Skip to main content

Molecular Recognition of Oligopeptides and Protein Surfaces

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lehn J-M (1995) Supramolecular chemistry: concepts and perspectives. VCH, Weinheim

    Book  Google Scholar 

  2. Sewald N, Jakubke H-D (2002) Peptides: chemistry and biology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Schmuck C (2001) Von der molekularen Erkennung zum Design neuer Wirkstoffe. Chem uns Zeit 35:356–366

    Article  CAS  Google Scholar 

  4. Mirsky VM, Yatsimirsky A (2010) Artificial receptors for chemical sensors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Williams DH, Bardsley B (1999) Die Vancomycin-Antibiotica und der Kampf gegen resistente Bakterien. Angew Chem 111:1264–1286

    Article  Google Scholar 

  6. Xu R, Greiveldinger G, Marenus LE, Cooper A, Ellman JA (1999) Combinatorial library approach for the identification of synthetic receptors targeting Vancomycin-resistant bacteria. J Am Chem Soc 121:4898–4899

    Article  CAS  Google Scholar 

  7. Schmuck C, Heil M (2006) One-armed artificial receptors for the binding of polar tetrapeptides in water: probing the substrate selectivity of a combinatorial receptor library. Chem Eur J 12:1339–1348

    Article  CAS  Google Scholar 

  8. Westerlund B, Korhonen TK (1993) Bacterial proteins binding to the mammalian extracellular matrix. Mol Biol 9:687–694

    CAS  Google Scholar 

  9. Schmuck C, Heil M, Scheiber J, Baumann K (2005) Charge interactions do the job: a combined statistical and combinatorial approach to finding artificial receptors for binding tetrapeptides in water. Angew Chem Int Ed 44:7208–7212

    Article  CAS  Google Scholar 

  10. Perrin DD (1972) Dissociation constants of organic bases in aqueous solution, Supplement. Butterworths, London

    Google Scholar 

  11. Schmuck C, Wich P (2006) Sequence-dependent stereoselectivity in the binding of tetrapeptides in water by a flexible artificial receptor. Angew Chem Int Ed 45:4277–4281

    Article  CAS  Google Scholar 

  12. Schmuck C, Wich P (2006) Combinatorial receptor finding: large and random vs. small and focused libraries. New J Chem 30:1377–1385

    Article  CAS  Google Scholar 

  13. Chen CW, Whitlock HW Jr (1978) Molecular tweezers: a simple model of bifunctional intercalation. J Am Chem Soc 100:4921–4922

    Article  CAS  Google Scholar 

  14. Dower SK, DeLisi C, Titus JA, Segal DM (1981) Mechanism of binding of multivalent immune complexes to Fc receptors. 1. Equilibrium binding. Biochemistry 20:6326–6334

    Article  CAS  Google Scholar 

  15. Chen H, Privalsky ML (1995) Cooperative formation of high-order oligomers by retinoid X receptors: an unexpected mode of DNA recognition. Proc Natl Acad Sci USA 92:422–426

    Article  CAS  Google Scholar 

  16. Boyce R, Li G, Nestler HP, Suenaga T, Still WC (1994) Peptidosteroidal receptors for opioid peptides. Sequence-selective binding using a synthetic receptor library. J Am Chem Soc 116:7955–7956

    Article  CAS  Google Scholar 

  17. Wennemers H, Conza M, Nold M, Krattiger P (2001) Diketopiperazine receptors: a novel class of highly selective receptors for binding small peptides. Chem Eur J 7:3342–3347

    Article  CAS  Google Scholar 

  18. Wennemers H, Nold MC, Conza MM, Kulicke KJ, Neuburger M (2003) Flexible but with a defined turn – influence of the template on the binding properties of two-armed receptors. Chem Eur J 9:442–448

    Article  CAS  Google Scholar 

  19. Löwik DWPM, Weingarten MD, Broekema M, Brouwer AJ, Still WC, Liskamp RMJ (1998) Tweezers with different bite: increasing the affinity of synthetic receptors by varying the hinge part. Angew Chem Int Ed 37:1846–1850

    Article  Google Scholar 

  20. Monnee MC, Brouwer AJ, Liskamp RMJ (2004) Synthesis, screening and evaluation of a combined library of tweezer and tripodal synthetic receptors. QSAR Comb Sci 23:546–559

