Skip to main content

Molecular mechanisms of copper homeostasis in yeast

  • Chapter
  • First Online:
Book cover Molecular Biology of Metal Homeostasis and Detoxification

Part of the book series: Topics in Current Genetics ((TCG,volume 14))

Abstract

Copper ions play critical roles as electron transfer intermediates in various redox reactions. The yeast Saccharomyces cerevisiae has served as a valuable model to study copper metabolism in eukaryotic cells. The systems for copper homeostasis; including the uptake, cytoplasmic trafficking, and metabolism in intracellular organelles, detoxification, and regulation of these systems have been characterized. Most of the molecular components for copper metabolism identified in yeast are functionally and structurally conserved in mammals. These findings have underscored the importance of evolving delicate mechanisms to utilize copper. Studies on copper metabolism in yeast certainly have opened up interesting and important research avenues that have shed light on the molecular details of copper metabolism and the physiological roles of copper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Abajian C, Yatsunyk LA, Ramirez BE, Rosenzweig AC (2004) Yeast Cox17 solution structure and copper(I) binding. J Biol Chem 279:53584-53592

    PubMed  CAS  Google Scholar 

  • 2. Aller SG, Eng ET, De Feo CJ, Unger VM (2004) Eukaryotic CTR Copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J Biol Chem 279:53435-53441

    PubMed  CAS  PubMed Central  Google Scholar 

  • 3. Arnesano F, Banci L, Bertini I, Huffman DL, O'Halloran TV (2001) Solution structure of the Cu(I) and apo forms of the yeast metallochaperones Atx1. Biochemistry 40:1528-1539

    PubMed  CAS  Google Scholar 

  • 4. Arnesano F, Banci L, Bertini I, Bonvin A (2004) A docking approach to the study of copper trafficking proteins: Interaction between metallochaperones and soluble domains of copper ATPases. Structure 12:669-676

    PubMed  CAS  Google Scholar 

  • 5. Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:9100-9105

    PubMed  CAS  PubMed Central  Google Scholar 

  • 6. Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403-410

    PubMed  CAS  Google Scholar 

  • 7. Banci L, Bertini I, Ciofi-Baffoni S, Huffman DL, O'Halloran TV (2001) Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J Biol Chem 276:8415-8426

    PubMed  CAS  Google Scholar 

  • 8. Barros MH, Johnson A, Tzagoloff A (2004) COX23, a homologue of COX17, is required for cytochrome oxidase assembly. J Biol Chem 279:31943-31947

    PubMed  CAS  Google Scholar 

  • 9. Beaudoin J, Labbe S (2001) The fission yeast copper-sensing transcription factor Cuf1 regulates the copper transporter gene expression through an Ace1/Amt1-like recognition sequence. J Biol Chem 276:15472-15480

    PubMed  CAS  Google Scholar 

  • 10. Beaudoin J, Mercier A, Langlois R, Labbe S (2003) The Schizosaccharomyces pombe Cuf1 is composed of functional modules from two distinct classes of copper metalloregulatory transcription factors. J Biol Chem 278:14565-14577

    PubMed  CAS  Google Scholar 

  • 11. Beers J, Glerum MD, Tzagoloff A (1997) Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. J Biol Chem 272:33191-33196

    PubMed  CAS  Google Scholar 

  • 12. Bellemare DR, Shaner L, Morano KA, Beaudoin J, Langlois R, Labbe S (2002) Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe. J Biol Chem 277:46676-46686

    PubMed  CAS  Google Scholar 

  • 13. Bode HP, Dumschat M, Garotti S, Fuhrmann GF (1995) Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae. Eur J Biochem 228:337-342

    PubMed  CAS  Google Scholar 

  • 14. Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265-3274

    PubMed  CAS  Google Scholar 

  • 15. Brown NM, Torres AS, Doan PE, O'Halloran TV (2004) Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc Natl Acad Sci USA 101:5518-5523

    PubMed  CAS  PubMed Central  Google Scholar 

  • 16. Buchman C, Skroch P, Welch J, Fogel S, Karin M (1989) The CUP2 gene product, regulator of yeast metallothionein expression, is a copper-activated DNA-binding protein. Mol Cell Biol 9:4091-4095

