Skip to main content

DNA Sensors Employing Nanomaterials for Diagnostic Applications

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 14))

Abstract

This chapter describes DNA sensors (genosensors) that employ electrochemical impedance signal as transduction principle. With this principle, hybridization of a target gene with the complementary probe is the starting point to detect clinical diagnostic-related genes or gene variants. Electrochemical impedance spectroscopy permits, then, a labeless detection, by simple use of a redox probe. As current topic, it will focus on the use of nanocomponents to improve sensor performance, mainly carbon nanotubes integrated in the sensor platform, or nanoparticles, for signal amplification. The different formats and variants available for detecting genes in diagnostic applications will be reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

Alternating current

AuNP:

Gold nanoparticle

C:

Capacitance

CNT:

Carbon nanotube

CPE:

Constant phase element

CPE:

Carbon paste electrode

DNA:

Deoxyribonucleic acid

dsDNA:

Double-stranded DNA

EDAC:

N-(3-Dimethylaminopropil)-N-ethylcarbodiimide hydrochloride

EIS:

Electrochemical impedance spectroscopy

GCE:

Glassy carbon electrode

H1N1:

Influenza A – H1N1 gene

HIV:

Human immunodeficiency virus

hpDNA:

Hairpin DNA

IgG:

Immunoglobulin G

LOD:

Limit of detection

MWCNT:

Multi-walled carbon nanotube

NHS:

N-Hydroxysuccinimide

PCR:

Polymerase chain reaction

PEG:

Polyethylene glycol

PNA:

Peptide nucleic acid

QCM:

Quartz crystal microbalance

QD:

Quantum dot

R :

Resistance

R et :

Electron transfer resistance

RNA:

Ribonucleic acid

SPR:

Surface plasmon resonance

ssDNA:

Single-stranded DNA

strept-AuNPs:

Streptavidin-coated gold nanoparticles

SWCNT:

Single-walled carbon nanotube

TEM:

Transmission electron microscopy

Z:

Impedance

Zi :

Imaginary component of impedance

Zr :

Real component of impedance

αHL:

α-Hemolysin nanopore

φ :

Phase angle

ω :

Radial frequency

References

  1. Cosnier S, Mailley P (2008) Recent advances in DNA sensors. Analyst 133(8):984–991

    CAS  Google Scholar 

  2. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555–1567

    CAS  Google Scholar 

  3. Bonanni A, del Valle M (2010) Use of nanomaterials for impedimetric DNA sensors: a review. Anal Chim Acta 678(1):7–17

    CAS  Google Scholar 

  4. Teles FRR, Fonseca LP (2008) Trends in DNA biosensors. Talanta 77:606–623

    CAS  Google Scholar 

  5. Piunno PAE, Krull UJ, Hudson RHE, Damha MJ, Cohen H (1995) Fiber-optic DNA sensor for fluorometric nucleic acid determination. Anal Chem 67(15):2635–2643

    CAS  Google Scholar 

  6. Fang L, Lü Z, Wei H, Wang E (2008) A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta 628(1):80–86

    CAS  Google Scholar 

  7. Lermo A, Campoy S, Barbé J, Hernández S, Alegret S, Pividori MI (2007) In situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens. Biosens Bioelectron 22(9–10):2010–2017

    CAS  Google Scholar 

  8. Díaz-González M, de la Escosura-Muñiz A, González-García MB, Costa-García A (2008) DNA hybridization biosensors using polylysine modified SPCEs. Biosens Bioelectron 23(9):1340–1346

    Google Scholar 

  9. Ferreira HA, Cardoso FA, Ferreira R, Cardoso S, Freitas PP (2006) J Appl Phys 99:1–3

    Google Scholar 

  10. Wang J, Xu D, Kawde AN, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73(22):5576–5581

    CAS  Google Scholar 

  11. Wang J, Liu G, Polsky R, Merkoçi A (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem Commun 4(9):722–726

    CAS  Google Scholar 

  12. Millan KM, Saraullo A, Mikkelsen SR (1994) Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem 66(18):2943–2948

    CAS  Google Scholar 

  13. Maruyama K, Motonaka J, Mishima Y, Matsuzaki Y, Nakabayashi I, Nakabayashi Y (2001) Detection of target DNA by electrochemical method. Sens Actuators B Chem 76(1–3):215–219

