Skip to main content

Computational Approaches in the Design of Synthetic Receptors

  • Chapter
  • First Online:
Book cover Designing Receptors for the Next Generation of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

Abstract

Artificial receptors have been employed in molecular recognition for a variety of biological applications. They have been used as materials for sensors, affinity separation, solid-phase extraction, and for research into biomolecular interaction. There have been a number of publications relating to the application of molecular modeling in the characterization of their affinity and selectivity; there are very few publications that discuss the application of molecular modeling to the computational design of artificial receptors. This chapter discusses recent successes in the use of computational design for the development of artificial receptors, and touches upon possible future applications, further emphasizing an exciting group of synthetic receptors—molecularly imprinted polymers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

“ab initio”:

Latin term meaning “from the beginning”

ΔE :

Binding energy

2-VP:

2-Vinyl pyridine

4-VP:

4-Vinyl pyridine

AA:

Acrylic acid

Accelrys DS viewer:

Modeling and simulation tools for drug discovery

Agile molecule:

A three-dimensional molecular viewer which shows molecular models and provides geometry editing capabilities

AHLs:

3-Oxo-C6-acyl-homoserine lactone

ALM:

Allylamine

AMBER:

Assisted model building with energy refinement refers to a MM force field for the simulation of biomolecules and a package of molecular simulation programs

AMPSA:

2-Acrylamido-2-methyl-1-propanesulfonic acid

B3LYP:

Becke 3-parameter, Lee, Yang and Parr, a density functional method

Bite-and-Switch:

“Bite-and-Switch” is defined in terms of polymer’s ability to bind the template (bite) and generate the signal (switch)

BLAs:

β-Lactam antibiotics

B-Me:

Biotin methyl ester

CAChe MOPAC:

A general-purpose semiempirical molecular orbital package for the study of chemical structures and reactions

Cerius:

A software to visualize structures, predict the properties and behavior of chemical systems refine structural models (Molecular Simulations Inc.)

Chem 3D:

A software that provides visualization and display of molecular surfaces, orbitals, electrostatic potentials, charge densities, and spin densities (http://www.cambridgesoft.com/)

DFT:

Density functional theory

Dielectric constant:

A measure of the ability of a material to store a charge from an applied electromagnetic field and then transmit that energy

DMAEM:

Dimethyl aminoethyl methacrylate

DOCK:

Program that addresses the problem of “docking” molecules to each other. It explores ways in which two molecules, such as a drug and an enzyme or protein receptor, might fit together

DVB:

Divinylbenzene

EGDMA:

Ethylene glycol dimethacrylate

ELISA:

Enzyme-linked immunosorbent assay

GAMESS:

General Atomic and Molecular Electronic Structure System: a general ab initio quantum chemistry package that can compute wave functions ranging from RHF, ROHF, UHF, GVB, and MCSCF

Gibbs free energy:

The chemical potential that is minimized when a system reaches equilibrium at constant pressure and temperature

GRID:

A computational procedure for detecting energetically favorable binding sites on molecules of known structure. The energies are calculated as the electrostatic, hydrogen bond and Lennard Jones interactions of a specific probe group with the target structure (Peter Goodford, Molecular Discovery Ltd)

Gaussian:

“Ab initio” electronic structure program that originated in the research group of People at Carnegie-Melon. Calculate structures, reaction transition states, and molecular properties (http://www.gaussian.com)

Gaussview:

Graphical user interface (GUI) designed for use with Gaussian for easier computational analysis

HEMA:

Hydroxyethyl methacrylate

His:

Histidine

HOOK:

Linker search for fragments placed by MCSS

HO-PCBs:

Hydroxy polychlorinated biphenyls

HPLC:

High performance liquid chromatography

HVA:

Homovanillic acid

HyperChem:

A molecular modeling package for windows

IA:

Itaconic acid

k′:

Retention factor

Leapfrog™:

A component of the SYBYL™ software package (Tripos) and is a second-generation de novo drug discovery program that allows for the evaluation of potential ligand structures

LEGEND:

Atom-based, stochastic search

Ligbuilder:

General-purpose structure-based drug design program

LUDI:

Fragment-based, combinatorial search

MAA:

Methacrylic acid

Materials Studio:

Software for modeling/simulation of crystal structure, polymer properties, structure–activity relationships (http://www.accelrys.com/products/mstudio)

MBAA:

N,N′-Methylenebisacrylamide

MD:

Molecular dynamics

MIC:

Molecularly imprinted catalysis

MIP:

Molecularly imprinted polymer

MM:

Molecular mechanics

MMA:

Methylmethacrylate

MMFF94:

A tool for conformational searching of highly flexible molecules

MOE:

Molecular Operating Environment is a software system designed for computational chemistry

Monte Carlo:

An algorithm which computes based on repeated random sampling to arrive at results

MOPAC AM1:

AM1 is used in the electronic part of the calculation to obtain molecular orbitals, the heat of formation and its derivative with respect to molecular geometry. MOPAC calculates the vibrational spectra, thermodynamic quantities, isotopic substitution effects and force constants for molecules, radicals, ions, and polymers

NAM:

A scalable molecular dynamics code that can be run on the Beowulf parallel PC cluster for molecular dynamics simulations on selected molecular systems

NIP:

Non-imprinted polymer

NVT-MD:

Molecular dynamics performed under constant number of atom, volume, and temperature ensemble

OPA:

o-Phthalic dialdehyde

OscailX:

Molecular modeling software, National University of Ireland (http://www.ucg.ie/cryst/software.htm)

OTA:

Ochratoxin A

PCFF:

Polymer consistent force field

PCM:

Polarizable continuum model

PCModel:

Structure building, manipulation, and display program which uses molecular mechanics and semiempirical quantum mechanics to optimize geometry. Available on PC (DOS and Windows), Macintosh, SGI, Sun and IBM/RS computers (Kevin Gilbert, Serena Software)

PenG:

Penicillin G

pK a :

Ionization constant

PRO-LIGAND:

Fragment-based search

Qm:

Mean absolute atomic charge

QM:

Quantum mechanics

RECON:

An algorithm for the rapid reconstruction of molecular charge densities and charge density-based electronic properties of molecules, using atomic charge density fragments precomputed from ab initio wave functions. The method is based on Bader’s quantum theory of atoms in molecules

RESP:

Atomic partial charge assignment protocol

SDIM:

Sulfadimethoxine

SHAKE:

A molecular dynamics algorithm

Simulated annealing:

A method that simulates the physical process of annealing, where a material is heated and then cooled leading to optimization

SM2 :

Sulfadimidine

SMZ:

Sulfamethazine

SPROUT:

Fragment-based, sequential growth, combinatorial search

SYBYL™:

A molecular modeling and visualization package permitting construction, editing, and visualization tools for both large and small molecules (www.tripos.com)

T:M:X ratio:

Template monomer cross-linker ratio

TAE:

Transferable atom equivalent

TFMAA:

2-(Trifluoromethyl) acrylic acid

THO:

Theophylline

TQT1:

ToxiQuant T1 System

UAHF:

United atom Hartree–Fock

van der Waals:

Weak intermolecular forces that act between stable molecules

VI:

1-Vinylimidazole

VMD:

Visual molecular dynamics

References

  1. Naidoo KJ, Chen YJ, Jansson JLM et al (2004) Molecular properties related to the anomalous solubility of beta cyclodextrin. J Phys Chem B 108:4236–4238

    Article  CAS  Google Scholar 

  2. Chen W, Huang J, Gilson MK (2004) Identification of symmetries in molecules and complexes. J Chem Inf Comput Sci 44:1301–1313

    Article  CAS  Google Scholar 

  3. Zheng XM, Lu WM, Sun DZ (2001) Enthalpy and entropy criterion for the molecular recognize of some organic compounds with beta cyclodextrin. Acta Phys Chim Sin 17:343–347

    Google Scholar 

  4. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917

    Article  CAS  Google Scholar 

  5. Liu L, Guo QX (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macro 42:1–14

    Article  CAS  Google Scholar 

  6. Cagın T, Wang G, Martin R et al (2000) Molecular modelling of dendrimers for nanoscale applications. Nanotechnology 11:77–84

    Article  Google Scholar 

  7. Cruz-Morales JA, Guadarrama P (2005) Synthesis, characterization and computational modeling of cyclen substituted with dendrimeric branches – dendrimeric and macrocyclic moieties working together in a collective fashion. J Mol Struct 779:1–10

    Article  CAS  Google Scholar 

  8. Gorman CB (2003) Dendritic encapsulation as probed in redox active core dendrimers. Comptes Rendus Chimie 6:911–918

    Article  CAS  Google Scholar 

  9. Amatore C, Oleinick A, Svir I (2005) Diffusion within nanometric and micrometric spherical-type domains limited by nanometric ring or pore active interfaces. Part 1: conformal mapping approach. J Electroanal Chem 575:103–123

    Article  CAS  Google Scholar 

  10. Cagin T, Wang G, Martin R et al (2001) Multiscale modeling and simulation methods with applications to dendritic polymers. Comput Theor Polym Sci 11:345–356

    Article  CAS  Google Scholar 

  11. Casnati A, Della Ca' Sansone F et al (2004) Enlarging the size of calix[4]arene-crowns-6 to improve Cs+/K+ selectivity: a theoretical and experimental study. Tetrahedron 60:7869–7876

    Article  CAS  Google Scholar 

  12. Majerski KM, Kragol G (2001) Design, synthesis and cation-binding properties of novel adamantane and 2-oxaadamantane-containing crown ethers. Tetrahedron 57:449–457

    Article  Google Scholar 

  13. Furer VL, Borisoglebskaya EI, Kovalenko VI (2006) Modelling conformations and IR spectra of p-tert-butylthiacalix[4]arene tetraester using DFT method. J Mol Struct 825:38–44

    Article  CAS  Google Scholar 

  14. Inese SI, Smithrud DB (2001) Condensation reactions of calix[4]arenes with unprotected hydroxyamines, and their resulting water solubilities. Tetrahedron 57:9555–9561

    Article  Google Scholar 

  15. Korochkina M, Fontanella M, Casnati A et al (2005) Synthesis and spectroscopic studies of isosteviol-calix[4]arene and -calix[6]arene conjugates. Tetrahedron 61:5457–5463

    Article  CAS  Google Scholar 

  16. Chen W, Gilson MK (2007) ConCept: de novo design of synthetic receptors for targeted ligands. J Chem Inf Model 47:425–434

    Article  CAS  Google Scholar 

  17. Luo R, Gilson MK (2000) Synthetic adenine receptors: direct calculation of binding affinities. J Am Chem Soc 122:2934–2937