    PubMed  CAS  PubMed Central  Google Scholar 

  • 17. Carr HS, Winge DR (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 36:309-316

    PubMed  CAS  Google Scholar 

  • 18. Carr HS, George GN, Winge DR (2002) Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I) binding protein. J Biol Chem 277:31237-31242

    PubMed  CAS  Google Scholar 

  • 19. Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88:8915-8919

    PubMed  CAS  PubMed Central  Google Scholar 

  • 20. Chanock SJ, el Benna J, Smith RM, Babior BM (1994) The respiratory burst oxidase. J Biol Chem 269:24519-24522

    PubMed  CAS  Google Scholar 

  • 21. Cobine PA, Ojeda LD, Rigby KM, Winge DR (2004) Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem 279:14447-14455

    PubMed  CAS  Google Scholar 

  • 22. Cox DW (1999) Disorders of copper transport. Br Med Bull 55:544-555

    PubMed  CAS  Google Scholar 

  • 23. Culotta VC, Howard WR, Liu XF (1994) CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J Biol Chem 269:25295-25302

    PubMed  CAS  Google Scholar 

  • 24. Culotta VC, Klomp LWJ, Strain J, Casareno RBL, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469-23472

    PubMed  CAS  Google Scholar 

  • 25. Dameron CT, Winge DR, George GN, Sansone M, Hu S, Hamer D (1991) A copper-thiolate polynuclear cluster in the ACE1 transcription factor. Proc Natl Acad Sci USA 88:6127-6131

    PubMed  CAS  PubMed Central  Google Scholar 

  • 26. Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994a) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393-402

    PubMed  CAS  Google Scholar 

  • 27. Dancis A, Haile D, Yuan DS, Klausner RD (1994b) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269:25660-25667

    PubMed  CAS  Google Scholar 

  • 28. Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J (1998) Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: An unexpected role for intracellular chloride channels. Proc Natl Acad Sci USA 95:13641-13645

    PubMed  CAS  PubMed Central  Google Scholar 

  • 29. De Freitas JM, Kim JH, Poynton H, Su T, Wintz H, Fox T, Holman P, Loguinov A, Keles S, Van der Laan M, Vulpe C (2004) Exploratory and confirmatory gene expression profiling of mac1?. J Biol Chem 279:4450-4458

    Google Scholar 

  • 30. De Rome L, Gadd GM (1987) Measurement of copper uptake in Saccharomyces cerevisiae using a Cu2+-selective electrode. FEMS Microbiol Lett 43:283-287

    Google Scholar 

  • 31. DiDonato M, Sarkar B (1997) Copper transport and its alterations in Menkes and Wilson diseases. Biochim Biophys Acta 1360:3-16

    PubMed  CAS  Google Scholar 

  • 32. Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269:26092-260929

    PubMed  CAS  Google Scholar 

  • 33. Dobi A, Dameron CT, Hu S, Hamer D, Winge DR (1995) Distinct regions of Cu(I) ACE1 contact two spatially resolved DNA major groove sites. J Biol Chem 270:10171-10178

    PubMed  CAS  Google Scholar 

  • 34. Evans CF, Engelke DR, Thiele DJ (1990) ACE1 transcription factor produced in Escherichia coli binds multiple regions within yeast metallothionein upstream activation sequences. Mol Cell Biol 10:426-429

    PubMed  CAS  PubMed Central  Google Scholar 

  • 35. Farrell RA, Thorvaldsen JL, Winge DR (1996) Identification of the Zn(II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module. Biochemistry 35:1571-1580

    PubMed  CAS  Google Scholar 

  • 36. Field LS, Furukawa Y, O'Halloran TV, Culotta VC (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278:28052-28059

    PubMed  CAS  Google Scholar 

  • 37. Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A (1996) Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271:31021-31024

    PubMed  CAS  Google Scholar 

  • 38. Fogel S, Welch JW (1982) Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci USA 79:5342-5346

