Skip to main content

MIP Sensors on the Way to Real-World Applications

  • Chapter
  • First Online:
Designing Receptors for the Next Generation of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

Abstract

Molecularly imprinted polymers are mostly confined to laboratories and their standardized environments. Chemical sensors based on MIP are no exception to this; however, there are increasing efforts to span the gap toward technological applications and thus exposing the devices to real-life environments and thereby assessing selectivity, sensitivity, and ruggedness of the respective sensors. In some application areas this has already been successful, namely in detecting volatile organics and their mixtures, sensing pesticides in environmental water samples, in assessing oxidation processes, e.g., in engine oils, and in some applications of bioanalysis targeting both signaling molecules/drugs and whole cells, viruses, or bacteria. Here, we summarize the selected aspects for transferring MIP strategies out from lab-bench conditions and highlight some of the successful examples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komiyama M, Takeuchi T, Mukawa T et al (2003) Molecular imprinting: from fundamentals to applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. Alexander C, Andersson HS, Andersson LI et al (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180

    Article  CAS  Google Scholar 

  3. Yan M, Ramström O (2005) Molecularly imprinted material-science and technology. Marcel Dekker, New York

    Google Scholar 

  4. Wulff G, Sarhan A (1972) Use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed Engl 11:341

    CAS  Google Scholar 

  5. Wulff G, Sarhan A, Zabrocki K et al (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 14:4329–4332

    Article  Google Scholar 

  6. Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host–guest polymerization. Makromol Chem 182:687–692

    Article  CAS  Google Scholar 

  7. Shea KJ, Dougherty TK (1986) Molecular recognition on synthetic amorphous surfaces: the influence of functional group positioning on the effectiveness of molecular recognition. J Am Chem Soc 108:1091–1093

    Article  CAS  Google Scholar 

  8. Shea KJ, Sasaki DY (1989) On the control of microenvironment shape of functionalized network polymers prepared by template polymerization. J Am Chem Soc 111:3442–3444

    Article  CAS  Google Scholar 

  9. Ramström O, Andersson LI, Mosbach K (1993) Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting. J Org Chem 58:7562–7564

    Article  Google Scholar 

  10. Dickert FL, Hayden O (1999) Molecular imprinting in chemical sensing. Trends Anal Chem 18:192–198

    Article  CAS  Google Scholar 

  11. Dickert FL, Lieberzeit PA, Achatz P et al (2004) QCM array for on-line-monitoring of composting procedures. Analyst 129:432–437

    Article  CAS  Google Scholar 

  12. Piletsky SA, Alcock S, Turner AF (2001) Molecular imprinting: at the edge of the third millennium. Trends Biotechnol 19:9–12

    Article  CAS  Google Scholar 

  13. Vlatakis G, Andersson LI, Muller R et al (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    Article  CAS  Google Scholar 

  14. Haupt K, Mosbach K (1998) Plastic antibodies: developments and applications. Trends Biotechnol 16:468–478

    Article  CAS  Google Scholar 

  15. Haupt K, Mosbach K (1999) Molecularly imprinted polymers in chemical and biological sensing. Biochem Soc Trans 27:344–350

    CAS  Google Scholar 

  16. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  17. Ramström O, Mosbach K (1999) Synthesis and catalysis by molecularly imprinted materials. Curr Opin Chem Biol 3:759–764

    Article  Google Scholar 

  18. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1–27

    Article  CAS  Google Scholar 

  19. Dickert FL, Forth P, Fischerauer G et al (1998) SAW devices-sensitivity enhancement in going from 80 MHz to 1 GHz. Sens Actuators B Chem 46:120–125

    Article  Google Scholar 

  20. di Natale C, Paolesse R, Macagnano A et al (2004) Sensitivity-selectivity balance in mass sensors: the case of metalloporphyrins. J Mater Chem 14:1281–1287

