Skip to main content

Cellular and whole organism aspects of iron transport and storage in plants

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 14))

Abstract

Plants depend upon iron for their growth and development. However, availability of this metal is low in soils, because of its insolubility at basic pH in presence of oxygen. Plants have, therefore, evolved various mechanisms to actively acquire iron from the soil, based either on reducing or chelating strategies. The molecular characterization of these uptake systems and the regulation of their synthesis have been widely documented the last few years. Distribution of iron to the various parts of a plant, and its compartmentation in various subcellular organelles is also described, but the molecular determinants required for these functions are yet poorly documented. Beside transport activities to establish iron homeostasis in plants, storage is also an important parameter. Part of this function is achieved by ferritins. These iron storage proteins are located within the plastids in plants, and regulated by iron at a transcriptional level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Andrews SC, Arosio P, Bottke W, Briat JF, von Darl M, Harrison P, Laulhere JP, Levi S, Lobreaux S, Yewdall SJ (1992) Structure, function and evolution of ferritins. J Inorg Biochem 1992 47:161-174

    Article  CAS  Google Scholar 

  • 2. Bergersen FJ (1963) Iron in the developing soybean nodules. Aust J Biol Sci 16:916-919

    CAS  Google Scholar 

  • 3. Branton D, Jacobson L (1962) Iron transport in pea plants. Plant Physiol 37:539-545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 4. Briat JF, Fobis-Loisy I, Grignon N, Lobréaux S, Pascal N, Savino G, Thoiron S, von Wiren N, Van Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69-81

    Article  CAS  Google Scholar 

  • 5. Briat JF, Lobréaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187-193

    Article  Google Scholar 

  • 6. Briat JF, Lobréaux S (1998) Iron storage and Ferritin in Plants. In: Sigel A, Sigel H (eds) Iron Transport and Storage in Microorganism, Plants and Animals. Marcel Dekker Inc, New York, pp 563-584

    Google Scholar 

  • 7. Briat JF, Lobréaux S, Grignon N, Vansuyt G (1999) Regulation of plant ferritin synthesis: how and why. Cell Mol Life Sci 56:155-166

    Article  PubMed  CAS  Google Scholar 

  • 8. Bruggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190:151-155

    Article  Google Scholar 

  • 9. Buchanan-Wollaston V, Ainsworth C (1997) Leaf senescence in Brassica napus: cloning of senescence related genes by substractive hybridisation. Plant Mol Biol 33:821-834

    Article  PubMed  CAS  Google Scholar 

  • 10. Bughio N, Takahashi M, Yoshimura E, Nishizawa NK, Mori S (1997) Light-dependent iron transport into isolated barley chloroplasts. Plant Cell Physiol 38:101-105

    Article  CAS  Google Scholar 

  • 11. Burton JW, Harlow C, Theil EC (1998) Evidence for reutilization of nodule iron in soybean seed development. J Plant Nutr 21:913-927

    Article  CAS  Google Scholar 

  • 12. Cairo G, Tacchini L, Pogliaghi G, Anzon E, Tomasi A, Bernelli-Zazzera A (1995) Induction of ferritin synthesis by oxidative stress. Transcriptional and post-transcriptional regulation by expansion of the ”free” iron pool. J Biol Chem 270:700-703

    Article  PubMed  CAS  Google Scholar 

  • 13. Cataldo DA, McFadden KM, Garland TR, Wildung RE (1988) Organic constituents and complexation of nickel (II), iron (III), cadmium (II), and plutonium (IV) in soybean xylem exudates. Plant Physiol 86:734-739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 14. Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptionalcontrol. Plant Physiol 133:1102-1110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 15. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749-755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 16. Curie C, Briat JF (2003) Iron transport and signaling in plants. Ann Rev Plant Biol 54:183-206

    Article  CAS  Google Scholar 

  • 17. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 18:346-349

    Article  Google Scholar 

  • 18. Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17:192-196

    Article  PubMed  CAS  Google Scholar 

  • 19. Delhaize E (1996) A metal-accumulator mutant of Arabidopsis thaliana. Plant Physiol 111:849-855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 20. DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metalcomplexes. Plant J 39:403-414

    Article  PubMed  CAS  Google Scholar 

  • 21. Dodge A (1994) Herbicide action and effects on detoxification processes. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, Florida, pp 219-236

    Google Scholar 

  • 22. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 28:5624-5648

    Article  Google Scholar 

  • 23. Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9:397-403

    Article  PubMed  CAS  Google Scholar 

  • 24. Gaymard F, Boucherez J, Briat JF (1996) Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid. Biochem J 318:67-73

    PubMed  CAS  PubMed Central  Google Scholar 

  • 25. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282-286

    Article  PubMed  CAS  Google Scholar 

  • 26. Grusak MA (1994) Iron transport to developing ovules of Pisum sativum. Seed: import characteristics and phloem iron-loading capacity of sources regions. Plant Physiol 104:649-655