    PubMed  CAS  PubMed Central  Google Scholar 

  • 39. Furst P, Hamer D (1989) Cooperative activation of a eukaryotic transcription factor: interaction between Cu(I) and yeast ACE1 protein. Proc Natl Acad Sci USA 86:5267-5271

    PubMed  CAS  PubMed Central  Google Scholar 

  • 40. Furst P, Hu S, Hackett R, Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705-717

    PubMed  CAS  Google Scholar 

  • 41. Furukawa Y, Torres AS, O'Halloran TV (2004) Oxygen-induced maturation of SOD1: A key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872-2881

    PubMed  CAS  PubMed Central  Google Scholar 

  • 42. Gaxiola RA, Yuan DS, Klausner RD, Fink GR (1998) The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci USA 95:4046-4050

    PubMed  CAS  PubMed Central  Google Scholar 

  • 43. Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272:13786-13792

    PubMed  CAS  Google Scholar 

  • 44. Giaccone G (2000) Clinical perspectives on platinum resistance. Drugs 59 Suppl 4:9-17

    Google Scholar 

  • 45. Glerum MD, Shtanko A, Tzagoloff A (1996a) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504-14509

    PubMed  CAS  Google Scholar 

  • 46. Glerum MD, Shtanko A, Tzagoloff A (1996b) SCO1 and SCO2 act as high copy supressors of mitochondrial copper recruitment defect in Saccharomyces cerevisiae J Biol Chem 271:20531-20535

    Google Scholar 

  • 47. Gralla EB, Thiele DJ, Silar P, Valentine JS (1991) ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci USA 88:8558-8562

    PubMed  CAS  PubMed Central  Google Scholar 

  • 48. Greco MA, Hrab DI, Magner W, Kosman DJ (1990) Cu,Zn superoxide dismutase and copper deprivation and toxicity in Saccharomyces cerevisiae. J Bacteriol 172:317-325

    PubMed  CAS  PubMed Central  Google Scholar 

  • 49. Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275:32310-32316

    PubMed  CAS  Google Scholar 

  • 50. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772-1775

    PubMed  CAS  Google Scholar 

  • 51. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1-114

    PubMed  CAS  PubMed Central  Google Scholar 

  • 52. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1-85

    PubMed  CAS  Google Scholar 

  • 53. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913-951

    PubMed  CAS  Google Scholar 

  • 54. Hamer DH, Thiele DJ, Lemontt JE (1985) Function and autoregulation of yeast copperthionein. Science 228:685-690

    PubMed  CAS  Google Scholar 

  • 55. Harshman KD, Moyle-Rowley WS, Parker CS (1988) Transcriptional activation by the SV40 AP-1 recognition element in yeast is mediated by a factor similar to AP-1 that is distinct from GCN4. Cell 53:321-330

    PubMed  CAS  Google Scholar 

  • 56. Hassett R, Kosman DJ (1995) Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270:128-134

    PubMed  CAS  Google Scholar 

  • 57. Hassett R, Dix DR, Eide DJ, Kosman DJ (2000) The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351:477-484

    PubMed  CAS  PubMed Central  Google Scholar 

  • 58. Heaton D, Nittis T, Srinivasan C, Winge DR (2001) Mutational analysis of the mitochondrial copper metallochaperone Cox17. J Biol Chem 275:37582-37587

    Google Scholar 

  • 59. Heredia J, Crooks M, Zhu Z (2001) Phosphorylation and Cu+ coordination-dependent DNA binding of the transcription factor Mac1p in the regulation of copper transport. J Biol Chem 276:8793-8797

    PubMed  CAS  Google Scholar 

  • 60. Hettema EH, Valdez-Taubas J, Pelham HR (2004) Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins. EMBO J 23:1279-1288

    PubMed  CAS  PubMed Central  Google Scholar 

  • 61. Hiser L, Di Valentin M, Hamer AG, Hosler JP (2000) Cox11p is required for stable formation of the CuB and magnesium centers of cytochrome of cytochrome c oxidase. J Biol Chem 275:619-623

