Skip to main content

Molecular Recognition of Nucleotides

  • Chapter
  • First Online:
Designing Receptors for the Next Generation of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rauschenberg M, Bomke S, Karst U, Ravoo BJ (2010) Dynamic peptides as biomimetic carbohydrate receptors. Angew Chem Int Ed 49:7340–7345

    Article  CAS  Google Scholar 

  2. Nakai C, Glinsmann W (1977) Interactions between polyamines and nucleotides. Biochemistry 16:5636–5641

    Article  CAS  Google Scholar 

  3. Kimura E, Kodama M, Yatsunami T (1982) Macromonocyclic polyamines as biological polyanion complexons. 2. Ion-pair association with phosphate and nucleotides. J Am Chem Soc 104:3182–3187

    Article  CAS  Google Scholar 

  4. Dhaenens M, Lehn J-M, Vigneron J-P (1993) Molecular recognition of nucleosides, nucleotides and anionic planar substrates by a water-soluble bis-intercaland-type receptor molecule. J Chem Soc Perkin Trans 2 1379–1381

    Google Scholar 

  5. Bazzicalupi C, Bencini A, Biagini S, Faggi E, Meini S, Giorgi C, Spepi A, Valtancoli B (2009) Exploring the binding ability of phenanthroline-based polyammonium receptors for anions: hints for design of selective chemosensors for nucleotides. J Org Chem 74:7349–7363

    Article  CAS  Google Scholar 

  6. Guo Y, Ge Q, Lin H, Lin H, Zhu S, Zhou C (2003) Recognition promoted by Zn2+ between phenanthroline bridging polyaza ligands and nucleotides – Zn2+ acts as ‘messenger’ between the receptor and substrate. J Mol Recognit 16:102–111

    Article  CAS  Google Scholar 

  7. Albelda MT, Bernardo MA, Garcia-España E, Godino-Salido ML, Luis SV, Melo MJ, Pina F, Soriano C (1999) Thermodynamics and fluorescence emission studies on potential molecular chemosensors for ATP recognition in aqueous solution. J Chem Soc Perkin Trans 2 2545–2549

    Google Scholar 

  8. Hirsch AKH, Fischer FR, Diederich F (2007) Molekulare Erkennung von Phosphaten in der Strukturbiologie. Angew Chem 119:342–357

    Article  Google Scholar 

  9. Gao H, Cai L, Qi Y, Wang H (2003) Synthesis of 1,3-{Di-[N-bis(dimethylamino)methane]}-benzyl-diamide and its molecular recognition of nucleotides in aqueous solution. Supramol Chem 15:323–325

    Article  CAS  Google Scholar 

  10. Schmidtchen FP (1989) A non-macrocyclic host for binding organic phosphates in protic solvents. Tetrahedron Lett 30:4493–4496

    Article  CAS  Google Scholar 

  11. Onda M, Yoshihara K, Koyano H, Ariga K, Kunitake T (1996) Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers. A comparison of microscopic and macroscopic interfaces. J Am Chem Soc 118:8524–8530

    Article  CAS  Google Scholar 

  12. Sebo L, Diederich F (2000) Tetrakis(phenylamidinium)-substituted resorcin[4]arene receptors for the complexation of dicarboxylates and phosphates in protic solvents. Helv Chim Acta 83:93–113

    Article  CAS  Google Scholar 

  13. Eliseev AV, Schneider HJ (1994) Molecular recognition of nucleotides, nucleosides, and sugars by aminocyclodextrins. J Am Chem Soc 116:6081–6088

    Article  CAS  Google Scholar 

  14. Menuel S, Duval RE, Cuc D, Mutzenhardt P, Marsura A (2007) Molecular recognition of nucleotides by a new bis(guanidinium)tetrakis(β-cyclodextrin) tetrapod. New J Chem 31:995–1000

    Article  CAS  Google Scholar 

  15. Schneider SE, O’Nei SN, Anslyn EV (2000) Coupling rational design with libraries leads to the production of an ATP selective chemosensor. J Am Chem Soc 122:542–543

    Article  CAS  Google Scholar 

  16. McCleskey SC, Griffin MJ, Schneider SE, McDevitt JT, Anslyn EV (2003) Differential receptors create patterns diagnostic for ATP and GTP. J Am Chem Soc 125:1114–1115

    Article  CAS  Google Scholar 

  17. Matsui J, Nagano J, Miyoshi D, Tamaki K, Sugimoto N (2009) An approach to peptide-based ATP receptors by a combination of random selection, rational design, and molecular imprinting. Biosens Bioelectron 25:563–567

    Article  CAS  Google Scholar 

  18. Kuchelmeister HY, Schmuck C (2011) Nucleotide recognition in water by a guanidinium-based artificial tweezer receptor. Chem Eur J 17:5311–5318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schmuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuchelmeister, H.Y., Schmuck, C. (2012). Molecular Recognition of Nucleotides. In: Piletsky, S., Whitcombe, M. (eds) Designing Receptors for the Next Generation of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_16

Download citation

Publish with us

Policies and ethics