Skip to main content

Gold Nanostructure LSPR-Based Biosensors for Biomedical Diagnosis

  • Chapter
  • First Online:
Book cover Applications of Nanomaterials in Sensors and Diagnostics

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 14))

Abstract

Progress in nanotechnology has enjoyed exponential growth in the past couple of decades. We have seen design and synthesis of metal nanoparticles (NPs) tailored specifically for biomedical diagnosis. In particular, noble metals have attracted lots of attention. Because of their unique optical and electronic properties, Au and Ag NPs have been exploited in the fabrication of localized surface plasmon resonance (LSPR) chips for detection of biomolecules. They impart increased sensitivity and also allow development of analytical platforms for label-free detection. These metal NPs show specific changes in their absorbance responses in the visible region of the spectrum upon binding with various molecules such as nucleic acids or proteins. In addition, the electronic properties, in particular, of Au and Ag NPs have been employed as labels for detection of proteins and other target molecules. In this chapter, we will focus on the use of Au NPs in LSPR-based biosensor technology. We will discuss the principles and applications of how these NPs have been and can be exploited for medical diagnostics by providing examples, mainly to the work we have conducted in our research group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nano-paricles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 5:681–693

    Article  CAS  Google Scholar 

  3. Lan J, Zhou X, Liu G, Yu J, Zhang J, Zhi L, Nie G (2011) Enhancing photocatalytic activity of one-dimensional KNbO3 nanowires by Au nanoparticles under ultraviolet and visible-light. Nanoscale 3:5161–5167. doi:10.1039/C1NR10953G

    Article  CAS  Google Scholar 

  4. Kerman K, Kraatz HB (2009) Electrochemical detection of protein tyrosine kinase-catalysed phosphorylation using gold nanoparticles. Biosens Bioelectron 24:1484–1489

    Article  CAS  Google Scholar 

  5. Selvaraju T, Das J, Jo K et al (2008) Nanocatalyst-based assay using DNA-conjugated Au nanoparticles for electrochemical DNA detection. Langmuir 24:9883–9888

    Article  CAS  Google Scholar 

  6. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271

    Article  CAS  Google Scholar 

  7. Jensen T, Kelly L, Lazarides A, Schatz GC (1999) Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Cluster Sci 10:295–317

    Article  CAS  Google Scholar 

  8. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  9. Endo T, Kerman K, Nagatani N, Hiep HM, Kim D-K, Yonezawa Y, Nakano K, Tamiya E (2006) Multiple label-free detection of antigen-antibody reaction using localised surface plasmon resonance-based core-shell structured layer nanochip. Anal Chem 78:6465–6475

    Article  CAS  Google Scholar 

  10. Vestergaard M, Kerman K, Kim D-K, Hiep HM, Tamiya E (2008) Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip. Talanta 74:1038–1042

    Article  CAS  Google Scholar 

  11. Haes AJ, Hal PW, Chang L, Klein WL, VanDuyne RP (2004) A localised surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease. Nano Lett 4: 1029–1034

    Article  CAS  Google Scholar 

  12. Kerman K, Chikae M, Yamamura S, Tamiya E (2007) Gold nanoparticle-based electrochemical detection of protein phosphorylation. Anal Chim Acta 588:26–33

    Article  CAS  Google Scholar 

  13. Chen Z-P, Peng Z-F, Zhang P, Jin X-F, Jiang J-H, Zhang X-B, Shen G-L, Yu R-Q (2007) A sensitive immunosensor using colloidal gold as electrochemical label. Talanta 72:1800–1804

    Article  CAS  Google Scholar 

  14. Ambrosi A, Castaneda MT, Killard AJ, Smyth MR, Alegret S, Merkoci A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240

    Article  CAS  Google Scholar 

  15. Pumera M, Castaneda MT, Pividor MI, Eritja R, Merkoci A, Alegret S (2005) Manetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracer. Langmuir 21:9625–9629

    Article  CAS  Google Scholar 

  16. Pumera M, Aldavert M, Mills C, Merkoci A, Alegret S (2005) Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochim Acta 50: 3702–3707

    Article  CAS  Google Scholar 

  17. Gonzales-Garcia MB, Costa-Garcia A (1995) Adsorptive stripping voltammetric behaviour of colloidal gold and immunogold on carbon paste electrode. Bioelectrochem Bioenerg 38: 389–395

    Article  Google Scholar 

  18. Kerman K, Kobayashi M, Tamiya E (2004) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15:R1–R11

    Article  CAS  Google Scholar 

  19. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892

    Article  CAS  Google Scholar 

  20. Vestergaard M, Kerman K, Tamiya E (2006) An overview of label-free electrochemical protein sensors. Sensors 6:3442–3458

