Skip to main content

New Approaches for Exhaust Gas Sensing

  • Chapter
  • First Online:
Solid State Gas Sensors - Industrial Application

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 11))

Abstract

Steadily increasing emission standards for passenger cars and heavy duty vehicles combined with the need for fuel efficiency lead to novel powertrain concepts, for example to leanly operated gasoline direct injection engines, or to novel exhaust gas aftertreatment concepts such as Lean NOx Traps (LNT), ammonia selective catalytic reduction catalysts for NOx reduction (SCR), or even to a combination of both. Also, diesel particulate filters (DPF) are in series production.

To control these novel exhaust gas aftertreatment systems and to monitor on-board the proper operation of these systems (on-board diagnosis, OBD), novel exhaust gas sensors are required or are at least be very helpful. Since the development of exhaust gas sensors has always to be seen in interaction with the corresponding exhaust gas aftertreatment systems, novel types of exhaust gas sensors have gained in importance just recently, when the time was ripe for novel exhaust gas aftertreatment concepts. This article reports on several types of NOx sensors and ammonia sensors.

Additionally, a very recent novel concept is presented. Here, the catalyst itself works as a sensing device that gives directly information on its own status. The readout can be wirebound (demonstrated for LNT and SCR) or even be wireless by applying radio frequency techniques. It will be shown that this allows to detect the oxygen loading degree of three-way catalysts very precisely. It can be also applied to determine the ammonia loading of SCR catalysts and the soot loading of DPF.

As a conclusion, these novel methods may provide a future alternative for low emission-aiming engine control as well as for OBD of low emission vehicles with novel exhaust gas aftertreatment systems. However, it is clear that all novel sensors or systems do not only have to meet the technical requirements but also have to be very inexpensive, reliable, and cost effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moos R (2006) Automotive exhaust gas sensors. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors, vol 1. American Scientific, Stevenson Ranch, CA, USA, pp 295–312

    Google Scholar 

  2. Weibel M, Waldbüßer N, Wunsch R, Chatterjee D, Bandl-Konrad, B, Krutzsch, B (2009) A Novel Approach to Catalysis for NOx Reduction in Diesel Exhaust Gas. Top Catal 52:1702–1708. doi: 10.1007/s11244-009-9329-7

    Article  CAS  Google Scholar 

  3. Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts. Appl Catal B Environ 66:208–216. doi:10.1016/j.apcatb.2006.03.012

    Article  CAS  Google Scholar 

  4. Aneja R, Flathmann K, Savonen C, Tindall T (2004) SCR potential and issues for heavy duty applications in the USA. In: 10th Diesel Engine Emission Reduction (DEER) Workshop, Coronado, CA, USA

    Google Scholar 

  5. Hammerle R (2003) Urea SCR and DPF system for diesel sport utility vehicle meeting Tier II Bin 5. In: 9th Diesel Engine Emissions Reduction (DEER) Workshop, Newport, RI, USA

    Google Scholar 

  6. Baunach T, Schänzlin K, Diehl L (2006) Sauberes Abgas durch Keramiksensoren. Physik J 5:33–38

    Google Scholar 

  7. Riegel J, Klett S (2008) Sensors for modern exhaust gas aftertreatment systems. In: Proceedings of 5th international exhaust gas and particulate emissions forum, Ludwigsburg, Germany, pp 85–96

    Google Scholar 

  8. Weigel M, Roduner C, Lauer T (2010) Particle-filter onboard-diagnosis by means of a soot-sensor downstream of the particle-filter. In: 6th international exhaust gas and particulate emissions forum, Ludwigsburg, Germany, pp 62–69

    Google Scholar 

  9. Hagen G, Feistkorn C, Wiegärtner S, Heinrich A, Brüggemann D, Moos R (2010) Conductometric soot sensor for automotive exhausts: initial studies. Sensors 10:1589–1598. doi:10.3390/s100301589