    PubMed  CAS  PubMed Central  Google Scholar 

  • 27. Grusak MA (1995) Whole-root iron(III)-reductase activity throughout the life cycle of iron-grown Pisum sativum L. (Fabaceae): relevance to the iron nutrition of developing seeds. Planta 197:111-117

    Article  CAS  Google Scholar 

  • 28. Grusak MA, Pezeshgi S (1996) Shoot-to-root signal transmission regulates root Fe(III) reductase activity in the dgl mutant of pea. Plant Physiol 110:329-334

    PubMed  CAS  PubMed Central  Google Scholar 

  • 29. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190-198

    Article  PubMed  CAS  Google Scholar 

  • 30. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochem Biophys Acta 1275:161-203

    PubMed  Google Scholar 

  • 31. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285-297

    Article  PubMed  CAS  Google Scholar 

  • 32. Hocking PJ, Pate JS (1978) Mobilization of minerals to developing seeds of legumes. Ann Bot 41:1259-1278

    Google Scholar 

  • 33. Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295-304

    Article  PubMed  CAS  Google Scholar 

  • 34. Kispal G, Csere P, Prohl C, Lill R (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981-3989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 35. Krueger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062-25069

    Article  Google Scholar 

  • 36. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Van Montagu M (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89-100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 37. Ko MP, Huang PY, Huang JS, Baker KR (1987) The occurrence of phytoferritin and its relationship to effectiveness of soybean nodules. Plant Physiol 83:299-305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 38. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415-424

    Article  PubMed  CAS  Google Scholar 

  • 39. Laulhère JP, Labouré AM, Briat JF (1989) Mechanism of the transition from plant ferritin to phytosiderin. J Biol Chem 264:3629-3635

    Google Scholar 

  • 40. Laulhère JP, Labouré AM, Briat JF (1990) Photoreduction and incorporation of iron into ferritins. Biochem J 269:79-84

    Google Scholar 

  • 41. Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci USA 88:8222-8226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 42. Levier K, Day DA, Guerinot ML (1996) Iron uptake by symbiosomes from soybean root nodules. Plant Physiol 111:893-900

    PubMed  CAS  PubMed Central  Google Scholar 

  • 43. Lill R, Kispal G Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 2000 25:352-356

    Google Scholar 

  • 44. Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99:13938-13943

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 45. Ling HQ, Koch G, Baumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098-7103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 46. Lobréaux S, Briat JF (1991) Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J 274:601-606

    Google Scholar 

  • 47. Lobréaux S, Hardy T, Briat JF (1993) Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J 12:651-657

    Google Scholar 

  • 48. Lobréaux S, Massenet O, Briat JF (1992a) Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol 19:563-576

    Article  Google Scholar 

  • 49. Lobréaux S, Yewdall S, Briat JF, Harrison PM (1992b) Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem J 288:931-939

    Google Scholar 

  • 50. Maas FM, Wetering DA, Beusichem ML, Bienfait HF (1988) Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reactions. Plant Physiol 87:167-171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 51. Marentes E, Grusak MA (1998) Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.). Seed Sci Res 8:367-375

    Article  CAS  Google Scholar 

  • 52. Marinos NG (1967) Multifunctionnal plastids in the meristematic region of potato tuber buds. J Ultrastr Res 17:91-113

    Article  CAS  Google Scholar 

  • 53. Moreau S, Day DA, Puppo A (1998) Ferrous iron is transported across the peribacteroid membrane of soybean nodules. Planta 207:83-87

    Article  CAS  Google Scholar 

  • 54. Moreau S, Meyer JM, Puppo A (1995) A. Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Lett 361:225-228

    Article  PubMed  CAS  Google Scholar 

  • 55. Murgia I, Delledonne M, Soave C (2002) Nitric oxide mediates iron-induced ferritin accumulation in Arabidopsis. Plant J 30:521-528

    Article  PubMed  CAS  Google Scholar 

  • 56. Petit JM, Van Wuytswinkel O, Briat JF, Lobreaux S (2001) Characterization of an iron-dependent regulatory sequence (IDRS) involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. J Biol Chem 276:5584-5590

    Article  PubMed  CAS  Google Scholar 

  • 57. Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213:967-976

    Article  PubMed  CAS  Google Scholar 

  • 58. Portnoy ME, Liu XF, Culotta VC (2000) Saccharomyces cerevisiae expresses three functionally distinct homologues of the nramp family of metal transporters. Mol Cell Biol 20:7893-7902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 59. Ragland M, Briat JF, Gagnon J, Laulhère JP, Massenet O, Theil EC (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem 265:18339-18344