    Google Scholar 

  21. Bini A, Minunni M, Tombelli S, Centi S, Mascini M (2007) Analytical performance of aptamer-based sensing for thrombin detection. Anal Chem 79:3016–3019

    Article  CAS  Google Scholar 

  22. Hao E, Li SY, Bailey RC, Zou SL, Schatz GC, Hupp JT (2004) J Phys Chem B 108:1224–1229

    Article  CAS  Google Scholar 

  23. Park TH, Mirin N, Lassiter J, Hafner J, Halas NJ, Nordlander P (2008) Plasmonic properties of nanoholes. ACS Nano 2:25–32

    Article  CAS  Google Scholar 

  24. Shoute LC, Bergren AJ, Mahmoud AM, Harris KD, McCreery RL (2009) Appl Spectrosc 63:133–140

    Article  CAS  Google Scholar 

  25. Su H, Li Y, Li X-Y, Wong KS (2009) Optical and electrical properties of Au nanoparticles in two-dimensional networks: an effective cluster model. Opt Express 17:22223–22234

    Article  CAS  Google Scholar 

  26. Hutter E, Fendler JH (2004) Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  27. Nath N, Chilkoti A (2002) Anal Chem 74:504–509

    Article  CAS  Google Scholar 

  28. Haes AJ, Van Duyne RP (2004) Anal Bioanal Chem 379:920

    Article  CAS  Google Scholar 

  29. Shen XW, Hiuang CZ, Li YF (2007) Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid. Talanta 72:1432–1437

    Article  CAS  Google Scholar 

  30. Zhou W, Ma Y, Yang H, Ding Y, Luo X (2011) A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinomat. Int J Nanomedicine 6:381–386

    Article  Google Scholar 

  31. Kreuzer MP, Quidant R, Salvador JP, Marco MP, Badenes G (2008) Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal Bioanal Chem 391:1813–1820

    Article  CAS  Google Scholar 

  32. Endo T et al (2005) Anal Chem 77:6976–6984

    Article  CAS  Google Scholar 

  33. Kato K, Barsukov LY, Derrick JP, Kim H, Tanaka R, Yoshimo A, Shiraishi M, Shimada I, Arata Y, Roberts GCK (1995) Structure 3:79

    Article  CAS  Google Scholar 

  34. Blennow K (2004) J Int Med 256:224

    Article  CAS  Google Scholar 

  35. Sjogren M, Vanderstichele H, Agren H, Zachrisson O, Edsbagge M, Wikkelson C, Nagga K, Andreasen N, Davidsson P, Vanmechelen E, Blennow K (2001) Clin Chem 47:776

    Google Scholar 

  36. Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, Iqbal K, Wang J (2002) Am J Pathol 160: 1269

    Article  CAS  Google Scholar 

  37. Sobow T, Flirski M, Liberski PP (2004) Acta Neurobiol Exp 64:53

    Google Scholar 

  38. Vandermeeren M, Mercken M, Vanmechelen E, Jan S, Van de Voorde A, Martin J-J, Cras P (1993) Detection of tau proteins in normal and Alzheimer's disease cerebrospinal fluid with a sensitive sandwich enzyme-linked immunosorbent assay. J Neurochem 61:1828–1834

    Article  CAS  Google Scholar 

  39. Sunderland T, Linker G, Nadeem M, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B, Bartko JJ, Cohen RM (2003) J Am Med Soc 289:2094

    Google Scholar 

  40. Vestergaard M, Tamiya E (2007) Anal Sci 23:1443–1446

    Article  CAS  Google Scholar 

  41. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  42. Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  CAS  Google Scholar 

  43. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  Google Scholar 

  44. Cho EJ, Collett JR, Szafranska AE, Ellington AD (2006) Optimization of aptamer microarray technology for multiple protein targets. Anal Chim Acta 564:82–90

    Article  CAS  Google Scholar 

  45. Musheev MU, Krylov SN (2006) Selection of aptamers by systematic evolution of ligands by exponential enrichment: addressing the polymerase chain reaction issue. Anal Chim Acta 564: 91–96

    Article  CAS  Google Scholar 

  46. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    Article  CAS  Google Scholar 

  47. Li B, Du Y, Wei H, Dong S (2007) Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chem Commun 3780–3783

    Google Scholar 

  48. Ha HM, Saito M, Nakamura Y et al (2010) RNA aptamer-based optical nanostructured sensor for highly sensitive and label-free detection of antigen–antibody reactions. Anal Bioanal Chem 396:2575–2581

    Article  Google Scholar 

  49. Miyakawa S, Nomura Y, Sakamoto T, Yamaguchi Y, Kato K, Yamazaki S, Nakamura Y (2008) Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G. RNA 14:1154–1163