    Article  CAS  Google Scholar 

  18. Gilson MK, Given JA, Head MS (1997) A new class of models for computing receptor-ligand binding affinities. Chem Biol 4:87–92

    Article  CAS  Google Scholar 

  19. Gilson MK, Given JA, Bush B et al (1997) The statistical-thermodynamic basis for computation of binding affinities. A critical review. Biophys J 72:1047–1069

    Article  CAS  Google Scholar 

  20. Looger LL, Dwyer MA, Smith JJ et al (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190

    Article  CAS  Google Scholar 

  21. Moore G, Levacher V, Bourguignon J et al (2001) Synthesis of a heterocyclic receptor for carboxylic acids. Tetrahedron Lett 42:261–263

    Article  CAS  Google Scholar 

  22. Jaramillo A, Tortosa P, Rodrigo G et al (2007) Computational design of proteins with new functions. BMC Syst Biol 1:S15. doi:10.1186/1752-0509-1-S1-S15

    Article  Google Scholar 

  23. Evans SM, Burrows CJ, Venanzi CA (1995) Design of cholic acid macrocycles as hosts for molecular recognition of monosaccharides. J Mol Struct 334:193–205

    CAS  Google Scholar 

  24. Cain JP, Mayorov AV, Cai M et al (2000) Design, synthesis, and biological evaluation of a new class of small molecule peptide mimetics targeting the melanocortin receptors. Bioorg Med Chem Lett 16:5462–5467

    Article  CAS  Google Scholar 

  25. Biagi G, Bianucci AM, Coi A et al (2005) 2,9-Disubstituted-N6-arylcarbamoyl-8-azaadenines as new selective A3 adenosine receptor antagonists: synthesis, biochemical and molecular modelling studies. Bioorg Med Chem 13:4679–4693

    Article  CAS  Google Scholar 

  26. Claramunt RM, Herranz F, María MDS et al (2005) Molecular recognition of biotin, barbital and tolbutamide with new synthetic receptors. Tetrahedron 61:5089–5100

    Article  CAS  Google Scholar 

  27. Cristalli G, Costanzi S, Lambertucci C et al (2003) Purine and deazapurine nucleosides: synthetic approaches, molecular modelling and biological activity. Farmaco 58:193–204

    Article  CAS  Google Scholar 

  28. Albert JS, Peczuh MW, Hamilton AD (1997) Design, synthesis and evaluation of synthetic receptors for the recognition of aspartate pairs in an α-helical conformation. Bioorg Med Chem 5:1455–1467

    Article  CAS  Google Scholar 

  29. Napolitano E, Fiaschi R, Herman LW et al (1996) Synthesis and estrogen receptor binding of 17α,20E- and 17α,20Z-21-phenylthio- and 21-phenylseleno-19-norpregna-1,3,510,20-tetraene-3,17β-diols. Steroids 61:384–389

    Article  CAS  Google Scholar 

  30. Carrasco MR, Still WC (1995) Engineering of a synthetic receptor to alter peptide binding selectivity. Chem Biol 2:205–212

    Article  CAS  Google Scholar 

  31. Brizzi A, Cascio MG, Brizzi V et al (2007) Design, synthesis, binding, and molecular modeling studies of new potent ligands of cannabinoid receptors. Bioorg Med Chem 15:5406–5416

    Article  CAS  Google Scholar 

  32. Menuel S, Joly JP, Courcot B et al (2007) Synthesis and inclusion ability of a bis-β-cyclodextrin pseudo-cryptand towards Busulfan anticancer agent. Tetrahedron 63:1706–1714

    Article  CAS  Google Scholar 

  33. Cain JP, Mayorov AV, Cai M et al (2006) Design, synthesis, and biological evaluation of a new class of small molecule peptide mimetics targeting the melanocortin receptors. Bioorg Med Chem Lett 16:5462–5467

    Article  CAS  Google Scholar 

  34. Lassila JK, Privett HK, Allen BD et al (2006) Combinatorial methods for small molecule replacement in computational enzyme design. PNAS 45:16710–16715

    Article  CAS  Google Scholar 

  35. Vleeschauwer MD, Vaillancourt M, Goudreau N et al (2001) Design and synthesis of a new Sialyl Lewis X Mimetic: how selective are the selectin receptors? Bioorg Med Chem Lett 11:1109–1112

    Article  Google Scholar 

  36. Piletsky SA, Turner APF (eds) (2006) A new generation of chemical sensors based on MIPs, in molecular imprinting of polymers. Landes Bioscience, Georgetown, Texas, United States, pp 64–79 (Ch 6)

    Google Scholar 

  37. Subrahmanyam S (2003) Design of molecularly imprinted polymers for sensors and solid phase extraction. PhD Thesis, Cranfield University

    Google Scholar 

  38. Piletsky SA, Piletska EV, Chen B et al (2000) Chemical grafting of molecularly imprinted homopolymers to the surface of microplates – application of artificial adrenergic receptor in enzyme-linked assay for beta agonists determination. Anal Chem 72:4381–4385

    Article  CAS  Google Scholar 

  39. Sellergren B (ed) (2001) Molecularly imprinted polymers, man-made mimics of antibodies and their practical application in analytical chemistry. Elsevier, Amsterdam, pp 59–70

    Google Scholar 

  40. Wulff G (2002) Molecular imprinting-a way to prepare effective mimics of natural antibodies and enzymes. Stud Surf Sci Catal 141:35–44