    PubMed  CAS  Google Scholar 

  • 62. Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 34:35334-35340

    Google Scholar 

  • 63. Hu S, Furst P, Hamer D (1990) The DNA and Cu binding functions of ACE1 are interdigitated within a single domain. New Biol 2:544-555

    PubMed  CAS  Google Scholar 

  • 64. Huffman DL, O'Halloran TV (2000) Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem 275:18611-18614

    PubMed  CAS  Google Scholar 

  • 65. Huffman DL, O'Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677-701

    PubMed  CAS  Google Scholar 

  • 66. Huibregtse JM, Engelke DR, Thiele DJ (1989) Copper-induced binding of cellular factors to yeast metallothionein upstream activation sequences. Proc Natl Acad Sci USA 86:65-69

    PubMed  CAS  PubMed Central  Google Scholar 

  • 67. Hung I, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272:21461-21466

    PubMed  CAS  Google Scholar 

  • 68. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298-14302

    PubMed  CAS  PubMed Central  Google Scholar 

  • 69. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660-669

    PubMed  CAS  Google Scholar 

  • 70. Jakubowski W, Bilinski T, Bartosz G (2000) Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med 28:659-664

    PubMed  CAS  Google Scholar 

  • 71. Jamison McDaniels CP, Jensen LT, Srinivasan C, Winge DR, Tullius TD (1999) The yeast transcription factor Mac1 binds to DNA in a modular fashion. J Biol Chem 274:26962-26967

    Google Scholar 

  • 72. Jensen LT, Winge DR (1998) Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J 17:5400-5408

    PubMed  CAS  PubMed Central  Google Scholar 

  • 73. Jensen LT, Howard WR, Strain JJ, Winge DR, Culotta VC (1996) Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 metallothionein in Saccharomyces cerevisiae. J Biol Chem 271:18514-18519

    PubMed  CAS  Google Scholar 

  • 74. Jensen LT, Posewitz MC, Srinivasan C, Winge DR (1998) Mapping of the DNA binding domain of the copper-responsive transcription factor Mac1 from Saccharomyces cerevisiae. J Biol Chem 273:23805-23811

    PubMed  CAS  Google Scholar 

  • 75. Jensen LT, Ajua-Alemanji M, Culotta VC (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278:42036-42040

    PubMed  CAS  Google Scholar 

  • 76. Joshi A, Serpe M, Kosman DJ (1999) Evidence for (Mac1p) DNA ternary complex formation in Mac1p-dependent transactivation at the CTR1 promoter. J Biol Chem 274:218-226

    PubMed  CAS  Google Scholar 

  • 77. Jungmann J, Reins HA, Lee J, Romeo A, Hassett R, Kosman D, Jentsch S (1993) MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J 12:5051-5056

    PubMed  CAS  PubMed Central  Google Scholar 

  • 78. Kampfenkel K, Kushnir S, Babiychuk E, Inze D, Van Montagu M (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270:28479-28486

    PubMed  CAS  Google Scholar 

  • 79. Keller G, Ray E, Brown PO, Winge DR (2001) Haa1, a protein homologous to the copper-regulated transcription factor Ace1, is a novel transcriptional activator. J Biol Chem 276:38697-38702

    PubMed  CAS  Google Scholar 

  • 80. Keyhani E, Keyhani J (1975) Cytochrome c oxidase biosynthesis and assembly in Candida utilis yeast cells. Function of copper in the assembly of active cytochrome c oxidase. Arch Biochem Biophys 167:596-602

    PubMed  CAS  Google Scholar 

  • 81. Kim DY, Song WY, Yang YY, Lee Y (2001) The role of PDR13 in tolerance to high copper stress in budding yeast. FEBS Lett 508:99-102

    PubMed  CAS  Google Scholar 

  • 82. Klomp LWJ, Lin SJ, Yuan D, Klausner RD, Culotta VC, Gitlin JD (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272:9221-9226

    PubMed  CAS  Google Scholar 

  • 83. Knight SA, Labbe S, Kwon LF, Kosman DJ, Thiele DJ (1996) A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10:1917-1929

    PubMed  CAS  Google Scholar 

  • 84. Labbe S, Pena MM, Fernandes AR, Thiele DJ (1999) A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe. J Biol Chem 274:36252-36260