    CAS  Google Scholar 

  14. Yan F, Erdem A, Meric B, Kerman K, Ozsoz M, Sadik OA (2001) Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species. Electrochem Commun 3(5):224–228

    CAS  Google Scholar 

  15. Hashimoto K, Ito K, Ishimori Y (1994) Sequence-specific gene detection with a gold electrode modified with DNA probes and electrochemically active dye. Anal Chem 66(21):3830–3833

    CAS  Google Scholar 

  16. Wang J, Kawde AN (2002) Amplified label-free electrical detection of DNA hybridization. Analyst 127(3):383–386

    CAS  Google Scholar 

  17. Thorp HH (1998) Cutting out the middleman: DNA biosensors based on electrochemical oxidation. Trends Biotechnol 16(3):117–121

    CAS  Google Scholar 

  18. O’Sullivan CK, Guilbault GG (1999) Commercial quartz crystal microbalances – theory and applications. Biosens Bioelectron 14(8–9):663–670

    Google Scholar 

  19. Wang L, Wei Q, Wu C, Ji J, Wang P (2007) A QCM biosensor based on gold nanoparticles amplification for real-time bacteria DNA detection. In: Proceedings of the 2007 International Conference on Information Acquisition, ICIA, 2007, pp 46–51

    Google Scholar 

  20. Lazerges M, Perrot H, Zeghib N, Antoine E, Compere C (2006) In situ QCM DNA-biosensor probe modification. Sens Actuators B Chem 120(1):329–337

    CAS  Google Scholar 

  21. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Biomol Struct 26:541–566

    CAS  Google Scholar 

  22. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54(1):3–15

    CAS  Google Scholar 

  23. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15(11):913–947

    CAS  Google Scholar 

  24. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  25. Mansfeld F, Han LT, Lee CC, Chen C, Zhang G, Xiao H (1997) Analysis of electrochemical impedance and noise data for polymer coated metals. Corros Sci 39(2):255–279

    CAS  Google Scholar 

  26. Armstrong RD, Bell MF, Metcalfe AA (1978) The A.C. impedance of complex electrochemical reactions. Electrochemistry 6:98–127

    Google Scholar 

  27. Roy SK, Orazem ME (2008) Analysis of flooding as a stochastic process in polymer electrolyte membrane (PEM) fuel cells by impedance techniques. J Power Sources 184(1):212–219

    CAS  Google Scholar 

  28. Orazem M, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, New York

    Google Scholar 

  29. Park SM, Yoo JS (2003) Electrochemical impedance spectroscopy for better electrochemical measurements. Anal Chem 75(21):455A–461A

    CAS  Google Scholar 

  30. Srisuwan N, Ochoa N, Pébère N, Tribollet B (2008) Variation of carbon steel corrosion rate with flow conditions in the presence of an inhibitive formulation. Corros Sci 50(5):1245–1250

    CAS  Google Scholar 

  31. Tzvetkov B, Bojinov M, Girginov A, Pébère N (2007) An electrochemical and surface analytical study of the formation of nanoporous oxides on niobium. Electrochim Acta 52(27 SPEC. ISS.):7724–7731

    CAS  Google Scholar 

  32. Nogueira A, Nóvoa XR, Pérez C (2007) On the possibility of using embedded electrodes for the measurement of dielectric properties in organic coatings. Prog Org Coat 59(3):186–191

    CAS  Google Scholar 

  33. Wagner N (2005) Electrochemical power sources-fuel cells. In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy: theory, experiment, and applications, 2nd ed, pp 497–537, Wiley, New York

    Google Scholar 

  34. Seland F, Tunold R, Harrington DA (2006) Impedance study of methanol oxidation on platinum electrodes. Electrochim Acta 51(18):3827–3840

    CAS  Google Scholar 

  35. Kharitonov AB, Alfonta L, Katz E, Willner I (2000) Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry. J Electroanal Chem 487(2):133–141

    CAS  Google Scholar 

  36. Vladikova D, Raikova G, Stoynov Z, Takenouti H, Kilner J, Skinner S (2005) Differential impedance analysis of solid oxide materials. Solid State Ionics 176(25–28):2005–2009

    CAS  Google Scholar 

  37. Kell DB, Davey CL (1990) Conductimetric and Impedimetric devices. In: Cass AEG (Ed) Biosensors A practical approach, pp 125–154, IRL Press, Oxford

