Skip to main content

Zinc in yeast: mechanisms involved in homeostasis

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 14))

Abstract

The first eukaryotic zinc uptake transporter was discovered in the yeast, Saccharomyces cerevisiae. Since then, this organism has been an invaluable tool for the discovery of genes involved in zinc homeostasis. Genomic and proteomic studies have revealed an abundance of Zn2+-regulated genes and Zn2+-binding proteins. The large number of essential functions of Zn2+ necessitates a complex homeostatic mechanism involving the transport and storage of Zn2+ as well as its allocation to essential sites. Studies in yeast have elucidated the opposing roles of the ZIP and CDF Zn2+ transporter families and uncovered additional transport systems. The transcription factor, Zap1p, functions as the central Zn2+ sensor by regulating genes involved in Zn2+ uptake and adaptation to Zn2+-deficiency. The investigation of the role of Zn2+ in the regulation of signaling pathways is becoming a primary research direction, and yeast will undoubtedly play a major role in any discoveries in this field as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 2. Andrews GK (2001) Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14:223-237

    Article  PubMed  CAS  Google Scholar 

  • 3. Auld DS (2001) Zinc sites in metalloenzymes and related proteins. In: I. Bertini, A. Sigel and H. Sigel, Editors, Handbook on Metalloproteins, Marcell Dekker, New York, pp. 881-959

    Google Scholar 

  • 4. Bernstein BE, Tong JK, Schreiber SL (2000) Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci USA 97:13708-13713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 5. Bertini I, Luchinat C (1994) The reaction pathways of zinc enzymes and related biological catalysts. In: Bertini I, Gray H, Lippard S, Valentine JS (eds) Bioinorganic Chemistry. University Science Books, Mill Valley, CA, pp 37-106

    Google Scholar 

  • 6. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331-341

    Article  PubMed  CAS  Google Scholar 

  • 7. Bird AJ, Blankman E, Stillman DJ, Eide DJ, Winge DR (2004) The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2. EMBO J 23:1123-1132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 8. Bird AJ, McCall K, Kramer M, Blankman E, Winge DR, Eide DJ (2003) Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function. EMBO J 22:5137-5146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 9. Bird AJ, Zhao H, Luo H, Jensen LT, Srinivasan C, Evans-Galea M, Winge DR, Eide DJ (2000) A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. EMBO J 19:3704-3713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 10. Borrelly GP, Harrison MD, Robinson AK, Cox SG, Robinson NJ, Whitehall SK (2002) Surplus zinc is handled by Zym1 metallothionein and Zhf endoplasmic reticulum transporter in Schizosaccharomyces pombe. J Biol Chem 277:30394-30400

    Article  PubMed  CAS  Google Scholar 

  • 11. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65-73

    Article  PubMed  CAS  Google Scholar 

  • 12. Christie KR, Weng S, Balakrishnan R, Costanzo MC, Dolinski K, Dwight SS, Engel SR, Feierbach B, Fisk DG, Hirschman JE, Hong EL, Issel-Tarver L, Nash R, Sethuraman A, Starr B, Theesfeld CL, Andrada R, Binkley G, Dong Q, Lane C, Schroeder M, Botstein D, Cherry JM (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res 32 Database issue:D311-314

    Article  Google Scholar 

  • 13. Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897-946

    Article  PubMed  CAS  Google Scholar 

  • 14. Coleman JE (1998) Zinc enzymes. Curr Opin Chem Biol 2:222-234

    Article  PubMed  CAS  Google Scholar 

  • 15. Conklin DS, McMaster JA, Culbertson MR, Kung C (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12:3678-3688

    PubMed  CAS  PubMed Central  Google Scholar 

  • 16. Courey AJ, Jia S (2001) Transcriptional repression: the long and the short of it. Genes Dev 15:2786-2796

    PubMed  CAS  Google Scholar 

  • 17. Cox EH, McLendon GL (2000) Zinc-dependent protein folding. Curr Opin Chem Biol 4(2):162-5

    Article  PubMed  CAS  Google Scholar 

  • 18. Cox KH, Pinchak AB, Cooper TG (1999) Genome-wide transcriptional analysis in S. cerevisiae by mini-array membrane hybridization. Yeast 15:703-713

    Article  PubMed  CAS  Google Scholar 

  • 19. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis 4:137-169

    Article  PubMed  CAS  Google Scholar 

  • 20. Devirgiliis C, Murgia C, Danscher G, Perozzi G (2004) Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 323:58-64