    PubMed  CAS  Google Scholar 

  • 85. Labbe S, Thiele DJ (1999) Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol 7:500-505

    PubMed  CAS  Google Scholar 

  • 86. Labbe S, Zhu Z, Thiele DJ (1997) Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272:15951-15958

    PubMed  CAS  Google Scholar 

  • 87. Lamb AL, Torres AS, O'Halloran TV, Rosenzweig AC (2000) Heterodimer formation between superoxide dismutase and its copper chaperone. Biochemistry 39:14720-14727

    PubMed  CAS  Google Scholar 

  • 88. Lamb AL, Wernimont AK, Pufahl RA, Culottaa VC, O'Halloran TV, Rosenzweig AC (1999) Crystal structure of the copper chaperone for superoxide dismutase. Nat Struct Biol 6:724-729

    PubMed  CAS  Google Scholar 

  • 89. Lamb AL, Torres AS, O'Halloran TV, Rosenzweig AC (2001) Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8:750-755

    Google Scholar 

  • 90. Lee J, Pena MM, Nose Y, Thiele DJ (2002) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380-4387

    PubMed  CAS  Google Scholar 

  • 91. Lesuisse E, Casteras-Simon M, Labbe P (1996) Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. J Biol Chem 271:13578-13583

    PubMed  CAS  Google Scholar 

  • 92. Li L, Chen OS, McVey Ward D, Kaplan J (2001) Ccc1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276:29515-29519

    PubMed  CAS  Google Scholar 

  • 93. Lin CM, Kosman DJ (1990) Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism. J Biol Chem 265:9194-9200

    PubMed  CAS  Google Scholar 

  • 94. Lin SJ, Culotta, VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 92:3784-3788

    PubMed  CAS  PubMed Central  Google Scholar 

  • 95. Lin SJ, Pufahl RA, Dancis A, O'Halloran TV, Culotta VC (1997) A Role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272:9215-9220

    PubMed  CAS  Google Scholar 

  • 96. Lin X, Okuda T, Holzer A, Howell SB (2002) The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol Pharmacol 62:1154-1159

    PubMed  CAS  Google Scholar 

  • 97. Liu XF, Culotta VC (1999) Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J Biol Chem 274:4863-4868

    PubMed  CAS  Google Scholar 

  • 98. Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763-11769

    PubMed  CAS  Google Scholar 

  • 99. Llanos RM, Mercer JF (2002) The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol 21:259-270

    PubMed  CAS  Google Scholar 

  • 100. Lode A, Kuschel M, Paret C, Rodel G (2000) Mitochondrial copper metabolism in yeast: Interaction between Sco1p and Cox2p. FEBS lett 448:1-6

    Google Scholar 

  • 101. Lode A, Paret C, Rodel G (2002) Molecular characterization of Saccharomyces cerevisiae Sco2p reveals a high degree of redundancy with Sco1p. Yeast 19:909-922

    PubMed  CAS  Google Scholar 

  • 102. Loehrer PJ, Einhorn LH (1984) Drugs five years later. Cisplatin. Ann Intern Med 100:704-713

    PubMed  CAS  Google Scholar 

  • 103. Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365:131-142

    PubMed  CAS  Google Scholar 

  • 104. Lutsenko S, Kaplan JH (1995) Organization of P-type ATPases: significance of structural diversity. Biochemistry 34:15607-15613

    PubMed  CAS  Google Scholar 

  • 105. MacDiarmid CW, Gaither LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19:2845-2855

    PubMed  CAS  PubMed Central  Google Scholar 

  • 106. Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273:23716-23721

    PubMed  CAS  Google Scholar 

  • 107. Marvin ME, Williams PH, Cashmore AM (2003) The Candida albicans CTR1 gene encodes a functional copper transporter. Microbiology 149:1461-1474

    PubMed  CAS  Google Scholar 

  • 108. Maxfield AB, Heaton DN, Winge DR (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem 279:5072-5080

    PubMed  CAS  Google Scholar 

  • 109. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions: Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244:6049-6055