    Google Scholar 

  38. Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanalysis 13(3):173–180

    CAS  Google Scholar 

  39. Prodomidis MI (2010) Impedimetric immunosensors – a review. Electrochim Acta 55:4227–4233

    Google Scholar 

  40. Willner I, Willner B (1999) Electronic transduction of photostimulated binding interactions at photoisomerizable monolayer electrodes: novel approaches for optobioelectronic systems and reversible immunosensor devices. Biotechnol Prog 15(6):991–1002

    CAS  Google Scholar 

  41. Park JY, Park SM (2009) DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 9(12):9513–9532

    CAS  Google Scholar 

  42. Degefa TH, Kwak J (2008) Electrochemical impedance sensing of DNA at PNA self assembled monolayer. J Electroanal Chem 612(1):37–41

    CAS  Google Scholar 

  43. Liu J, Tian S, Neilsen PE, Knoll W (2005) In situ hybridization of PNA/DNA studied label-free by electrochemical impedance spectroscopy. Chem Commun (23):2969–2971

    Google Scholar 

  44. Bonanni A, Esplandiu MJ, Pividori MI, Alegret S, del Valle M (2006) Impedimetric genosensors for the detection of DNA hybridization. Anal Bioanal Chem 385(7):1195–1201

    CAS  Google Scholar 

  45. Ma KS, Zhou H, Zoval J, Madou M (2006) DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy. Sens Actuators B Chem 114(1):58–64

    CAS  Google Scholar 

  46. Patolsky F, Lichtenstein A, Willner I (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol 19(3):253–257

    CAS  Google Scholar 

  47. Patolsky F, Lichtenstein A, Willner I (2001) Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J Am Chem Soc 123(22):5194–5205

    CAS  Google Scholar 

  48. Bonanni A, Pumera M, Miyahara Y (2010) Rapid, sensitive, and label-free impedimetric detection of a single-nucleotide polymorphism correlated to kidney disease. Anal Chem 82(9):3772–3779

    CAS  Google Scholar 

  49. Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B Chem 122(2):659–671

    CAS  Google Scholar 

  50. Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, New York

    Google Scholar 

  51. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130(4):421–426

    CAS  Google Scholar 

  52. Merkoçi A, Pumera M, Llopis X, Pérez B, del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. TrAC, Trends Anal Chem 24(9):826–838

    Google Scholar 

  53. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16(1–2):19–44

    CAS  Google Scholar 

  54. Sadik OA, Mwilu SK, Aluoch A (2010) Smart electrochemical biosensors: from advanced materials to ultrasensitive devices. Electrochim Acta 55(14):4287–4295

    CAS  Google Scholar 

  55. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326

    CAS  Google Scholar 

  56. Suni II (2008) Impedance methods for electrochemical sensors using nanomaterials. TrAC, Trends Anal Chem 27(7):604–611

    CAS  Google Scholar 

  57. Peng H, Soeller C, Cannell MB, Bowmaker GA, Cooney RP, Travas-Sejdic J (2006) Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosens Bioelectron 21(9):1727–1736

    CAS  Google Scholar 

  58. Bonanni A, Esplandiu MJ, del Valle M (2008) Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles. Electrochim Acta 53(11):4022–4029

    CAS  Google Scholar 

  59. Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Role of carbon nanotubes in electroanalytical chemistry: a review. Anal Chim Acta 622(1–2):11–47

    Google Scholar 

  60. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    CAS  Google Scholar 

  61. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192

    CAS  Google Scholar 

  62. Moreno-Hagelsieb L, Lobert PE, Pampin R, Bourgeois D, Remacle J, Flandre D (2004) Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes. Sens Actuators B Chem 98(2–3):269–274

    CAS  Google Scholar 

  63. Erdem A, Pividori MI, del Valle M, Alegret S (2004) Rigid carbon composites: a new transducing material for label-free electrochemical genosensing. J Electroanal Chem 567(1):29–37

    CAS  Google Scholar 

  64. Pacios M, del Valle M, Bartroli J, Esplandiu MJ (2008) Electrochemical behavior of rigid carbon nanotube composite electrodes. J Electroanal Chem 619–620:117–124