    Article  CAS  PubMed  Google Scholar 

  10. Kato N, Nakagaki K, Ina N (1996) Thick film ZrO2 NOx sensor. SAE Technical Paper 960334. doi: 10.4271/960334

  11. Zhang H, Pfleger C, Lemire B (2000) Integration Eines smart NOx-Sensors im Abgasstrang für die Benzindirekteinspritzung. In: 21. Internationales Wiener Motorensymposium (4.-5. Mai 2000). Fortschrittberichte VDI, vol 12, nr. 420, pp 288–311

    Google Scholar 

  12. Hofmann L, Rusch K, Fischer S, Lemire B (2004) Onboard emissions monitoring on a HD Truck with an SCR system using NOx sensors. SAE Technical Paper 2004-01-1290. doi: 10.4271/2004-01-1290

  13. Kim YW, Van Nieuwstadt M (2006) Threshold monitoring of urea SCR systems. SAE Technical Paper 2006-01-3548. doi: 10.4271/2006-01-3548

  14. Sasaki H, Scholl D, Parsons M, Inagaki H, Shiotani K, Visser J, Zawacki G, Kawai T, Teramoto S, Kubinski D (2010) Development of an Al2O3/ZrO2-composite high-accuracy NOx sensor. SAE Technical Paper 2010-01-0041. doi: 10.4271/2010-01-0041

  15. Zhuiykov S, Miura N (2007) Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: what are the prospects for sensors? Sens Actuators B Chem 121:639–651. doi:10.1016/j.snb.2006.03.044

    Article  CAS  Google Scholar 

  16. Fergus JW (2007) Materials for high temperature electrochemical NOx gas sensors. Sens Actuators B Chem 121:652–663. doi:10.1016/j.snb.2006.04.077

    Article  CAS  Google Scholar 

  17. Zimmermann C (2007) Neuartiger Sensor zur Bestimmung des Zustandes eines NOx-Speicherkatalysators. In: Moos R, Fischerauer G (eds) Bayreuther Beiträge zur Sensorik und Messtechnik, vol 2. Shaker, Aachen

    Google Scholar 

  18. Moos R, Zimmermann C, Birkhofer T, Knezevic A, Plog C, Busch MR, Ried T (2008) Sensor for directly determining the state of a NOx storage catalyst. SAE Technical Paper 2008-01-0447. doi: 10.4271/2008-01-0447

  19. Birkhofer T, Leye H, Knezevic A, Moos R, Plog C, Ried T, Voigtländer D (2003) Method for identifying the state of an NOx storage catalyst. US Patent specification, US 6,619,108

    Google Scholar 

  20. Moseley PT, Williams DE (1989) Gas sensors based on oxides of early transition metals. Polyhedron 8:1615–1618

    Article  CAS  Google Scholar 

  21. Satsuma A, Shimizu K, Hattori T, Nishiyama H, Kakimoto S, Sugaya S, Yokoi H (2007) Polytungstate clusters on zirconia as a sensing material for a selective ammonia gas sensor. Sens Actuators B Chem 123:757–762. doi:10.1016/j.snb.2006.10.011

    Article  CAS  Google Scholar 

  22. Nishiyama H, Kakimoto S, Inoue R, Yokoi H, Ishida N, Oshima T, Sugaya S, Imaeda K, Hattori T, Satsuma A (2008) Ammonia sensor. US Patent specification, US 7,341,694

    Google Scholar 

  23. Chen DK, Bloink RL, Valdes CA, Ker EL, Zhang J (2006) Ammonia sensor element, heater, and method for making the same. US Patent specification, US 7,069,770

    Google Scholar 

  24. Moos R, Müller R, Plog C, Knezevic A, Leye H, Irion E, Braun T, Marquardt K-J, Binder K (2002) Selective ammonia exhaust gas sensor for automotive applications. Sens Actuators B Chem 83:181–189. doi:10.1016/S0925-4005(01)01038-3

    Article  CAS  Google Scholar 

  25. Birkhofer T, Knezevic A, Müller R, Plog C (2005) Method for producing and managing a sensor. US Patent application US 2005/0130338

    Google Scholar 

  26. Guth U (2008) Gas sensors. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, pp 294–299

    Google Scholar 

  27. Zosel J, Westphal D, Jakobs S, Müller R, Guth U (2002) Au–oxide composites as HC-sensitive electrode material for mixed potential gas sensors. Solid State Ionics 152–153:525–529. doi:10.1016/S0167-2738(02)00355-7