    Article  CAS  Google Scholar 

  41. Shea KJ (1994) Molecular imprinting of synthetic network polymers: the de-novo synthesis of macromolecular binding and catalytic sites. Trends Polym Sci 19:9–14

    Google Scholar 

  42. Janiak DS, Kofinas P (2007) Molecular imprinting of peptides and proteins in aqueous media. Anal Bioanal Chem 389:399–404

    Article  CAS  Google Scholar 

  43. Ansell RJ, Kriz D, Mosbach K (1996) Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors. Curr Opin Biotechnol 7:89–94

    Article  CAS  Google Scholar 

  44. Spivak D, Gilmore MA, Shea KJ (1997) Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers. J Am Chem Soc 119:4388–4393

    Article  CAS  Google Scholar 

  45. Lanza F, Sellergren B (2001) The application of molecular imprinting technology to solid phase extraction. Chromatographia 53:599–611

    Article  CAS  Google Scholar 

  46. Masque N, Marce RM, Borrull F (2001) Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction. Trends Anal Chem 20:477–486

    Article  CAS  Google Scholar 

  47. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymer. Chem Rev 102:1–27

    Article  CAS  Google Scholar 

  48. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  49. Kriz D, Ramstrom O, Mosbach K (1997) Molecular imprinting-new possibilities for sensor technology. Anal Chem 69:A345–A349

    Article  Google Scholar 

  50. Kriz D, Ramström O, Svensson A et al (1995) Introducing biomimetic sensors based on molecularly imprinted polymers as recognition elements. Anal Chem 67:2142–2144

    Article  CAS  Google Scholar 

  51. Jakusch M, Janotta M, Mizaikoff B et al (1999) Molecularly imprinted polymers and infrared evanescent wave spectroscopy – a chemical sensors approach. Anal Chem 71:4786–4791

    Article  CAS  Google Scholar 

  52. Greene NT, Shimizu KD (2005) Colorimetric molecularly imprinted polymer sensor array using dye displacement. J Am Chem Soc 127:5695–5700

    Article  CAS  Google Scholar 

  53. Hennion MC, Pichon V (2003) Immuno-based sample preparation for trace analysis. J Chromatogr A 1000:29–52

    Article  CAS  Google Scholar 

  54. Wei S, Molinelli A, Mizaikoff B (2006) Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol. Biosens Bioelectron 21:1943–1951

    Article  CAS  Google Scholar 

  55. Vidyasankar S, Ru M, Arnold FH (1997) Molecularly imprinted ligand-exchange adsorbents for the chiral separation of underivatized amino acids. J Chromatogr A 775:51–63

    Article  CAS  Google Scholar 

  56. Takeuchi T, Fakuma D, Matsui J (1999) Combinatorial molecular imprinting: an approach to synthetic polymer receptors. Anal Chem 71:285–290

    Article  CAS  Google Scholar 

  57. Takeuchi T, Dobashi A, Kimura K (2000) Molecular imprinting of biotin derivatives and its application to competitive binding assay using nonisotopic labeled ligands. Anal Chem 72:2418–2422

    Article  CAS  Google Scholar 

  58. Takeuchi T, Fukuma D, Matsui J et al (2001) Combinatorial molecular imprinting for formation of atrazine decomposing polymers. Chem Lett 1:530–531

    Article  Google Scholar 

  59. Lanza F, Sellergren B (1999) Method for synthesis and screening of large groups of molecularly imprinted polymers. Anal Chem 71:2092–2096

    Article  CAS  Google Scholar 

  60. Lanza F, Hall AJ, Sellergren B et al (2001) Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine. Anal Chim Acta 435:91–106

    Article  CAS  Google Scholar 

  61. Chen B, Day RM Subrahmanyam S et al (2001) Molecularly imprinted polymer. WO0155235 A1, 2 Aug 2001

    Google Scholar 

  62. Piletsky S, Karim K, Piletska EV et al (2001) Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. Analyst 126:1826–1830

    Article  CAS  Google Scholar 

  63. Subrahmanyam S, Piletsky S, Piletska E et al (2001) Bite-and-Switch approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron 16:631–637

    Article  CAS  Google Scholar 

  64. Chianella I, Lotierzo M, Piletsky SA et al (2002) Rational design of a polymer specific for microcystin-LR using a computational approach. Anal Chem 74:1288–1293

    Article  CAS  Google Scholar 

  65. Pavel D, Lagowski J, Lepage CJ (2006) Computationally designed monomers for molecular imprinting of chemical warfare agents part V. Polymer 47:8389–8399

    Article  CAS  Google Scholar 

  66. Wu L, Zhu K, Zhao M et al (2005) Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Anal Chim Acta 549:39–44

    Article  CAS  Google Scholar 

  67. Dong W, Yan M, Zhang M et al (2005) A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer. Anal Chim Acta 542:186–192

    Article  CAS  Google Scholar 

  68. Farrington K, Magner E, Regan F (2006) Predicting the performance of molecularly imprinted polymers, selective extraction of caffeine by molecularly imprinted solid phase extraction. Anal Chim Acta 566:60–68

    Article  CAS  Google Scholar 

  69. Baggiani C, Baravalle P, Anfossi L et al (2005) Comparison of pyrimethanil-imprinted beads and bulk polymer as stationary phase by non-linear chromatography. Anal Chim Acta 542:125–134

