sensors: a comparison. Sens Actuators B 78:6–11

    Article  Google Scholar 

  30. Ulrich M, Kohl C-D, Bunde A (2001) Percolation model of a nanocrystalline gas sensitive layer. Thin Solid Films 391:299–302

    Article  CAS  Google Scholar 

  31. Sherman RD, Middleman LM, Jacobs SM (1983) Electron transport processes in conductor-filled polymers. Polym Eng Sci 23:36–46. doi:10.1002/pen.760230109

    Article  Google Scholar 

  32. Tyco Electronics (2008) Product documentation. http://www.te.com/content/dam/te/global/english/products/Circuit-Protection/knowledge-center/documents/circuit-protection-psw-fundamentals.pdf. Accessed 26 May 2013

  33. Alamusi NH, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723. doi:10.3390/s111110691

    Article  CAS  Google Scholar 

  34. Abraham JK, Philip B, Witchurch A, Varadan VK, Reddy CC (2004) A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater Struct 13:1045–1049

    Google Scholar 

  35. Chen J, Tsubokawa N (2000) Novel gas sensor from polymer-grafted carbon black: vapor response of electric resistance of conducting composites prepared from poly(ethylene-block-ethylene oxide)-grafted carbon black. J Appl Polym Sci 77:2437–2447

    Article  CAS  Google Scholar 

  36. Hayashi S, Naitoh A, Machida S, Okazaki M, Maruyama K, Tsubokawa N (1998) Grafting of polymers onto a carbon black surface by the trapping of polymer radicals. Appl Organometal Chem 12:743–748

    Article  CAS  Google Scholar 

  37. Dankert O, Pundt A (2002) Hydrogen-induced percolation in discontinuous films. Appl Phys Lett 81(2002):1618–1620

    Article  CAS  Google Scholar 

  38. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227–2231

    Article  CAS  Google Scholar 

  39. Xu T, Zach MP, Xiao ZL, Rosenmann D, Welp U (2005) Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl Phys Lett 86:203104. doi:10.1063/1.1929075

    Article  Google Scholar 

  40. Kohl D (1989) Surface processes in the detection of reducing gases with SnO2-based devices. Sens Actuators 18:71–113

    Article  CAS  Google Scholar 

  41. Yamazoe N (1991) New approaches for improving semiconductor gas sensors, Sens Actuators B 5:7–19

    Google Scholar 

  42. Xu C, Tamaki J, Miura N, Yamazoe N (1992) Grain size effect on gas sensitivity of porous SnO2-based elements. Sens Actuators B 3147–3155

    Google Scholar 

  43. Wang X, Yee SS, Carey WP (1995) Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sens Actuators 24–25:454–457

    Article  Google Scholar 

  44. Eicker H, Kartenberg HJ, Jacob H (1981) Untersuchung neuer Meßverfahren mit Metalloxidhalbleitern zur Überwachung von Kohlenoxid-Konzentrationen Technisches Messen 48:421–430

    Google Scholar 

  45. Lalauze P (1984) A new approach to selective detection of gas by an SnO2 Solid state sensor. Sens Actuators 5:55–63

    Article  CAS  Google Scholar 

  46. Gramm A, Schütze A (2003) High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification. Sens Actuators B Chem 95(1–3):58–65

    Article  CAS  Google Scholar 

  47. Morrison SR (1987) Selectivity in semiconductor gas sensors. Sens Actuators 12:425–440

    Article  CAS  Google Scholar 

  48. Kohl D, Felde N (2011) Gas sensing investigation in characterizing textile fibers in solid state gas sensors. In: Fleischer M, Lehmann M (eds) Industrial application. Springer, Berlin Heidelberg

    Google Scholar 

  49. Sakai G, Matsunaga N, Shimanoe K, Yamazoe N (2001) Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens Actuators B 80:125–131

    Article  CAS  Google Scholar 

  50. Mandayo GG, Castaño E, Gracia FJ, Cirera A, Cornet A, Morante JR (2003) Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films. Sens Actuators B95:90–96

    Article  Google Scholar 

  51. Heilig A, Barsan N, Weimar U, Göpel W (1999) Selectivity enhancement of SnO2 gas sensors: simultaneous monitoring of resistances and temperatures. Sens Actuators B 58:302–309

    Article  CAS  Google Scholar 

  52. Park CO, Akhbar S (2003) Ceramics for chemical sensing. J Mat Sci 38:4611

    Google Scholar 

  53. Ulrich M, Bunde A, Kohl C-D (2004) Percolation and gas sensitivity in nanocrystalline metal oxide films. Appl Phys Lett 85:242

    Article  CAS  Google Scholar 

  54. Dräger J, Russ S, Sauerwald T, Kohl C-D, Bunde A (2013) Percolation transition in the gas-induced conductance of nanograin metal oxide films with defects. JAP 113. J Appl Phys 113:223701. http://dx.doi.org/10.1063/1.4809572