    Article  Google Scholar 

  28. Wang DY, Symons WT, Farhat RJ, Valdes CA, Briggs EM, Polikarpus KK, Kupe J (2006) Ammonia gas sensor. US Patent specification, US 7,074,319

    Google Scholar 

  29. Wang DY, Yao S, Cabush D, Racine D (2007) Ammonia sensor for SCR NOX Reduction. In: Proceedings of 13th diesel engine-efficiency and emissions research (DEER) conference, Detroit, MI

    Google Scholar 

  30. Wang DY, Yao S, Shost M, Yoo J, Cabush D, Racine D, Cloudt R, Willems F (2008) Ammonia sensor for closed-loop SCR control. SAE Technical Paper 2008-01-0919. doi: 10.4271/2008-01-0919

  31. Weisgerber V, Wang DY, Symons W, Cabush D (2006) Ammoniaksensoren für die Regelung von SCR-Systemen mit Harnstoffeinspritzung. In: Tille, T. (ed.) Sensoren im Automobil, p. 49–58. Expert, Renningen

    Google Scholar 

  32. Schedel H, Fischer S, Ballmert B (2004) Durability of extruded homogeneous SCR catalyst. SAE Technical Paper 2004-01-0075. doi: 10.4271/2004-01-0075

  33. Schönauer D, Moos R, Wiesner K, Fleischer M (2007) Selektiver Ammoniakabgassensor auf Mischpotentialbasis. In: Gerlach G, Hauptmann P (eds) 8. Dresdner Sensor-Symposium, 10.-12. Dezember 2007. Dresden, pp 11–14

    Google Scholar 

  34. Schönauer D, Moos R, Wiesner K, Fleischer M (2009) Selective mixed potential ammonia exhaust gas sensor. Sens Actuators B Chem 140:585–590. doi:10.1016/j.snb.2009.04.064

    Article  CAS  Google Scholar 

  35. Schönauer D, Nieder T, Wiesner K, Fleischer M, Moos R (2011) Investigation of the electrode effects in mixed potential type ammonia exhaust gas sensors. Solid State Ionics 192:38–41. doi:10.1016/j.ssi.2010.03.028

    Article  CAS  Google Scholar 

  36. Elumalai P, Plashnitsa VV, Fujio Y, Miura N (2008) Stabilized zirconia-based sensor attached with NiO/Au sensing electrode aiming for highly selective detection of ammonia in automobile exhausts. Electrochem Solid State Lett 11:J79–J81. doi:10.1149/1.2971171

    Article  CAS  Google Scholar 

  37. Schär CM, Onder CH, Geering HP, Elsener M (2003) Control of a urea SCR catalytic converter system for a mobile heavy duty diesel engine. SAE Technical paper 2003-01-0776. doi: 10.4271/2003-01-0776

  38. Hammerle R (2002) Urea SCR and DPF system for diesel sport utility vehicle meeting Tier II Bin 5. In: Proceedings of 8th diesel engine emissions reduction (DEER) workshop, San Diego, CA, USA

    Google Scholar 

  39. Kubinski DJ, Visser JH (2008) Sensor and method for determining the ammonia loading of a zeolite SCR catalyst. Sens Actuators B Chem 130:425–429. doi:10.1016/j.snb.2007.09.007

    Article  CAS  Google Scholar 

  40. Binder K, Marquardt K-J, Braun T, Knezevic A, Busch MR, Moos R, Plog C (2004) Method and apparatus for determining the storage state of an ammonia-storing SCR catalyst. US Patent specification, US 6,833,272

    Google Scholar 

  41. Moos R, Schönauer D (2008) Recent developments in the field of automotive exhaust gas ammonia sensing. Sens Lett 6:821–825. doi:10.1166/sl.2008.509

    Article  CAS  Google Scholar 

  42. Moos R (2010) Catalysts as sensors—a promising novel approach in automotive exhaust gas aftertreatment. Sensors 10:6773–6787. doi:10.3390/s100706773