    PubMed  CAS  Google Scholar 

  • 60. Ragland M, Theil EC (1993) Ferritin (mRNA, protein) and iron concentrations during soybean nodule development. Plant Mol Biol 21:555-560

    Article  PubMed  CAS  Google Scholar 

  • 61. Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112-120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 62. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694-6971

    Article  PubMed  CAS  Google Scholar 

  • 63. Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787-1799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 64. Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091-9096

    Article  PubMed  CAS  Google Scholar 

  • 65. Schmidke I, Kruger C, Frommichen R, Scholz G, Stephan U (1999) Phloem loading and transport characteristics of iron in interaction with plant-endogenous ligands in castor bean seedlings. Physiol Plant 106:82-89

    Article  CAS  Google Scholar 

  • 66. Shingles R, North M, McCarty RE (2002) Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol 128:1022-1030

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 67. Seckback JJ (1982) Ferreting out the secret of plant ferritin - A review. J Plant Nutr 5:369-394

    Article  CAS  Google Scholar 

  • 68. Stephan UW, Grun M (1989) Physiological disorders of the nicotianamine-auxotroph tomato mutant chloronerva at different levels of iron nutrition. II. Iron deficiency response and heavy metal metabolism. Biochem Physiol Pflanzen 185:3-4

    Article  Google Scholar 

  • 69. Stephan U, Schmidke I, Pich A (1994) Phloem translocation of Fe, Cu, Mn and Zn in Ricinus seedlings in relation to the concentration of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Plant Soil 165:181-188

    Article  CAS  Google Scholar 

  • 70. Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem. Physiol Plant 88:522-529

    Article  CAS  Google Scholar 

  • 71. Strozycki PM, Skapska A, Szczesniak K, Sobieszczuk E, Briat JF, Legocki AB (2003) Differential expression and evolutionary analysis of the three ferritin genes in the legume plant Lupinus luteus. Physiol Plant 118:380-389

    Article  CAS  Google Scholar 

  • 72. Tang C, Robson AD, Dilworth MJ (1990) The role of iron in nodulation and nitrogen fixation in Lupinus augustifolius L. New Phytol 115:61-67

    Article  CAS  Google Scholar 

  • 73. Tarantino D, Petit JM, Lobreaux S, Briat JF, Soave C, Murgia I (2003) Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis. Planta 217:709-716

    Article  PubMed  CAS  Google Scholar 

  • 74. Theil EC, Hase T (1993) Plant and microbial ferritins. In: LL. Barton, BC Hemming (eds). Iron chelation in Plants and Soil Microorganisms, Academic Press, San Diego, pp133-156

    Google Scholar 

  • 75. Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685-695

    Article  PubMed  CAS  Google Scholar 

  • 76. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991-4996

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 77. Van der Mark F, Van der Briel W, Huisman HG (1983) Phytoferritin is synthesized in vitro as a high-molecular-weight precursor. Biochem J 214:943-950

    Google Scholar 

  • 78. Vansuyt G, Mench M, Briat JF (2000) Soil-dependent variability of leaf iron accumulation in transgenic tobacco overexpressing ferritin. Plant Physiol Biochem 38:499-506

    Article  CAS  Google Scholar 

  • 79. Vansuyt G, Souche G, Straczek A, Briat JF, Jaillard B (2003) Flux of proton released by wild type and ferritin over-expressor tobacco plants: effect of phosphorus and iron nutrition. Plant Physiol Biochem 41:27-33

    Article  CAS  Google Scholar 

  • 80. Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1999) Iron homeostasis alteration by ferritin overexpression in transgenic tobacco. Plant J 17:93-98

    Article  Google Scholar 

  • 81. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223-1233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 82. Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181-189

    Article  PubMed  CAS  Google Scholar 

  • 83. Vert G, Briat JF, Curie C (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132:796-804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 84. von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107-1114

    Article  Google Scholar 

  • 85. Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85-94

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 86. Wei J, Theil EC (2000) Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J Biol Chem 275:17488-17493

    Article  PubMed  CAS  Google Scholar 

  • 87. Welch RM, LaRue TA (1990) Physiological characteristics of Fe accumulation in the ”bronze” mutant of Pisum sativum L., cv ”Sparkle” E107 (brz brz). Plant Physiol 93:723-729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • 88. Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore-bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178:161-169

    Article  CAS  Google Scholar 

  • 89. Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835-844

    Article  PubMed  CAS  Google Scholar 

  • 90. Young TF, Terry N (1982) Transport of iron into leaves following iron resupply to iron-stressed sugar beet plants. J Plant Nutr 5:1273-1283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Briat .

Editor information

Markus J. Tamas Enrico Martinoia

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Briat, JF. (2005). Cellular and whole organism aspects of iron transport and storage in plants. In: Tamas, M.J., Martinoia, E. (eds) Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_93

Download citation

Publish with us

Policies and ethics