    Google Scholar 

  65. Wang M, Wang L, Yuan H, Ji X, Sun C, Ma L, Bai Y, Li T, Li J (2004) Immunosensors based on layer-by-layer self-assembled Au colloidal electrode for the electrochemical detection of antigen. Electroanalysis 16(9):757–764

    CAS  Google Scholar 

  66. Frasco M, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9):7266–7286

    CAS  Google Scholar 

  67. Huang H, Li J, Tan Y, Zhou J, Zhu J-J (2010) Quantum dot-based DNA hybridization by electrochemiluminescence and anodic stripping voltammetry. Analyst 135(7):1773–1778

    CAS  Google Scholar 

  68. Xu Y, Cai H, He PG, Fang YZ (2004) Probing DNA hybridization by impedance measurement based on CdS-oligonucleotide nanoconjugates. Electroanalysis 16(1–2):150–155

    CAS  Google Scholar 

  69. Kjällman THM, Peng H, Soeller C, Travas-Sejdic J (2010) A CdTe nanoparticle-modified hairpin probe for direct and sensitive electrochemical detection of DNA. Analyst 135(3):488–494

    Google Scholar 

  70. Merkoçi A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152(3–4 SPEC. ISS.):157–174

    Google Scholar 

  71. Xu Y, Jiang Y, Cai H, He PG, Fang YZ (2004) Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal Chim Acta 516(1–2):19–27

    CAS  Google Scholar 

  72. Caliskan A, Erdem A, Karadeniz H (2009) Direct DNA hybridization on the single-walled carbon nanotubes modified sensors detected by voltammetry and electrochemical impedance spectroscopy. Electroanalysis 21(19):2116–2124

    CAS  Google Scholar 

  73. Bonanni A, Esplandiu MJ, del Valle M (2009) Impedimetric genosensors employing COOH-modified carbon nanotube screen-printed electrodes. Biosens Bioelectron 24(9):2885–2891

    CAS  Google Scholar 

  74. Bonanni A, Pividori MI, del Valle M (2010) Impedimetric detection of influenza A (H1N1) DNA sequence using carbon nanotubes platform and gold nanoparticles amplification. Analyst 135(7):1765–1772

    CAS  Google Scholar 

  75. Bonanni A, Esplandiu MJ, del Valle M (2010) Impedimetric genosensing of DNA polymorphism correlated to cystic fibrosis: a comparison among different protocols and electrode surfaces. Biosens Bioelectron 26(4):1245–1251

    CAS  Google Scholar 

  76. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    CAS  Google Scholar 

  77. Muti M, Sharma S, Erdem A, Papakonstantinou P (2011) Electrochemical monitoring of nucleic acid hybridization by single-use graphene oxide-based sensor. Electroanalysis 23(1):272–279

    CAS  Google Scholar 

  78. Wang Z, Zhang J, Chen P, Zhou X, Yang Y, Wu S, Niu L, Han Y, Wang L, Chen P, Boey F, Zhang Q, Liedberg B, Zhang H (2011) Label-free, electrochemical detection of methicillin-resistant Staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens Bioelectron 26(9):3881–3886

    CAS  Google Scholar 

  79. Bonanni A, Pumera M (2011) Graphene platform for hairpin-DNA based impedimetric genosensing. ACS Nano 5(43):2356–2361

    CAS  Google Scholar 

  80. Gu L-Q, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135:441–451

    CAS  Google Scholar 

  81. Takmakov P, Vlassiouk I, Smirnov S, Brevnov D, Atanassov P (2005) Impedimetric detection of biomolecules via ionic conductance through alumina nanoporous arrays. Meeting Abstracts MA 2005–02:2524

    Google Scholar 

  82. Rhee M, Burns MA (2006) Nanopore sequencing technology: research trends and applications. Trends Biotechnol 24(12):580–586

    CAS  Google Scholar 

  83. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6(10):615–624

    CAS  Google Scholar 

  84. Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    CAS  Google Scholar 

  85. Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5'-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128(5):1705–1710

    CAS  Google Scholar 

  86. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83(12):4327–4341

    CAS  Google Scholar 

  87. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA (2010) Graphene as a subnanometre trans-electrode membrane. Nature 467(7312):190–193

    CAS  Google Scholar 

  88. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndić M (2010) DNA translocation through graphene nanopores. Nano Lett 10(8):2915–2921