    Article  CAS  Google Scholar 

  70. Chapuis F, Pichon V, Lanza F et al (2003) Optimization of the class-selective extraction of triazines from aqueous samples using a molecularly imprinted polymer by a comprehensive approach of the retention mechanism. J Chromatogr A 999:23–33

    Article  CAS  Google Scholar 

  71. Meng Z, Yamazaki T, Sode K (2004) A molecularly imprinted catalyst designed by a computational approach in catalysing a transesterification process. Biosens Bioelectron 20:1068–1075

    Article  CAS  Google Scholar 

  72. Benito-Peña E, Moreno-Bondi M, Aparicio S et al (2006) Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays. Anal Chem 78:2019–2027

    Article  CAS  Google Scholar 

  73. Rathbone DL, Ge Y (2001) Selectivity of response in fluorescent polymers imprinted with N1-benzylidene pyridine-2-carboxamidrazones. Anal Chim Acta 435:129–136

    Article  CAS  Google Scholar 

  74. Davies MP, De BV, Perrett D (2004) Approaches to the rational design of molecularly imprinted polymers. Anal Chim Acta 504:7–14

    Article  CAS  Google Scholar 

  75. Nantasenamat C, Naenna T, Ayudhya CIN et al (2005) Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J Comput Aided Mol Des 19:509–524

    Article  CAS  Google Scholar 

  76. Nantasenamat C, Ayudhya CIN, Naenna T et al (2007) Quantitative structure-imprinting factor relationship of molecularly imprinted polymers. Biosens Bioelectron 22:3309–3317

    Article  CAS  Google Scholar 

  77. Turner NW, Piletska EV, Karim K et al (2004) Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens Bioelectron 20:1060–1067

    Article  CAS  Google Scholar 

  78. Chianella I, Karim K, Piletska EV et al (2006) Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: adsorbent for abacavir. Anal Chim Acta 559:73–78

    Article  CAS  Google Scholar 

  79. Piletska EV, Piletsky SA, Karim K et al (2004) Biotin-specific synthetic receptors prepared using molecular imprinting. Anal Chim Acta 504:179–183

    Article  CAS  Google Scholar 

  80. Barragán IS, Karim K, Fernández JMC et al (2007) A molecularly imprinted polymer for carbaryl determination in water. Sens Actuators B 123:798–804

    Article  CAS  Google Scholar 

  81. Piletska EV, Romero GM, Chianella I et al (2005) Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers. Anal Chim Acta 542:111–117

    Article  CAS  Google Scholar 

  82. Piletska EV, Turner NW, Turner APF et al (2005) Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. J Control Release 108:132–139

    Article  CAS  Google Scholar 

  83. Breton F, Rouillon R, Piletska EV et al (2007) Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides. Biosens Bioelectron 22:1948–1954

    Article  CAS  Google Scholar 

  84. Piletsky S, Piletska EV, Karim K et al (2004) Custom synthesis of molecular imprinted polymers for biotechnological application. Preparation of a polymer selective for tylosin. Anal Chim Acta 504:123–130

    Article  CAS  Google Scholar 

  85. Cavaleiro E, Chianella I, Whitcombe MJ et al (2011) Synthetic polymers capable of suppressing virulence of bacterial fish pathogens. Curr Opin Biotechnol 22:S79

    Article  Google Scholar 

  86. Piletska E, Karim K, Coker R et al (2010) Development of the custom polymeric materials specific for aflatoxin B1 and ochratoxin A for application with the ToxiQuant T1 sensor tool. J Chromatogr A 16:2543–2547

    Google Scholar 

  87. Guerreiro A, Soares A, Piletska E et al (2008) Preliminary evaluation of new polymer matrix for solid-phase extraction of nonylphenol from water samples. Anal Chim Acta 612:99–104

    Article  CAS  Google Scholar 

  88. Shiigi H, Kijima D, Ikenaga Y et al (2005) Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film. J Electrochem Soc 152:H129–H134

    Article  CAS  Google Scholar 

  89. Pascale M, Annalisa DG, Visconti A et al (2008) Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis. Anal Chim Acta 609:131–138

    Article  CAS  Google Scholar 

  90. Muhammad T, Cui L, Jide W et al (2012) Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone. Anal Chim Acta 709:98–104

    Article  CAS  Google Scholar 

  91. Monti S, Cappelli C, Bronco S et al (2006) Towards the design of highly selective recognition sites into molecular imprinting polymers: a computational approach. Biosens Bioelectron 22:153–163

    Article  CAS  Google Scholar 

  92. Yoshida M, Hatate Y, Uezu K et al (2000) Chiral-recognition polymer prepared by surface molecular imprinting technique. Colloid Surf A 169:259–269

    Article  CAS  Google Scholar 

  93. Toorisaka E, Uezua K, Goto M et al (2003) A molecularly imprinted polymer that shows enzymatic activity. Biochem Eng J 14:85–91

    Article  CAS  Google Scholar 

  94. Farrington K, Regan F (2007) Investigation of the nature of MIP recognition: the development and characterisation of a MIP for Ibuprofen. Biosens Bioelectron 22:1138–1146

    Article  CAS  Google Scholar 

  95. Liu Y, Wang F, Tan T et al (2007) Study of the properties of molecularly imprinted polymers by computational and conformational analysis. Anal Chim Acta 581:137–146

    Article  CAS  Google Scholar 

  96. Kubo T, Matsumoto H, Shiraishi F et al (2007) Selective separation of hydroxy polychlorinated biphenyls HO-PCBs by the structural recognition on the molecularly imprinted polymers: direct separation of the thyroid hormone active analogues from mixtures. Anal Chim Acta 589:180–185