    Google Scholar 

  55. Yoon DH, Yu JH, Choi GM (1998) CO gas sensing properties of ZnO–CuO composite. Sens Actuators B 46:1523

    Google Scholar 

  56. Jun S-T, Choi GM (1998) Composition dependence of the electrical conductivity of ZnO(n)–CuO(p) ceramic composite. J Am Ceram Soc 81:695–699

    Article  CAS  Google Scholar 

  57. Moon WJ, Yu JH, Choi GM (2001), Selective CO gas detection of SnO2-ZnSnO4 composite gas sensor. Sens Actuators B 80:21

    Google Scholar 

  58. Savage N, Akbar SA, Dutta PK (2001) Titanium dioxide based high temperature carbon monoxide selective sensor. Sens Actuators B 72:239–248

    Article  CAS  Google Scholar 

  59. Li X, Ramasamy R, Dutta PK (2009) Study of the resistance behavior of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications. Sens Actuators B 143:308–315

    Article  Google Scholar 

  60. Dutta PK, Ginwalla A, Hogg B, Patton BR, Chwieroth B, Liang Z, Gouma P, Mills M, Akbar SA (1999) Interaction of Carbon monoxide with anatase surfaces at high temperatures: optimization of a carbon monoxide sensor. J Phys Chem B 103:4412–4422

    Google Scholar 

  61. Russ S (in preparation) Selective resistance behavior of composite semiconducting np systems, (to be submitted, 2013)

    Google Scholar 

  62. Tamaki T, Maekawa NM, Yamazoe N (1992) CuO–SnO2 element for highly sensitive and selective detection of H2S. Sens Actuators B 9:197–203

    Article  CAS  Google Scholar 

  63. Groß A, Beulertz G, Marr I, Kubinski DJ, Visser JH, Moos R (2012) Dual mode NOx sensor: measuring both the accumulated amount and instantaneous level at low concentrations. Sensors 12(3):2831–2850

    Article  Google Scholar 

  64. Fremerey P, Jess A, Moos R (2012) Direct in-situ detection of sulfur loading on fixed bed catalysts. In: The 14th international meeting on chemical sensors (IMCS 2012). 20–23 May 2012, Nürnberg. doi:10.5162/IMCS2012/1.1.5

  65. Jeong YK, Choi GM (1996) Nonstoichiometry and electrical conductivity of CuO. Phys Chem Solids 57:81–84

    Google Scholar 

  66. Nozaki H, Shibata K (1991) Metallic hole conduction in CuS. J Solid State Chem 91:306

    Article  CAS  Google Scholar 

  67. Ramgir S, Kailasa Ganapathi S, Kaur M, Datta N, Muthe KP, Aswal DK, Gupta SK, Yakhmi JV (2010) Sup-ppm H2S sensing at room temperature using CuO thin films. Sens Actuators B 151:90–96

    Article  CAS  Google Scholar 

  68. Sauerwald T, Hennemann J, Kohl C-D, Wagner T, Russ S (2013) H2S detection utilizing percolation effects in copper oxide. Proc Sens 2013 pp 656-660; ISBN 978-3-9813484-3-9

    Google Scholar 

  69. Chen J, Wang K, Hartman L, Zhou W (2008) H2S detection by vertically aligned CuO nanowire array sensors. J Phys Chem C 2008(112):16017–16021

    Article  Google Scholar 

  70. Hennemann J, Sauerwald T, Kohl C-D, Wagner T, Bognitzki M, Greiner A (2012) Physica Status Solidi 209(5):911–916

    Google Scholar 

  71. Hennemann J, Sauerwald T, Wagner T, Kohl C-D, Dräger J, Russ S (2012) Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects. In: Proc of the 14th international meeting on chemical sensors (IMCS 2012), 20–23 May 2012, AMA Service GmbH, Nuremberg pp 197–200; ISBN: 978-3-9813484-2-2, doi:10.5162/IMCS2012/2.3.4

  72. Steinhauer S, Brunet E, Maier T, Mutinati GC, Köck A, Freudenberg O, Gspan C, Grogger W, Neuhold A, Resel R (2012) Gas sensing properties of novel CuO nanowire devices. Sens Actuators B Chem doi:10.1016/j.snb.2012.09.034

Download references

Acknowledgements

We would like to thank C.-D. Kohl and J. Hennemann for the many valuable advices and the Deutsche Forschungsgemeinschaft for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Sauerwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauerwald, T., Russ, S. (2013). Percolation Effects in Metal Oxide Gas Sensors and Related Systems. In: Kohl, CD., Wagner, T. (eds) Gas Sensing Fundamentals. Springer Series on Chemical Sensors and Biosensors, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2013_53

Download citation

Publish with us

Policies and ethics