    CAS  Google Scholar 

  89. Luan B, Peng H, Polonsky S, Rossnagel S, Stolovitzky G, Martyna G (2010) Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. Phys Rev Lett 104(23):238103

    Google Scholar 

  90. Ling XS (2011) Solid-state nanopores: methods of fabrication and integration, and feasibility issues in DNA sequencing. In: Iqbal SM (ed) Nanopores: sensing and fundamental biological interactions. Springer, New York, pp 177–201

    Google Scholar 

  91. Moreno-Hagelsieb L, Foultier B, Laurent G, Pampin R, Remacle J, Raskin JP, Flandre D (2007) Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens Bioelectron 22(9–10):2199–2207

    CAS  Google Scholar 

  92. Fu Y, Yuan R, Xu L, Chai Y, Zhong X, Tang D (2005) Indicator free DNA hybridization detection via EIS based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate. Biochem Eng J 23(1):37–44

    CAS  Google Scholar 

  93. Feng Y, Yang T, Zhang W, Jiang C, Jiao K (2008) Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes. Anal Chim Acta 616(2):144–151

    CAS  Google Scholar 

  94. Yang J, Yang T, Feng Y, Jiao K (2007) A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal Biochem 365(1):24–30

    CAS  Google Scholar 

  95. Xu Y, Ye X, Yang L, He P, Fang Y (2006) Impedance DNA biosensor using electropolymerized polypyrrole/multiwalled carbon nanotubes modified electrode. Electroanalysis 18(15):1471–1478

    CAS  Google Scholar 

  96. Jiang C, Yang T, Jiao K, Gao H (2008) A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim Acta 53(6):2917–2924

    CAS  Google Scholar 

  97. Zhou N, Yang T, Jiang C, Du M, Jiao K (2009) Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Au nano-CNT/PAN nano films. Talanta 77(3):1021–1026

    CAS  Google Scholar 

  98. Liu ZM, Li ZJ, Shen GL, Yu RQ (2009) Label-free detection of DNA hybridization based on MnO2 nanoparticles. Anal Lett 42(18):3046–3057

    CAS  Google Scholar 

  99. Zhang W, Yang T, Zhuang X, Guo Z, Jiao K (2009) An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosens Bioelectron 24(8):2417–2422

    CAS  Google Scholar 

  100. Zhang Y, Yang T, Zhou N, Zhang W, Jiao K (2008) Nano Au/TiO2 hollow microsphere membranes for the improved sensitivity of detecting specific DNA sequences related to transgenes in transgenic plants. Sci China B Chem 51(11):1066–1073

    CAS  Google Scholar 

  101. Yang G-J, Huang J-L, Meng W-J, Shen M, Jiao X-A (2009) A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal Chim Acta 647:159–166

    CAS  Google Scholar 

  102. Fan H, Ju P, Ai S (2010) Controllable synthesis of CdSe nanostructures with tunable morphology and their application in DNA biosensor of Avian Influenza Virus. Sens Actuators B Chem 149(1):98–104

    CAS  Google Scholar 

  103. Levine PM, Gong P, Levicky R, Shepard KL (2009) Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics. Biosens Bioelectron 24(7):1995–2001

    CAS  Google Scholar 

  104. Mastichiadis C, Niotis AE, Petrou PS, Kakabakos SE, Misiakos K (2008) Capillary-based immunoassays, immunosensors and DNA sensors – steps towards integration and multi-analysis. TrAC, Trends Anal Chem 27(9):771–784

    CAS  Google Scholar 

  105. Sun H, Zhang Y, Fung Y (2006) Flow analysis coupled with PQC/DNA biosensor for assay of E. coli based on detecting DNA products from PCR amplification. Biosens Bioelectron 22(4):506–512

    CAS  Google Scholar 

  106. Radi AE, Sánchez JLA, Baldrich E, O’Sullivan CK (2005) Reusable impedimetric aptasensor. Anal Chem 77(19):6320–6323

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by Spanish Ministry of Science and Innovation, MCINN (Madrid) through projects Consolider-Ingenio CSD2006-00012 and CTQ2010-17099 and by program ICREA Academia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel del Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

del Valle, M., Bonanni, A. (2012). DNA Sensors Employing Nanomaterials for Diagnostic Applications. In: Tuantranont, A. (eds) Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_38

Download citation

Publish with us

Policies and ethics