    Article  CAS  Google Scholar 

  97. Baggiani C, Anfossi L, Baravalle P et al (2005) Selectivity features of molecularly imprinted polymers recognising the carbamate group. Anal Chim Acta 531:199–207

    Article  CAS  Google Scholar 

  98. Pavel D, Lagowski J (2005) Computationally designed monomers and polymers for molecular imprinting of theophylline part II. Polymer 46:7543–7556

    Article  CAS  Google Scholar 

  99. Dong C, Li X, Guo Z et al (2009) Development of a model for the rational design of molecular imprinted polymer: computational approach for combined molecular dynamics/quantum mechanics calculations. Anal Chim Acta 647:117–124

    Article  CAS  Google Scholar 

  100. Li Y, Li X, Li Y et al (2009) Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach. Biomaterials 18:3205–3211

    Article  CAS  Google Scholar 

  101. Lv Y, Lin Z, Tan T et al (2008) Application of molecular dynamics modeling for the prediction of selective adsorption properties of dimethoate imprinting polymer. Sens Actuators B Chem 28:15–23

    Article  CAS  Google Scholar 

  102. Babakhani A, Talley TT, Taylor P et al (2009) A virtual screening study of the acetylcholine binding protein using a relaxed – complex approach. Comput Biol Chem 33:160–170

    Article  CAS  Google Scholar 

  103. Toorisaka E, Uezu E, Goto M et al (2003) A molecularly imprinted polymer that shows enzymatic activity. Biochem Eng J 14:85–91

    Article  CAS  Google Scholar 

  104. Henthorn DB, Peppas NA (2007) Molecular simulations of recognitive behavior of molecularly imprinted intelligent polymeric networks. Ind Eng Chem Res 46:6084–6091

    Article  CAS  Google Scholar 

  105. Molinelli A, O’Mahony J, Nolan K et al (2005) Analyzing the mechanisms of selectivity in biomimetic self-assemblies via IR and NMR spectroscopy of prepolymerization solutions and molecular dynamics simulations. Anal Chem 77:5196–5204

    Article  CAS  Google Scholar 

  106. O’Mahony J, Karlsson BCG, Mizaikoff B et al (2007) Correlated theoretical, spectroscopic and X-ray crystallographic studies of a non-covalent molecularly imprinted polymerisation system. Analyst 11:1161–1168

    Article  CAS  Google Scholar 

  107. Chapuis F, Pichon V, Lanza F et al (2004) Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers: application to the extraction of triazines from complex matrices. J Chromatogr B 804:93–101

    Article  CAS  Google Scholar 

  108. Diñeiro Y, Menéndez MI, Blanco-López MC et al (2006) Computational predictions and experimental affinity distributions for a homovanillic acid molecularly imprinted polymer. Biosens Bioelectron 22:364–371

    Article  CAS  Google Scholar 

  109. Kowalska A, Stobiecka A, Wysocki S (2009) A computational investigation of the interactions between harmane and the functional monomers commonly used in molecular imprinting. J Mol Struct (THEOCHEM) 901:88–95

    Article  CAS  Google Scholar 

  110. Saloni J, Lipkowski P, Dasary SSR (2011) Theoretical study of molecular interactions of TNT, acrylic acid, and ethylene glycol dimethacrylate – elements of molecularly imprinted polymer modeling process. Polymer 52:1206–1216

    Article  CAS  Google Scholar 

  111. Fu Q, Sanbe H, Kagawa C et al (2003) Uniformly sized molecularly imprinted polymer for S-nilvadipine-comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein. Anal Chem 75:191–198

    Article  CAS  Google Scholar 

  112. Holdsworth CI, Bowyer MC, Lennard C et al (2005) Formulation of cocaine-imprinted polymers utilizing molecular modelling and NMR analysis. Aust J Chem 58:315–320

    Article  CAS  Google Scholar 

  113. Ogawa T, Hoshina K, Haginaka J et al (2005) Screening of bitterness-suppressing agents for quinine: the use of molecularly imprinted polymers. J Pharm Sci 94:353–362

    Article  CAS  Google Scholar 

  114. Lai EPC, Feng SY (2003) Molecularly imprinted solid phase extraction for rapid screening of metformin. Microchem J 75:159–168

    Article  CAS  Google Scholar 

  115. Wu L, Li Y (2004) Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches. J Mol Recognit 17:567–574

    Article  CAS  Google Scholar 

  116. Wang J, Guo R, Chen J et al (2005) Phenylurea herbicides-selective polymer prepared by molecular imprinting using N-4-isopropylphenyl-N′-butyleneurea as dummy template. Anal Chim Acta 540:307–315

    Article  CAS  Google Scholar 

  117. Schwarz L, Holdsworth CI, McCluskey A et al (2004) Synthesis and evaluation of a molecularly imprinted polymer selective to 2,4,6-trichlorophenol. Aust J Chem 57:759–764

    Article  CAS  Google Scholar 

  118. Li P, Rong F, Xie Y et al (2004) Study on the binding characteristic of S‐naproxen imprinted polymer and the interactions between templates and monomers. J Anal Chem 59:939–944

    Article  CAS  Google Scholar 

  119. Wu L, Li Y (2003) Separation procedures for the pharmacologically active components of rhubarb. Anal Chim Acta 482:175–181