    Article  PubMed  CAS  Google Scholar 

  • 21. Dickenson CJ, Dickinson FM (1976) Some properties of an alcohol dehydrogenase partially purified from baker's yeast grown without added zinc. Biochem J 153:309-319

    PubMed  CAS  PubMed Central  Google Scholar 

  • 22. Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85:563-570

    Article  PubMed  CAS  Google Scholar 

  • 23. Eide DJ (2003) Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. J Nutr 133:1532S-1535S

    PubMed  CAS  Google Scholar 

  • 24. Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447:796-800

    Article  PubMed  CAS  Google Scholar 

  • 25. Elam JS, Thomas ST, Holloway SP, Taylor AB, Hart PJ (2002) Copper chaperones. Adv Protein Chem 60:151-219

    Article  PubMed  CAS  Google Scholar 

  • 26. Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ (2004) Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol 166:325-335

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 27. Ellis CD, MacDiarmid CW and Eide DJ (2005) Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J Biol Chem, in press

    Google Scholar 

  • 28. Evans-Galea MV, Blankman E, Myszka DG, Bird AJ, Eide DJ, Winge DR (2003) Two of the five zinc fingers in the Zap1 transcription factor DNA binding domain dominate site-specific DNA binding. Biochemistry 42:1053-1061

    Article  PubMed  CAS  Google Scholar 

  • 29. Finney LA, O'Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931-936

    Article  PubMed  CAS  Google Scholar 

  • 30. Gitan RS, Luo H, Rodgers J, Broderius M, Eide D (1998) Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J Biol Chem 273:28617-28624

    Article  PubMed  CAS  Google Scholar 

  • 31. Gitan RS, Shababi M, Kramer M, Eide DJ (2003) A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J Biol Chem 278:39558-39564

    Article  PubMed  CAS  Google Scholar 

  • 32. Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864-866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 33. Grishin NV (2001) Treble clef finger–a functionally diverse zinc-binding structural motif. Nucleic Acids Res 29:1703-1714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 34. Han GS, Johnston CN, Chen X, Athenstaedt K, Daum G, Carman GM (2001) Regulation of the Saccharomyces cerevisiae DPP1-encoded diacylglycerol pyrophosphate phosphatase by zinc. J Biol Chem 276:10126-10133

    Article  PubMed  CAS  Google Scholar 

  • 35. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569-4574

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 36. Jensen LT, Ajua-Alemanji M, Culotta VC (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278:42036-42040

    Article  PubMed  CAS  Google Scholar 

  • 37. Kamizono A, Nishizawa M, Teranishi Y, Murata K, Kimura A (1989) Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Mol Gen Genet 219:161-167

    Article  PubMed  CAS  Google Scholar 

  • 38. Korhola M, Edelmann K (1986) Yeast preparations enriched with trace elements. Acta Pharmacol Toxicol (Copenh) 59 Suppl 7:148-151

    Google Scholar 

  • 39. Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U (2002) Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem 277:44327-44331

    Article  PubMed  CAS  Google Scholar 

  • 40. Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31:532-550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 41. Labbe RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: A metabolite with a mission. Clin Chem 45:2060-2072

    PubMed  CAS  Google Scholar 

  • 42. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39-46

    Article  PubMed  CAS  Google Scholar 

  • 43. Lamb TM, Xu W, Diamond A, Mitchell AP (2001) Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J Biol Chem 276:1850-1856

    Article  PubMed  CAS  Google Scholar 

  • 44. Li L, Kaplan J (1997) Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J Biol Chem 272:28485-28493

    Article  PubMed  CAS  Google Scholar 

  • 45. Lin SJ, Culotta VC (1996) Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol Cell Biol 16:6303-6312

    PubMed  CAS  PubMed Central  Google Scholar 

  • 46. Link TA, von Jagow G (1995) Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group. J Biol Chem 270:25001-25006

    Article  PubMed  CAS  Google Scholar 

  • 47. Lyons TJ, Gasch AP, Gaither LA, Botstein D, Brown PO, Eide DJ (2000) Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc Natl Acad Sci USA 97:7957-7962

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 48. Lyons TJ, Villa NY, Regalla LM, Kupchak BR, Vagstad A, Eide DJ (2004) Metalloregulation of yeast membrane steroid receptor homologs. Proc Natl Acad Sci USA 101:5506-5511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 49. MacDiarmid CW, Gaither LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19:2845-2855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 50. MacDiarmid CW, Milanick MA, Eide DJ (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J Biol Chem 277:39187-39194