    PubMed  CAS  Google Scholar 

  • 110. Mehra RK, Garey JR, Butt TR, Gray WR, Winge DR (1989) Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins. J Biol Chem 264:19747-19753

    PubMed  CAS  Google Scholar 

  • 111. Mehra RK, Garey JR, Winge DR (1990) Selective and tandem amplification of a member of the metallothionein gene family in Candida glabrata. J Biol Chem 265:6369-6375

    PubMed  CAS  Google Scholar 

  • 112. Mehra RK, Thorvaldsen JL, Macreadie IG, Winge DR (1992) Disruption analysis of metallothionein-encoding genes in Candida glabrata. Gene 114:75-80

    PubMed  CAS  Google Scholar 

  • 113. Moye-Rowley WS (2003) Transcriptional control of multidrug resistance in the yeast Saccharomyces. Prog Nucleic Acid Res Mol Biol 73:251-279

    PubMed  CAS  Google Scholar 

  • 114. Nittis T, George GN, Winge DR (2001) Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J Biol Chem 276:42520-42526

    PubMed  CAS  Google Scholar 

  • 115. Nobrega MP, Simone CB, Bandeira, Beers J, Tzagoloff A (2002) Characterization of Cox19, a widely distributed gene required for expression of mitochondrial cytochrome oxidase. J Biol Chem 277:40206-40211

    PubMed  CAS  Google Scholar 

  • 116. Odermatt A, Suter H, Krapf R, Solioz M (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268:12775-12779

    PubMed  CAS  Google Scholar 

  • 117. O'Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057-25060

    Google Scholar 

  • 118. Ooi CE, Rabinovich E, Dancis A, Bonifacino JS, Klausner RD (1996) Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J 15:3515-3523

    PubMed  CAS  PubMed Central  Google Scholar 

  • 119. Osaki S, Johnson DA (1969) Mobilization of liver iron by ferroxidase (ceruloplasmin). J Biol Chem 244:5757-5758

    PubMed  CAS  Google Scholar 

  • 120. Paidhungat M, Garrett S (1998) Cdc1 and the vacuole coordinately regulate Mn2+ homeostasis in the yeast Saccharomyces cerevisiae. Genetics 148:1787-1798

    PubMed  CAS  PubMed Central  Google Scholar 

  • 121. Payne AS, Gitlin JD (1998) Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem 273:3765-3770

    PubMed  CAS  Google Scholar 

  • 122. Pena MM, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514-2523

    PubMed  CAS  PubMed Central  Google Scholar 

  • 123. Peña MM, Lee J, Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129:1251-1260

    Google Scholar 

  • 124. Pena MM, Puig S, Thiele DJ (2000) Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 275:33244-33251

    PubMed  CAS  Google Scholar 

  • 125. Petris MJ, Smith K, Lee J, Thiele DJ (2003) Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem 278:9639-9646

    PubMed  CAS  Google Scholar 

  • 126. Portnoy ME, Rosenzweig AC, Rae T, Huffman DL, O'Halloran TV, Culotta VC (1999) Structure-function analyses of the ATX1 metallochaperone. J Biol Chem 274:15041-15045

    PubMed  CAS  Google Scholar 

  • 127. Portnoy ME, Schmidt PJ, Rogers RS, Culotta VC (2001) Metal transporters that contribute copper to metallochaperones in Saccharomyces cerevisiae. Mol Genet Genomics 265:873-882

    PubMed  CAS  Google Scholar 

  • 128. Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC Penner-Hahn JE, O'Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853-856

    PubMed  CAS  Google Scholar 

  • 129. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171-180

    PubMed  CAS  Google Scholar 

  • 130. Puig S, Lee J, Lau M, Thiele DJ (2002) Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277:26021-26030

    PubMed  CAS  Google Scholar 

  • 131. Rad MR, Kirchrath L, Hollenberg CP (1994) A putative P-type Cu (2+)-transporting ATPase gene on chromosome II of Saccharomyces cerevisiae. Yeast 10:1217-1225

    PubMed  CAS  Google Scholar 

  • 132. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV (1999) Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science 284:805-807