    Article  CAS  Google Scholar 

  120. Mukawa T, Goto T, Nariai H et al (2003) Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates. J Pharm Biomed Anal 30:1943–1947

    Article  CAS  Google Scholar 

  121. Tada M, Sasaki T, Iwasawa Y (2004) Design of a novel molecular-imprinted Rh–Amine complex on SiO2 and its shape-selective catalysis for α-methylstyrene. J Phys Chem B Hydrogenation 108:2918–2930

    Article  CAS  Google Scholar 

  122. Ren Y, Ma W, Ma J (2012) Synthesis and properties of bisphenol A molecular imprinted particle for selective recognition of BPA from water. J Colloid Interface Sci 367:355–361

    Article  CAS  Google Scholar 

  123. Kempe H, Kempe M (2004) Novel methods for the synthesis of molecularly imprinted polymer bead libraries. Macromol Rapid Commun 25:315–320

    Article  CAS  Google Scholar 

  124. Karim K, Breton F, Rouillon R et al (2005) How to find effective functional monomers for effective molecularly imprinted polymers? Adv Drug Del Rev 57:1795–1808

    Article  CAS  Google Scholar 

  125. Nicholls IA (1995) Thermodynamic considerations for the design of and ligand recognition by molecularly imprinted polymers. Chem Lett 24:1035–1036

    Article  Google Scholar 

  126. Nicholls IA, Andersson HS (2001) Thermodynamic principles underlying molecularly imprinted polymer formulation and ligand recognition. In: Sellergren (ed) Molecularly imprinted polymers, man-made mimics of antibodies and their practical application in analytical chemistry. Elsevier, Amsterdam, pp 59–70

    Google Scholar 

  127. Nicholls IA, Adbo K, Andersson HS et al (2001) Can we rationally design molecularly imprinted polymers? Anal Chim Acta 435:9–18

    Article  CAS  Google Scholar 

  128. Andrews PR, Craik DJ, Martin JL (1984) Functional group contributions to drug-receptor interactions. J Med Chem 27:1648–1657

    Article  CAS  Google Scholar 

  129. Nicholls IA (1998) Towards the rational design of molecularly imprinted polymers. J Mol Recognit 11:79–82

    Article  CAS  Google Scholar 

  130. Dixon S, Blaney J, Weininger D (1993) Characterizing and satisfying the steric and chemical restraints of binding sites. Presented at the Third York Meeting

    Google Scholar 

  131. Payne AWR, Glen RC (1993) Molecular recognition using a binary genetic search algorithm. J Mol Graph 11:74–91

    Article  CAS  Google Scholar 

  132. Nishibata Y, Itai A (1991) Automatic creation of dug candidate structures based on receptor structure – starting point for artificial lead generation. Tetrahedron 47:8985–8990

    Article  CAS  Google Scholar 

  133. Böhm HJ (1992) The computer program LUDI: a new simple method for the de-novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78

    Article  Google Scholar 

  134. Gillett VJ, Myatt G, Zsoldos Z et al (1995) SPROUT, HIPPO and CAESA: tools for de novo structure generation and estimation of synthetic accessibility. Perspect Drug Discov Des 3:34–50

    Article  Google Scholar 

  135. Eisen MB, Wiley DC, Karplus M et al (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19:199–221

    Article  CAS  Google Scholar 

  136. Clark DE, Frenkel D, Levy SA et al (1995) PRO LIGAND: an approach to de novo molecular design – application to the design of organic molecules. J Comput Aided Mol Des 9:13–32

    Article  CAS  Google Scholar 

  137. Luthra R (2006) Computer based de novo design of drug like molecules, Lecture Seminar Report Depart Chem, University of Alabama, US

    Google Scholar 

  138. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    Article  CAS  Google Scholar 

  139. Pattabiraman N, Levitt M, Ferrin TE et al (1985) Computer graphics in real-time docking with energy calculation and minimization. J Comput Chem 6:432–436

    Article  CAS  Google Scholar 

  140. Piletska EV, Piletsky SA, Subrahmanyam S et al (2000) A new reactive polymer suitable for covalent immobilization and monitoring of the primary amines. Polymer 42:3603–3608

    Article  Google Scholar 

  141. EPA (1990) Fed Regist 35:5991

    Google Scholar 

  142. Gould H, Tobochnik J (1988) An introduction to computer simulation methods: applications to physical systems parts 1 and 2. Addison-Wesley, Reading, MA

    Google Scholar 

  143. Case DA, Pearlman DA, Caldwell JW et al (2002) AMBER 7. University of California, San Francisco

    Google Scholar 

  144. Bronco S, Cappelli C, Monti S (2004) Understanding the interaction between collagen and modifying agents: a theoretical perspective. J Phys Chem B 108:10101–10112

    Article  CAS  Google Scholar 

  145. Monti S, Bronco S, Cappelli C (2005) Toward the supramolecular structure of collagen: a molecular dynamics approach. J Phys Chem B 109:11389–11398

    Article  CAS  Google Scholar 

  146. Hobza P, Kabelac M, Sponer J et al (1997) Performance of empirical potentials AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV, semiempirical quantum chemical methods AMI, MNDO/M, PM3, and ab initio Hartree–Fock method for interaction of DNA bases: comparison with nonempirical beyond Hartree–Fock results. J Comput Chem 18:1136–1150

    Article  CAS  Google Scholar 

  147. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  148. Koch W, Holthausen MAC (2001) A chemists guide to density functional theory. Wiley-VCH, Berlin

