Skip to main content

Nanomaterial-Based Electroanalytical Biosensors for Cancer and Bone Disease

  • Chapter
  • First Online:
Applications of Nanomaterials in Sensors and Diagnostics

Abstract

With recent advances in novel nanomaterial development, electroanalytical biosensors are undergoing a paradigm shift. New nanomaterial-based electrochemical biosensors can detect specific biomolecules at previously unattainable ultra-low concentrations. This chapter lists the existing biosensor technologies, describes the mechanisms, and applications of two types of electroanalytical biosensors, and then identifies the barriers in developing these biosensors and concludes by illustrating how nanomaterials can help overcome these limitations. A key feature of the electrochemical impedance sensor is that biomolecules detection can occur in real time without any pre-labeling. Specifically, this chapter summarizes the state of knowledge of the impedance sensor as applied in cancer and bone disease studies, which are clinically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theavenoti RD, Toth K, Durst AR, Wilson SG (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71(12):2333–2348

    Article  Google Scholar 

  2. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426

    Article  CAS  Google Scholar 

  3. Li H, Liu S, Dai Z et al (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9(11):8547–8561

    Article  CAS  Google Scholar 

  4. Yun Y, Eteshola E, Bhattacharya A et al (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9(11):9275–9299

    Article  CAS  Google Scholar 

  5. Yun Y, Dong Z, Shanov V et al (2007) Nanotube electrodes and biosensors. Nanotoday 2(6):30–37

    Article  Google Scholar 

  6. Yun Y, Conforti L, Muganda P, Sankar J (2011) Nanomedicine-based synthetic biology, editorial. Nanomed Biotherapeutic Discovery 1:1

    Google Scholar 

  7. Guo X, Yun Y, Shanov NV et al (2011) Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode. Electroanalysis 23:1252–1259

    Article  CAS  Google Scholar 

  8. Yun Y, Bhattacharya A, Watts BN, Schulz JM (2009) A label-free electronic biosensor for detection of a bone turnover marker. Sensors 9:7957–7969

    Article  CAS  Google Scholar 

  9. Yun Y, Bange A, Dong Z et al (2008) Electrodeposition of gold nanoparticles on carbon nanotube array: electrochemical characterization and evaluation. Sens Actuators B133(1):208–212

    Google Scholar 

  10. Yun Y, Dong Z, Shanov NV, Schulz JM (2007) Carbon nanotube array for electrochemical impedance measurement of prostate cancer cells under microfludic channel. Nanotechnology 18:465505

    Article  Google Scholar 

  11. Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors:review. Electroanalysis 22(10):1027–1036

    Article  CAS  Google Scholar 

  12. Yang W, Ratinac RK, Ringer PS et al (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  13. Tang Z, Wu H, Cort RJ et al (2010) Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6(11):1205–1209

    Article  CAS  Google Scholar 

  14. Heineman RW, Strovel AH (1989) Potentiometric methods. In: Chemical instrumentation: a systematic approach, 3rd edn. (Chap. 28):1000–1053

    Google Scholar 

  15. Bratov A, Abramova N, Ipatov A (2010) Recent trends in potentiometric sensor arrays-a review. Anal Chim Acta 678:149–159

    Article  CAS  Google Scholar 

  16. Kulapina EG, Barinova OV (1997) Structure of chemical compounds, methods of analysis and process control, Ion selective electrodes in drug analysis. Pharm Chem J 31(12):667–672

    Article  Google Scholar 

  17. Gupta KV, Nayak A, Agarwal S, Singhal B (2011) Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb Chem High Throughput Screen 14:284–302

    Article  CAS  Google Scholar 

  18. Dimeski G, Badrick T, John SA (2010) Ion selective electrodes (ISEs) and interferences - a review. Clin Chim Acta 411:309–317

    Article  CAS  Google Scholar 

  19. Bakker E, Pretsch E (2007) Modern potentiometry. Angew Chem Int Ed 46:5660–5668

    Article  CAS  Google Scholar 

  20. Gavalas GV, Berrocal JM, Bachas GL (2006) Enhancing the blood bompatibility of ion-selective electrodes. Anal Bioanal Chem 384:65–72

    Article  CAS  Google Scholar 

  21. Liu B, Rieck D, Van Wie JB et al (2009) Bilayer lipid membrane (BLM) based ion selective electrodes at the meso-, micro-, and nano-scales. Biosens Bioelectron 24:1843–1849

    Article  CAS  Google Scholar 

  22. Lai C, Fierke AM, Costa RC et al (2010) Highly selective detection of silver in the low ppt range with ion-selective electrodes based on ionophore-doped fluorous membranes. Anal Chem 82:7634–7640