    Article  Google Scholar 

  21. Dickert FL, Lieberzeit PA (2000) Solid-state sensors for field measurements of gases and vapours. In: Meyers RA (ed) Encyclopaedia of analytical chemistry. Wiley, Chichester, pp 3831–3855

    Google Scholar 

  22. Janata J (2010) Principles of chemical sensors. Springer, Dordrecht

    Google Scholar 

  23. Piletsky SA, Kurys YI, Rachkov AE et al (1994) Formation of matrix polymers sensitive to aniline and phenol. Russ J Electrochem 30:990–992

    Google Scholar 

  24. Vinokurov IA (1992) A new kind of redox sensor based on conducting polymer films. Sens Actuators B 10:31–35

    Article  Google Scholar 

  25. Cabanilla S, Ebarvia BS, Sevilla F (2003) Piezoelectric biomimetic sensor for caffeine based on electrosynthesized polypyrrole. AsiaSENSE SENSOR 105–109

    Google Scholar 

  26. Jakoby B, Ismail GM, Byfield MP et al (1999) A novel molecularly imprinted thin film applied to a love wave gas sensor. Sens Actuators A 76:93–97

    Article  Google Scholar 

  27. Knez M, Sumser M, Bittner AM et al (2004) Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv Funct Mater 14:116–124

    Article  CAS  Google Scholar 

  28. Lieberzeit PA, Glanznig G, Leidl A et al (2006) Ceramic materials for mass-sensitive sensors-detection of VOCs and monitoring oil degradation. Adv Sci Technol 45:1799–1802

    Article  CAS  Google Scholar 

  29. Dickert FL, Greibl W, Rohrer A et al (2001) Sol–gel-coated quartz crystal microbalances for monitoring automotive oil degradation. Adv Mater 13:1327–1330

    Article  CAS  Google Scholar 

  30. Dickert FL, Forth P, Lieberzeit PA et al (2000) Quality control of automotive engine oils with mass-sensitive chemical sensors-QCMs and molecularly imprinted polymers. Fresenius J Anal Chem 366:802–806

    Article  CAS  Google Scholar 

  31. Aherne A, Alexander C, Payne MJ et al (1996) Bacteria-mediated lithography of polymer surfaces. J Am Chem Soc 118:8771–8772

    Article  CAS  Google Scholar 

  32. Alexander C, Vulfson EN (1997) Imprinted polymers as protecting groups for regioselective modification of polyfunctional substrates. Adv Mater 9:751–755

    Article  CAS  Google Scholar 

  33. Hayden O, Dickert FL (2001) Selective microorganism detection with cell surface imprinted polymers. Adv Mater 13:1480–1483

    Article  CAS  Google Scholar 

  34. Iqbal N, Mustafa G, Rehman A et al (2010) QCM-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic MIP layers. Sensors 10:6361–6376

    Article  CAS  Google Scholar 

  35. Lieberzeit PA, Rehman A, Yaqub S et al (2008) Nanostructured particles and layers for sensing contaminants in air and water. Nano 3:205–208

    Article  CAS  Google Scholar 

  36. Stetter JR, Jurs PC, Rose SL (1986) Detection of hazardous gases and vapors: pattern recognition analysis of data from an electrochemical sensor array. Anal Chem 58:860–866

    Article  CAS  Google Scholar 

  37. Ji HS (1999) Selective piezoelectric odor sensing using molecularly imprinted polymers. Anal Chim Acta 390:93–100

    Article  CAS  Google Scholar 

  38. Krupadam RJ (2011) An efficient fluorescent polymer sensing material for detection of traces of benzo[a]pyrene in environmental samples. Environ Chem Lett 9:389–395

    Article  CAS  Google Scholar 

  39. Dickert FL, Forth P, Lieberzeit P et al (1998) Molecular imprinting in chemical sensing-detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors. Fresenius J Anal Chem 360:759–762