    Article  CAS  Google Scholar 

  21. Kuchelmeister HY, Schmuck C (2009) An efficient synthesis of an orthogonally protected aromatic diamine as scaffold for tweezer receptors with two different arms. Eur J Org Chem 2009:4480–4485

    Article  Google Scholar 

  22. Kuchelmeister HY (2011) Molecular recognition of biologically relevant targets – from anion binding motifs to application in cell biology. Dissertation, University of Duisburg-Essen

    Google Scholar 

  23. Shepherd J, Gale T, Jensen KB, Kilburn JD (2006) Synthesis of unsymmetrical tweezer receptor libraries and identification of receptors for Lys-d-Ala-d-Ala in aqueous solution. Chem Eur J 12:713–720

    Article  CAS  Google Scholar 

  24. Davies M, Bonnat M, Guillier F, Kilburn JD, Bradley M (1998) Screening an inverted peptide library in water with a guanidinium-based tweezer receptor. J Org Chem 63:8696–8703

    Article  CAS  Google Scholar 

  25. Voet D, Voet JG, Pratt CW (2002) Fundamentals of biochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  26. Peczuh MW, Hamilton AD (2000) Peptide and protein recognition by designed molecules. Chem Rev 100:2479–2494

    Article  CAS  Google Scholar 

  27. Verdine GL, Walensky LD (2007) The challenge of drugging undruggable targets in cancer: Lessons learned from targeting the BCL-2 family members. Clin Cancer Res 13:7264–7270

    Article  CAS  Google Scholar 

  28. Kodadek T, Reddy MM, Olivos HJ, Bachhawat-Sikder K, Alluri PG (2004) Synthetic molecules as antibody replacements. Acc Chem Res 37:711–718

    Article  CAS  Google Scholar 

  29. Yin H, Hamilton AD (2005) Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed 44:4130–4163

    Article  CAS  Google Scholar 

  30. Gordo S, Giralt E (2009) Knitting and untying the protein network: modulation of protein ensembles as therapeutic strategy. Protein Sci 18:481–493

    CAS  Google Scholar 

  31. Tsou LK, Dutschman GE, Elizabeth AG, Telpoukhovskaia M, Cheng Y-C, Hamilton AD (2010) Discovery of a synthetic dual inhibitor of HIV and HCV infection based on a tetrabutoxy-calix[4]arene scaffold. Bioorg Med Chem Lett 20:2137–2139

    Article  CAS  Google Scholar 

  32. Margulies D, Opatowsky Y, Fletcher S, Saraogi I, Tsou LK, Saha S, Lax I, Schlessinger J, Hamilton AD (2009) Surface binding inhibitors of the SCF-KIT protein–protein interaction. Chembiochem 10:1955–1958

    Article  CAS  Google Scholar 

  33. Rodriguez JM, Nevola L, Ross NT, Lee G, Hamilton AD (2009) Synthetic inhibitors of extended helix-protein interactions based on a biphenyl 4,4′-dicarboxamide scaffold. Chembiochem 10:829–833

    Article  CAS  Google Scholar 

  34. Hayashida O, Ogawa N, Uchiyama M (2007) Surface recognition and fluorescence sensing of histone by dansyl-appended cyclophane-based resorcinarene trimer. J Am Chem Soc 129:13698–13705

    Article  CAS  Google Scholar 

  35. Hayashida O, Uchiyama M (2007) Multivalent macrocyclic hosts: histone surface recognition, guest binding, and delivery by cyclophane-based resorcinarene oligomers. J Org Chem 72:610–616

    Article  CAS  Google Scholar 

  36. Martinell M, Salvatella X, Fernández-Carneado J, Gordo S, Feliz M, Menéndez M, Giralt E (2006) Synthetic ligands able to interact with the P53 tetramerization domain. Towards understanding a protein surface recognition event. Chembiochem 7:1105–1113

    Article  CAS  Google Scholar 

  37. Wich PR, Schmuck C (2010) Reversible and noncompetitive inhibition of β-tryptase by protein surface binding of tetravalent peptide ligands identified from a combinatorial split-mix library. Angew Chem 122:4207–4210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schmuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuchelmeister, H.Y., Schmuck, C. (2012). Molecular Recognition of Oligopeptides and Protein Surfaces. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_17

Download citation

Publish with us

Policies and ethics