    Book  Google Scholar 

  149. Hehre WJ, Radom L, Schleyer PV et al (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  150. Cieplak P, Cornell WD, Bayly CI et al (1995) Application of the multi-molecule and multi-conformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  151. Bayly CI, Cieplak P, Cornell WD et al (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  152. Berendsen HJC, Postma JPM, VanGunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  153. Grabuleda X, Jaime C, Kollman PA (2000) Molecular dynamics simulation studies of liquid acetonitrile: new six-site model. J Comput Chem 21:901–908

    Article  CAS  Google Scholar 

  154. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  155. Ewing TJA, Kuntz ID (1997) Critical evaluation of search algorithms used in automated molecular docking. J Comput Chem 18:1175–1189

    Article  CAS  Google Scholar 

  156. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288

    Article  CAS  Google Scholar 

  157. Kuntz ID, Brooijmans N (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    Article  CAS  Google Scholar 

  158. Subrahmanyam S, Piletsky SA (2008) Computational design of molecularly imprinted polymers. In: Potyrailo RA, Mirsky VM (eds) Combinatorial methods for chemical and biological sensors. Springer, Germany

    Google Scholar 

  159. Schuettelkopf AW, Aalten DMF (2004) PRODRG: a tool for high throughput crystallography of protein–ligand complexes. Acta Cryst 60:1355

    Google Scholar 

  160. Gromacs User Manual version 3.2, http://www.gromacs.org/

  161. Biomolecular Simulation: The GROMOS96 Manual and User Guide

    Google Scholar 

  162. Pavel D, Lagowski J (2005) Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives part I. Polymer 46:7528–7542

    Article  CAS  Google Scholar 

  163. Sun HJ (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. Comput Chem 15:752–768

    Article  CAS  Google Scholar 

  164. Sun H, Mumby SJ, Maple JR et al (1994) An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987

    Article  CAS  Google Scholar 

  165. Brostow W (1979) Science of materials. Wiley, New York

    Google Scholar 

  166. Stewart JJP (1989) Optimization of parameters for semiempirical methods II applications. J Comput Chem 10:221–264

    Article  CAS  Google Scholar 

  167. Woolley RG (1991) Quantum chemistry beyond the Born–Oppenheimer approximation. J Mol Struct (THEOCHEM) 230:17–46

    Article  Google Scholar 

  168. Sherwood P (2006) Unpublished data on the website, Daresbury Laboratory, U.K. http://www.docstoc.com/docs/82865507/Computational-Chemistry-at-Daresbury-Laboratory. Accessed on 28 Mar 2012

  169. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 03, Ver 1997, Gaussian Inc., Pittsburgh

    Google Scholar 

  170. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian 03, Revision B. 05. Gaussian, Inc., Pittsburgh

    Google Scholar 

  171. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 37:785–789

    Article  CAS  Google Scholar 

  172. Alexander C, Davidson L, Hayes W (2003) Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 59:2025–2057

    Article  CAS  Google Scholar 

  173. Brady L, Brzozowski AM, Derewenda ZS et al (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770

    Article  CAS  Google Scholar 

  174. Schrag JD, Li YG, Wu S et al (1991) Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351:761–764

    Article  CAS  Google Scholar 

  175. Baggiani C, Atanfossi L, Baravelle P et al (2005) Selectivity features of molecularly imprinted polymers recognising the carbamate group. Anal Chim Acta 531:199–207

    Article  CAS  Google Scholar 

  176. Wu L, Sun B, Li Y et al (2003) Rapid electrophoretic separations in short capillaries using contactless conductivity detection and a sequential injection analysis manifold for hydrodynamic sample loading. Analyst 128:944–949

    Article  CAS  Google Scholar 

  177. Araujo PW, Brereton RG (1996) Experimental design III. Quantification. Trends Anal Chem 15:156–163

    CAS  Google Scholar 

  178. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New York

    Google Scholar 

  179. Steinke J, Sherrington DC, Dunkin IR (1995) Imprinting of synthetic polymers using molecular templates, advances in polymer science. Springer, Berlin

    Google Scholar 

  180. Koeber R, Fleischer C, Lanza F et al (2001) Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and high-throughput LC-MS analysis of triazines in river water samples using molecularly imprinted polymers. Anal Chem 73:2437–2444

    Article  CAS  Google Scholar 

  181. Molinelli A, Weiss R, Mizaikoff B (2002) Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine. J Agric Food Chem 50:1804–1808

    Article  CAS  Google Scholar 

  182. Mijangos I, Villoslada FN, Guerreiro A et al (2006) Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. Biosens Bioelectron 22:381–387

    Article  CAS  Google Scholar 

  183. Araujo PW, Brereton RG (1996) Experimental design I. Screening. Trends Anal Chem 15:26–31

    CAS  Google Scholar 

  184. Araujo PW, Brereton RG (1996) Experimental design II. Optimization. Trends Anal Chem 15:63–70

    CAS  Google Scholar 

  185. Castro B, Whitcombe MJ, Vulfson EN et al (2001) Molecular imprinting for the selective adsorption of organosulphur compounds present in fuels. Anal Chim Acta 435:83–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenath Subrahmanyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Subrahmanyam, S., Karim, K., Piletsky, S.A. (2012). Computational Approaches in the Design of Synthetic Receptors. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_22

Download citation

Publish with us

Policies and ethics