    Article  CAS  Google Scholar 

  40. Dickert FL, Thierer S (1996) Molecularly imprinted polymers for optochemical sensors. Adv Mater 8:987–990

    Article  CAS  Google Scholar 

  41. Kröger S, Turner AP, Mosbach K et al (1999) Imprinted polymer based sensor system for herbicides using differential-pulse voltammetry on screen printed electrodes. Anal Chem 71:3698–3702

    Article  Google Scholar 

  42. Xie C, Gao S, Zhou H et al (2011) Chemiluminescence sensor for sulfonylurea herbicide using molecular imprinted microspheres as recognition element. Luminescence 26:271–279

    Article  CAS  Google Scholar 

  43. Schirhagl R, Latif U, Dickert FL (2011) Atrazine detection based on antibody replicas. J Mater Chem 21:14594–14598

    Article  CAS  Google Scholar 

  44. Yaqub S, Latif U, Dickert FL (2011) Plastic antibodies as chemical sensor material for atrazine detection. Sens Actuators B 160:227–233

    Article  CAS  Google Scholar 

  45. Iglesias RA, Tsow F, Wang R et al (2009) Hybrid separation and detection device for analysis of benzene, toluene, ethylbenzene, and xylenes in complex samples. Anal Chem 81:8930–8935

    Article  CAS  Google Scholar 

  46. Percival CJ, Stanley S, Galle TM (2001) Crystal microbalances for the detection of terpenes. Anal Chem 73:4225–4228

    Article  CAS  Google Scholar 

  47. González-Rodríguez RM, Rial-Otero R, Cancho-Grande B et al (2008) Occurrence of fungicide and insecticide residues in trade samples of leafy vegetables. Food Chem 107:1342–1347

    Article  Google Scholar 

  48. Sergeyeva TA, Piletsky SA, Brovko AA et al (1999) Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Anal Chim Acta 392:105–111

    Article  CAS  Google Scholar 

  49. Pardieu E, Cheap H, Vedrine C et al (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649:236–245

    Article  CAS  Google Scholar 

  50. Ye L, Haupt K (2004) Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal Bioanal Chem 378:1887–1897

    Article  CAS  Google Scholar 

  51. Ansell RJ (2004) Molecularly imprinted polymers in pseudoimmunoassay. J Chromatogr B 804:151–165

    Article  CAS  Google Scholar 

  52. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922–2942

    Article  CAS  Google Scholar 

  53. Dickert FL, Hayden O (2002) Bioimprinting of polymers and sol–gel-phases. Selective detection of yeasts with imprinted polymers. Anal Chem 74:1302–1306

    Article  CAS  Google Scholar 

  54. Seifner A, Lieberzeit P, Jungbauer C et al (2009) Synthetic receptors for selectively detecting erythrocyte ABO subgroups. Anal Chim Acta 651:215–219

    Article  CAS  Google Scholar 

  55. Dickert FL, Hayden O, Bindeus R et al (2004) Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal Bioanal Chem 378:1929–1934

    Article  CAS  Google Scholar 

  56. Jenik M, Schirhagl R, Schirk C et al (2009) Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance. Anal Chem 81:6320–6326

    Article  Google Scholar 

  57. Chow CF, Lam MHW, Leung MKP (2002) Fluorescent sensing of homocysteine by molecular imprinting. Anal Chim Acta 466:17–30

    Article  CAS  Google Scholar 

  58. Nostrum CFV (2005) Molecular imprinting: a new tool for drug innovation. Drug Discov Today Technol 1:119–124

    Article  Google Scholar 

  59. Moreno-Bondi MC, Navarro-Villoslada F, Benito-Pena E et al (2008) Molecularly imprinted polymers as selective recognition elements in optical sensing. Curr Anal Chem 4:316–340

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Lieberzeit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mustafa, G., Lieberzeit, P.A. (2012). MIP Sensors on the Way to Real-World Applications. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_21

Download citation

Publish with us

Policies and ethics