    Article  CAS  Google Scholar 

  23. Bakkera E, Chumbimuni-Torres K (2008) Modern directions for potentiometric sensors. J Braz Chem Soc 19(4):621–629

    Article  Google Scholar 

  24. Amemiya S, Kim Y, Ishimatsu R, Kabagambe B (2011) Electrochemical heparin sensing at liquid/liquid interfaces and polymeric membranes. Anal Bioanal Chem 399:571–579

    Article  CAS  Google Scholar 

  25. Mottram T, Rudnitskaya A, Legin A et al (2007) Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk. Biosens Bioelectron 22:2689–2693

    Article  CAS  Google Scholar 

  26. Correia D, Magalhães J, Machado A (2008) Array of potentiometric sensors for multicomponent analysis of blood serum. Microchim Acta 163:131–137

    Article  CAS  Google Scholar 

  27. Ciosek P, Grabowska I, Brzózka Z, Wróblewski W (2008) Analysis of dialysate fluids with the use of a potentiometric electronic tongue. Microchim Acta 163:139–145

    Article  CAS  Google Scholar 

  28. Ciosek P, Zawadzki K, Skolimowski J et al (2009) Monitoring of cell cultures with LTCC microelectrode array. Anal Bioanal Chem 393:2029–2038

    Article  CAS  Google Scholar 

  29. Yun Y, Bange A, Shanov NV et al (2007) Highly sensitive carbon nanotube needle biosensors. J Nanosci Nanotechnol 7:2293–2300

    Article  CAS  Google Scholar 

  30. Yun Y, Shanov V, Tu Y et al (2006) Synthesis of long aligned multi-wall carbon nanotube arrays by water-assisted chemical vapor deposition. J Phys Chem B 110(47):23920–23925

    Article  CAS  Google Scholar 

  31. Yun Y, Shanov V, Schulz JM et al (2006) High sensitivity carbon nanotube tower electrodes. Sens Actuators B120:298–304

    Google Scholar 

  32. Yun Y, Shanov V, Tu Y et al (2005) A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett 6(4):689–693

    Article  Google Scholar 

  33. Yun Y, Gollapudi R, Shanov V et al (2007) Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing. J Nanosci Nanotechnol 7:891–897

    Article  CAS  Google Scholar 

  34. Bonanni A, Pumera M (2011) Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5:2356–2361

    Article  CAS  Google Scholar 

  35. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  36. Yun Y, Bange A, Shanov NV et al (2006) A nanotube composite microelectrode for monitoring dopamine levels using cyclic voltammetry and differential pulse voltammetry. Proc Inst Mech Eng Part N J Nanoeng Nanosyst 220:53–60

    Google Scholar 

  37. Yun Y, Bange A, Heineman RW et al (2007) A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding. Sens Actuators B123:177–182

    Google Scholar 

  38. Carey JJ, Licata AA, Delaney MF (2006) Biochemical markers of bone turnover. Clin Rev Bone Miner Metab 4(3):197–212

    Article  CAS  Google Scholar 

  39. Yun Y, Dong Z, Yang D, Sfeir C, Kumta P et al (2009) Biodegradable magnesium metal for possible bone implant: electrochemical and in vitro evaluation for biocompatibility study. J Mater Sci Eng C 29:1814–1821

    Article  CAS  Google Scholar 

  40. Yun Y, Conforti L, Muganda P, Sankar J (2011) Nanomedicine-based synthetic biology. J Nanomedic Biotherapeu Discover 1:1

    Article  Google Scholar 

  41. Yun Y, Pixley S, Cui XT et al (2012) Carbon nanomaterials: from therapeutics to regenerative medicine. J Nanomedic Biotherapeu Discover 2:1000104

    Google Scholar 

  42. NSF ERC for Revolutionizing Metallic Biomaterials. http://erc.ncat.edu/

  43. Tothill IE (2009) Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 20:55–62

    Article  CAS  Google Scholar 

  44. Yogeswaran U, Chen SM (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313

    Article  Google Scholar 

  45. Zhao Y, Wei J, Vajtai R et al (2011) Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep 83(1):1–5

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by BAA11-001 Long Range Board Agency for Navy and Marine Corps Science and Technology Program, National Science Foundation, and the Korean Small and Medium Business Administration (Project no.00042172-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeoheung Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yun, Y. et al. (2012). Nanomaterial-Based Electroanalytical Biosensors for Cancer and Bone Disease. In: Tuantranont, A. (eds) Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_43

Download citation

Publish with us

Policies and ethics