    Article  CAS  Google Scholar 

  50. Ha HM, Nakayama T, Saito M, Yamamura S, Takamura Y, Tamiya E (2008) A microfluidic chip based on localized surface plasmon resonance for real-time monitoring of antigen–antibody reactions. Jpn J Appl Phys 47:1337–1341

    Article  Google Scholar 

  51. Kerman K, Vestergaard C, Tamiya E (2009) Electrochemical DNA biosensors: protocols for intercalator-based detection of hybridization in solution and at the surface. Biosens Biodetect 2:99–113

    Article  Google Scholar 

  52. Wang J (1998) DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosens Bioelectron 13:757–762

    Article  CAS  Google Scholar 

  53. Ratilainen T, Holmen A, Tuite E et al (1998) Hybridization of peptide nucleic acid. Biochemistry 37:12331–12342

    Article  CAS  Google Scholar 

  54. Kerman K, Vestergaard M, Nagatani N et al (2006) Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: electrostatic interactions with a metal cation. Anal Chem 78:2182–2189

    Article  CAS  Google Scholar 

  55. Gaylord BS, Massie MR, Feinstein FC et al (2005) SNP detection using peptide nucleic acid probes and conjugated polymers: applications in neurodegenerative disease identification. Proc Natl Acad Sci U S A 102:34–39

    Article  CAS  Google Scholar 

  56. Poiesi C, Albertini A, Ghielmi S et al (1993) Cytokine 5:539–545

    Article  CAS  Google Scholar 

  57. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Genome Res 6:986–994

    Article  CAS  Google Scholar 

  58. Beer NR, Wheeler EK, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, Leung P, Arnold DW, Bailey CG, Colston BW (2008) Anal Chem 80:1854–1858

    Article  CAS  Google Scholar 

  59. Sanburn N, Cornetta K (1999) Gene Ther 6:1340–1345

    Article  CAS  Google Scholar 

  60. Hiep HM, Kerman K, Endo T et al (2010) Nanostructured biochip for label-free and real-time optical detection of plolymerase chain reaction. Anal Chim Acta 661:111

    Article  CAS  Google Scholar 

  61. Ha HM, Yoshikawa H, Saito M et al (2009) An interference localized surface plasmon resonance biosensor based on the photonic structure of Au nanoparticles and SiO2/Si multi-layers. ACS Nano 3:446–452

    Article  Google Scholar 

  62. Ha HM, Yoshikawa H, Tamiya E (2010) Interference localized surface plasmon resonance nanosensor tailored for the detection of specific biomolecular interactions. Anal Chem 82: 1221–1227

    Article  Google Scholar 

  63. Ha HM, Yoshikawa H, Tamiya E et al (2010) Immobilization of gold nanoparticles on aluminum oxide nanoporous structure for highly sensitive plasmonic sensing. Jpn J Appl Phys 49:06GM02

    Article  Google Scholar 

  64. Lin VSY, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843

    Article  CAS  Google Scholar 

  65. Macleod HA (1986) Thin-film optical filters. Macmillan, New York

    Book  Google Scholar 

  66. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  67. Vestergaard M, Hamada T, Takagi M (2008) Use of model membranes for the study of amyloid beta: lipid interactions and neurotoxicity. Biotechnol Bioeng 99:753–763

    Article  CAS  Google Scholar 

  68. Engel MF, Khemtemourian L, Kleijer CC, Meedijk HH, Jacobs J, Verkleij EJ, de Kruijff B, Killian JA, Höppener JWM (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci U S A 105:6033–6038

    Article  CAS  Google Scholar 

  69. Morita M, Vestergaard M, Hamada T et al (2010) Real-time observation of model membrane dynamics induced by Alzheimer's amyloid beta. Biophys Chem 147:81

    Article  CAS  Google Scholar 

  70. Vestergaard M, Yoda T, Hamada T et al (2010) The effect of oxycholesterols on thermo-induced membrane dynamics. Biochim Biophys Acta, Biomembr 1808:2245–2251

    Article  Google Scholar 

  71. Ha HM, Endo T, Saito M et al (2010) Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance. Anal Chem 80:1859–1864

    Google Scholar 

  72. Parker MW, Feil SC (2005) Prog Biophys Mol Biol 88:91–142

    Article  CAS  Google Scholar 

  73. Tosteson MT, Holmes SJ, Razin M, Tosteson DC (1985) J Membr Biol 87:35–44

    Article  CAS  Google Scholar 

  74. Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saito H (2000) Biophys J 78:2405–2417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tamiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vestergaard, M.C., Saito, M., Yoshikawa, H., Tamiya, E. (2013). Gold Nanostructure LSPR-Based Biosensors for Biomedical Diagnosis. In: Tuantranont, A. (eds) Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_50

Download citation

Publish with us

Policies and ethics