    PubMed  CAS  Google Scholar 

  • 133. Ramsay LM, Gadd GM (1997) Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett 152:293-298

    PubMed  CAS  Google Scholar 

  • 134. Rees EM, Lee J, Theile DJ (2004) Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter. J Biol Chem (in press)

    Google Scholar 

  • 135. Rentzsch A, Krummeck-Weiss G, Hofer A, Bartuschka A, Ostermann K, Rodel G (1999) Mitochondrial copper metabolism in yeast: mutational analysis of Sco1p involved in the biogenesis of cytochrome c oxidase. Curr Genet 35:103-108

    PubMed  CAS  Google Scholar 

  • 136. Riggle PJ, Kumamoto CA (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182:4899-4905

    PubMed  CAS  PubMed Central  Google Scholar 

  • 137. Roman DG, Dancis A, Anderson GJ, Klausner RD (1993) The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol 13:4342-4350

    PubMed  CAS  PubMed Central  Google Scholar 

  • 138. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59-62

    PubMed  CAS  Google Scholar 

  • 139. Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119-128

    PubMed  CAS  Google Scholar 

  • 140. Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256:1459-1462

    PubMed  CAS  Google Scholar 

  • 141. Schaefer M, Gitlin JD (1999) Genetic disorders of membrane transport. IV. Wilson's disease and Menkes disease. Am J Physiol 276:G311-314

    PubMed  CAS  Google Scholar 

  • 142. Schmidt PJ, Rae TD, Pufahl RA, Hamma T, Strain J, O'Halloran TV, Culotta VC (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 274:23719-23725

    PubMed  CAS  Google Scholar 

  • 143. Schmidt PJ, Kunst C, Culotta VC (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. J Biol Chem 275:33771-33776

    PubMed  CAS  Google Scholar 

  • 144. Serrano R, Ruiz A, Bernal D, Chambers JR, Arino J (2002) The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signaling. Mol Microbiol 46:1319-1333

    PubMed  CAS  Google Scholar 

  • 145. Serrano R, Bernal D, Simon E, Arino J (2004) Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279:19698-19704

    PubMed  CAS  Google Scholar 

  • 146. Shatwell KP, Dancis A, Cross AR, Klausner RD, Segal AW (1996) The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271:14240-14244

    PubMed  CAS  Google Scholar 

  • 147. Shiraishi E, Masahiro I, Masanori J, Hiroshi T (2000) The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae. Curr Genet 37:79-86

    PubMed  CAS  Google Scholar 

  • 148. Srinivasan C, Posewitz MC, George GN, Winge DR (1998) Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry 37:7572-7577

    PubMed  CAS  Google Scholar 

  • 149. Steaman R, Yuan D, Yamaguchi-Iwan Y, Klausner RD, Dancis A (1996) A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552-1557

    Google Scholar 

  • 150. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084-38089

    PubMed  CAS  Google Scholar 

  • 151. Supek F, Supekova L, Nelson H, Nelson N (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 93:5105-5110

    PubMed  CAS  PubMed Central  Google Scholar 

  • 152. Szczypka MS, Zhu Z, Silar P, Thiele DJ (1997) Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast 13:1423-35

    PubMed  CAS  Google Scholar 

  • 153. Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ (1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci USA 90:8013-8017

    PubMed  CAS  PubMed Central  Google Scholar 

  • 154. Thiele DJ (1988) ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol 8:2745-2752

    PubMed  CAS  PubMed Central  Google Scholar 

  • 155. Thiele DJ (1992) Metal-regulated transcription in eukaryotes. Nucleic Acids Res 20:1183-1191

    PubMed  CAS  PubMed Central  Google Scholar 

  • 156. Thrower AR, Byrd J, Tarbet EB, Mehra RK, Hamer DH, Winge DR (1988) Effect of mutation of cysteinyl residues in yeast Cu-metallothionein. J Biol Chem 263:7037-7042

    PubMed  CAS  Google Scholar 

  • 157. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269:1069-1074

    PubMed  CAS  Google Scholar 

  • 158. Tuttle MS, Radisky D, Li L, Kaplan J (2003) A dominant allele of PDR1 alters transition metal resistance in yeast. J Biol Chem 278:1273-1280