    Article  CAS  PubMed  Google Scholar 

  43. Twigg MV (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B Environ 70:2–15. doi:10.1016/j.apcatb.2006.02.029

    Article  CAS  Google Scholar 

  44. Boaro M, Trovarelli A, Hwang J-H, Mason TO (2002) Electrical and oxygen storage/release properties of nanocrystalline ceria–zirconia solid solutions. Solid State Ionics 147:85–95. doi:10.1016/S0167-2738(02)00004-8

    Article  CAS  Google Scholar 

  45. Moos R, Spörl M, Hagen G, Gollwitzer A, Wedemann M, Fischerauer G (2008) TWC: lambda control and OBD without lambda probe—an initial approach. SAE Technical paper 2008-01-0916. doi: 10.4271/2008-01-0916

  46. Fischerauer G, Spörl M, Gollwitzer A, Wedemann M, Moos R (2008) Catalyst state observation via the perturbation of a microwave cavity resonator. Frequenz 62:180–184. doi:10.1515/FREQ.2008.62.7-8.180

    Article  Google Scholar 

  47. Reiß S, Wedemann M, Moos R, Rösch M (2009) Electrical in-situ characterization of three-way catalyst coatings. Top Catal 52:1898–1902. doi:10.1007/s11244-009-9366-2

    Article  CAS  Google Scholar 

  48. Fischerauer G, Spörl M, Reiß S, Moos R (2010) Mikrowellengestützte Aufklärung elektrochemischer Vorgänge in Katalysatoren und verwandten Systemen. Technisches Messen 77:419–427. doi:10.1524/teme.2010.0066

    Article  CAS  Google Scholar 

  49. Reiß S, Moos R, Wedemann M, Spörl M, Nerowski A, Fischerauer G (2009) RF-probing of automotive catalysts. In: Sensor 2009, 14th international conference on sensors, technologies, electronics and applications, 26–28 May 2009, Nürnberg, Germany. doi: 10.5162/sensor09/v2/b7.1

  50. Moos R, Wedemann M, Spörl M, Reiß S, Fischerauer G (2009) Direct catalyst monitoring by electrical means: an overview on promising novel principles. Top Catal 52:2035–2040. doi:10.1007/s11244-009-9399-6

    Article  CAS  Google Scholar 

  51. Reiß S, Spörl M, Hagen G, Fischerauer G, Moos R (2011) Combination of wirebound and microwave measurements for in situ characterization of automotive three-way catalysts. IEEE Sens J 11:434–438. doi:10.1109/JSEN.2010.2058798

    Article  Google Scholar 

  52. Reiß S, Wedemann M, Spörl M, Fischerauer G, Moos R (2011) Effects of H2O, CO2, CO, and flow rates on the RF-based monitoring of three-way catalysts. Sens Lett 9:316–320. doi:10.1166/sl.2011.1472

    Article  CAS  Google Scholar 

  53. Reiß S, Spörl M, Fischerauer G, Moos R (2009) Realabgastauglichkeit einer HF-gestützten Automobilabgasdiagnose. In: Gerlach G, Hauptmann P (eds) 9. Dresdner Sensor-Symposium, Dresden, 7–9 Dec 2009, pp 263–266

    Google Scholar 

  54. Reiß S, Schönauer D, Hagen G, Fischerauer G, Moos R (2011) Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method. Chem Eng Technol 34:791–796. doi:10.1002/ceat.201000546

    Article  CAS  Google Scholar 

  55. Fischerauer G, Förster M, Moos R (2010) Sensing the soot load in automotive diesel particulate filters by microwave methods. Meas Sci Technol 21:035108. doi:10.1088/0957-0233/21/3/035108

    Article  CAS  Google Scholar 

  56. Fremerey P, Reiß S, Geupel A, Fischerauer G, Moos R (2011) Determination of the NOx loading of an automotive lean NOx trap by directly monitoring the electrical properties of the catalyst material itself. Sensors 11:8261–8280. doi: 10.3390/s110908261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moos, R. (2011). New Approaches for Exhaust Gas Sensing. In: Fleischer, M., Lehmann, M. (eds) Solid State Gas Sensors - Industrial Application. Springer Series on Chemical Sensors and Biosensors, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2011_6

Download citation

Publish with us

Policies and ethics