    Article  PubMed  CAS  Google Scholar 

  • 51. MacDiarmid CW, Milanick MA, Eide DJ (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J Biol Chem 278:15065-15072

    Article  PubMed  CAS  Google Scholar 

  • 52. Mason AZ, Perico N, Moeller R, Thrippleton K, Potter T, Lloyd D (2004) Metal donation and apo-metalloenzyme activation by stable isotopically labeled metallothionein. Mar Environ Res 58:371-375

    Article  PubMed  CAS  Google Scholar 

  • 53. Matthews JM, Sunde M (2002) Zinc fingers–folds for many occasions. IUBMB Life 54:351-355

    Article  PubMed  CAS  Google Scholar 

  • 54. Min YK, Park JH, Chong SA, Kim YS, Ahn YS, Seo JT, Bae YS, Chung KC (2003) Pyrrolidine dithiocarbamate-induced neuronal cell death is mediated by Akt, casein kinase 2, c-Jun N-terminal kinase, and IkappaB kinase in embryonic hippocampal progenitor cells. J Neurosci Res 71:689-700

    Article  PubMed  CAS  Google Scholar 

  • 55. Muhlenhoff U, Stadler JA, Richhardt N, Seubert A, Eickhorst T, Schweyen RJ, Lill R, Wiesenberger G (2003) A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J Biol Chem 278:40612-40620

    Article  PubMed  Google Scholar 

  • 56. Nanamiya H, Akanuma G, Natori Y, Murayama R, Kosono S, Kudo T, Kobayashi K, Ogasawara N, Park SM, Ochi K, Kawamura F (2004) Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 52:273-283

    Article  PubMed  CAS  Google Scholar 

  • 57. Obata H, Hayashi A, Toda T, Umebayashi M (1996) Effects of zinc deficiency on the growth, proteins and other constituents of yeast, Saccharomyces cerevisiae, cells. Soil Sci Plant Nutr 42:147-154

    Article  CAS  Google Scholar 

  • 58. Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488-2492

    Article  PubMed  CAS  Google Scholar 

  • 59. Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934-14939

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 60. Palmiter RD, Huang L (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447:744-751

    Article  PubMed  CAS  Google Scholar 

  • 61. Panina EM, Mironov AA, Gelfand MS (2003) Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci USA 100:9912-9917

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 62. Parkin G (2004) Synthetic analogues relevant to the structure and function of zinc enzymes. Chem Rev 104:699-767

    Article  PubMed  CAS  Google Scholar 

  • 63. Pena MM, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514-2523

    PubMed  CAS  PubMed Central  Google Scholar 

  • 64. Racker E (1950) Crystalline alcohol dehydrogenase from baker's yeast. J Biol Chem 184:313-319

    PubMed  CAS  Google Scholar 

  • 65. Rivlin AA, Chan YL, Wool IG (1999) The contribution of a zinc finger motif to the function of yeast ribosomal protein YL37a. J Mol Biol 294:909-919

    Article  PubMed  CAS  Google Scholar 

  • 66. Robinson NJ, Whitehall SK, Cavet JS (2001) Microbial metallothioneins. Adv Microb Physiol 44:183-213

    Article  PubMed  CAS  Google Scholar 

  • 67. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623-627

    Article  PubMed  CAS  Google Scholar 

  • 68. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79-118

    PubMed  CAS  Google Scholar 

  • 69. van den Elsen JM, Kuntz DA, Rose DR (2001) Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J 20(12):3008-17

    Article  Google Scholar 

  • 70. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437-440

    Article  PubMed  CAS  Google Scholar 

  • 71. Waters BM, Eide DJ (2002) Combinatorial control of yeast FET4 gene expression by iron, zinc, and oxygen. J Biol Chem 277:33749-33757

    Article  PubMed  CAS  Google Scholar 

  • 72. Zhao H, Butler E, Rodgers J, Spizzo T, Duesterhoeft S, Eide D (1998) Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J Biol Chem 273:28713-28720

    Article  PubMed  CAS  Google Scholar 

  • 73. Zhao H, Eide DJ (1997) Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. Mol Cell Biol 17:5044-5052

    PubMed  CAS  PubMed Central  Google Scholar 

  • 74. Zhu H, Pan S, Gu S, Bradbury EM, Chen X (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom 16:2115-2123

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Markus J. Tamas Enrico Martinoia

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Regalla, L.M., Lyons, T.J. (2005). Zinc in yeast: mechanisms involved in homeostasis. In: Tamas, M.J., Martinoia, E. (eds) Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_98

Download citation

Publish with us

Policies and ethics