    PubMed  CAS  Google Scholar 

  • 159. Tzagoloff A, Capitanio N, Nobrega MP, Gatti D (1990) Cytochrome oxidase assembly in yeast requires the product of COX11, a homologue of the P. denitrificans protein encoded by ORF3 EMBO J 9:2759-2764

    CAS  Google Scholar 

  • 160. Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195-199

    PubMed  CAS  Google Scholar 

  • 161. Weisiger RA, Fridovich I (1973) Mitochondrial superoxide disimutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248:4793-4796

    PubMed  CAS  Google Scholar 

  • 162. Weissman Z, Berdicevsky I, Cavari BZ, Kornitzer D (2000) The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci USA 97:3520-3525

    PubMed  CAS  PubMed Central  Google Scholar 

  • 163. Welch J, Fogel S, Buchman C, Karin M (1989) The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein. EMBO J 8:255-260

    PubMed  CAS  PubMed Central  Google Scholar 

  • 164. Winge DR (1999) Copper-regulatory domain involved in gene expression. Adv Exp Med Biol 448:237-246

    PubMed  CAS  Google Scholar 

  • 165. Winge DR, Nielson KB, Gray WR, Hamer DH (1985) Yeast metallothioneins: Sequence and metal-binding properties. J Biol Chem 260:14464-14470

    PubMed  CAS  Google Scholar 

  • 166. Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126:3081-3090

    PubMed  CAS  Google Scholar 

  • 167. Xiao Z, Wedd AG (2002) A C-terminal domain of the membrane copper pump Ctr1 exchanges copper(I) with the copper chaperone Atx1. Chem Commun (Camb) 6:588-589

    Google Scholar 

  • 168. Yamaguchi-Iwai Y, Serpe M, Haile D, Yang W, Kosman DJ, Klausner RD, Dancis A (1997) Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272:17711-17718

    PubMed  CAS  Google Scholar 

  • 169. Yonkovich J, McKenndry R, Shi X, Zhu Z (2002) Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. J Biol Chem 277:23981-23984

    PubMed  CAS  Google Scholar 

  • 170. Yu W, Farrell RA, Stillman DJ, Winge DR (1996) Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae. Mol Cell Biol 16:2464-2472

    PubMed  CAS  PubMed Central  Google Scholar 

  • 171. Yuan DS, Stearman R, Dancis A, Dunn T, Beeler T, Klausner RD (1995) The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci USA 92:2632-2636

    PubMed  CAS  PubMed Central  Google Scholar 

  • 172. Yuan DS, Dancis A, Klausner RD (1997) Restriction of copper export in Saccharomyces cerevisiae to a late golgi of post-golgi compartment in the secretory pathway. J Biol Chem 272:25787-25793

    PubMed  CAS  Google Scholar 

  • 173. Zhou PB, Thiele DJ (1991) Isolation of a metal-activated transcription factor gene from Candida glabrata by complementation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:6112-6116

    PubMed  CAS  PubMed Central  Google Scholar 

  • 174. Zhou P, Thiele DJ (1993) Rapid transcriptional autoregulation of a yeast metalloregulatory transcription factor is essential for high-level copper detoxification. Genes Dev 7:1824-1835

    PubMed  CAS  Google Scholar 

  • 175. Zhu Z, Thiele DJ (1996) A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 87:459-470

    PubMed  CAS  Google Scholar 

  • 176. Zhou H, Thiele DJ (2001) Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276:20529-20535

    PubMed  CAS  Google Scholar 

  • 177. Zhu Z, Labbe S, Pena MM, Thiele DJ (1998) Copper differentially regulates the activity and degradation of yeast Mac1 transcription factor. J Biol Chem 273:1277-1280

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaekwon Lee .

Editor information

Markus J. Tamas Enrico Martinoia

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, J., Adle, D., Kim, H. (2005). Molecular mechanisms of copper homeostasis in yeast. In: Tamas, M.J., Martinoia, E. (eds) Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_91

Download citation

Publish with us

Policies and ethics