Skip to main content

Hsp104p: a protein disaggregase

  • Chapter
  • First Online:
Chaperones

Part of the book series: Topics in Current Genetics ((TCG,volume 16))

Abstract

All newly synthesized proteins must fold to their correct native conformation in order to function. That protein folding in the crowded macromolecular environment of the cell is as efficient as it appears to be is remarkable in itself. However, physical or chemical stresses or the accumulation of aberrant proteins encoded by mutated genes can easily perturb protein folding homeostasis in cells. In the protein biochemistry laboratory the aggregation of proteins can be frustrating and even aggravating, but when partially folded or misfolded proteins aggregate in the cell or even, in the case of systemic amyloidoses or Alzheimer’s Disease, outside the cell, the consequences can be devastating. Molecular chaperones typically play a key role in preventing protein aggregation. However, this monograph describes the biology and biochemistry of yeast Hsp104p, an unconventional molecular chaperone that specializes, not in preventing, but in reversing protein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Abbas-Terki T, Donze O, Briand PA, Picard D (2001) Hsp104 interacts with hsp90 cochaperones in respiring yeast. Mol Cell Biol 21:7569-7575

    Article  PubMed  CAS  Google Scholar 

  • 2. Attfield PV, Kletsas S, Hazell BW (1994) Concomitant appearance of intrinsic thermotolerance and storage of trehalose in Saccharomyces cerevisiae during early respiratory phase of batch-culture is CIF1-dependent. Microbiology 140:2625-2632

    Article  PubMed  Google Scholar 

  • 3. Beinker P, Schlee S, Groemping Y, Seidel R, Reinstein J (2002) The N terminus of ClpB from Thermus thermophilus is not essential for the chaperone activity. J Biol Chem 277:47160-47166

    Article  PubMed  CAS  Google Scholar 

  • 4. Bracken AP, Bond U (1999) Reassembly and protection of small nuclear ribonucleoprotein particles by heat shock proteins in yeast cells. RNA 5:1586-1596

    Article  PubMed  CAS  Google Scholar 

  • 5. Carmichael J, Chatellier J, Woolfson A, Milstein C, Fersht AR, Rubinsztein DC (2000) Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's Disease. Proc Natl Acad Sci USA 97:9701-9705

    Article  PubMed  CAS  Google Scholar 

  • 6. Cashikar AG, Schirmer EC, Hattendorf DA, Glover JR, Ramakrishnan MS, Ware DM, Lindquist SL (2002) Defining a pathway of communication from the C-terminal substrate binding domain to the N-terminal ATPase domain in Hsp104. Mol Cell 9:751-660

    Article  PubMed  CAS  Google Scholar 

  • 7. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion- like factor [psi+]. Science 268:880-884

    PubMed  CAS  Google Scholar 

  • 8. Cox BS (1965) [PSI], a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505-521

    Google Scholar 

  • 9. Cyr DM (1995) Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Lett 359:129-132

    Article  PubMed  CAS  Google Scholar 

  • 10. Doel SM, McCready SJ, Nierras CR, Cox BS (1994) The dominant PNM2- mutation, which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659-670

    PubMed  CAS  Google Scholar 

  • 11. Donaldson LW, Wojtyra U, Houry WA (2003) Solution structure of the dimeric zinc binding domain of the chaperone ClpX. J Biol Chem 278:48991-48996

    Article  PubMed  CAS  Google Scholar 

  • 12. Dougan DA, Reid BG, Horwich AL, Bukau B (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9:673-683

    Article  PubMed  CAS  Google Scholar 

  • 13. Dougan DA, Weber-Ban E, Bukau B (2003) Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. Mol Cell 12:373-380

    Article  PubMed  CAS  Google Scholar 

  • 14. Eaglestone SS, Ruddock LW, Cox BS, Tuite MF (2000) Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:240-244

    Article  PubMed  CAS  Google Scholar 

  • 15. Elliott B, Haltiwanger RS, Futcher B (1996) Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 144:923-933

    PubMed  CAS  Google Scholar 

  • 16. Escher A, O'Kane DJ, Lee J, Szalay AA (1989) Bacterial luciferase fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc Natl Acad Sci USA 86:6528-6532

    Article  PubMed  CAS  Google Scholar 

  • 17. Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF (2001) The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 40:1357-1369

    Article  PubMed  CAS  Google Scholar 

  • 18. Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S (1997) Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811-819

    Article  PubMed  CAS  Google Scholar 

  • 19. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73-82

    Article  PubMed  CAS  Google Scholar 

  • 20. Glover JR, Tkach JM (2001) Crowbars and ratchets: hsp100 chaperones as tools in reversing protein aggregation. Biochem Cell Biol 79:557-568

    Article  PubMed  CAS  Google Scholar 

  • 21. Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96:13732-13737

    Article  PubMed  CAS  Google Scholar 

  • 22. Grimminger V, Richter K, Imhof A, Buchner J, Walter S (2004) The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J Biol Chem 279:7378-7383

    Article  PubMed  CAS  Google Scholar 

  • 23. Guo F, Esser L, Singh SK, Maurizi MR, Xia D (2002a) Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J Biol Chem 277:46753-46762

    Article  PubMed  CAS  Google Scholar 

  • 24. Guo F, Maurizi MR, Esser L, Xia D (2002b) Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J Biol Chem 277:46743-46752

    Article  PubMed  CAS  Google Scholar 

  • 25. Hattendorf DA, Lindquist SL (2002a) Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Proc Natl Acad Sci USA 99:2732-2737

    Article  PubMed  CAS  Google Scholar 

  • 26. Hattendorf DA, Lindquist SL (2002b) Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J 21:12-21

    Article  PubMed  CAS  Google Scholar 

  • 27. Inoue Y, Taguchi H, Kishimoto A, Yoshida M (2004) Hsp104 binds to yeast sup35 prion fiber but needs other factor(s) to sever it. J Biol Chem 23:23

    Google Scholar 

  • 28. Ishikawa T, Beuron F, Kessel M, Wickner S, Maurizi MR, Steven AC (2001) Translocation pathway of protein substrates in ClpAP protease. Proc Natl Acad Sci USA 98:4328-4333

    Article  PubMed  CAS  Google Scholar 

  • 29. Jung G, Masison DC (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol 43:7-10

    Article  PubMed  CAS  Google Scholar 

  • 30. Kedzierska S, Akoev V, Barnett ME, Zolkiewski M (2003) Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry 42:14242-14248

    Article  PubMed  CAS  Google Scholar 

  • 31. Kim DY, Kim KK (2003) Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278:50664-50670

    Article  PubMed  CAS  Google Scholar 

  • 32. Kimura Y, Koitabashi S, Kakizuka A, Fujita T (2001) Initial process of polyglutamine aggregate formation in vivo. Genes Cells 6:887-897

    Article  PubMed  CAS  Google Scholar 

  • 33. Kobayashi Y, Sobue G (2001) Protective effect of chaperones on polyglutamine diseases. Brain Res Bull 56:165-168

    Article  PubMed  CAS  Google Scholar 

  • 34. Krobitsch S, Lindquist S (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 97:1589-1594

    Article  PubMed  CAS  Google Scholar 

  • 35. Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD, Kushnirov VV (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 278:49636-49643

    Article  PubMed  CAS  Google Scholar 

  • 36. Lee GJ (1995) Assaying proteins for molecular chaperone activity. Meth Cell Biol 5:325-334

    Article  Google Scholar 

  • 37. Lee P, Shabbir A, Cardozo C, Caplan AJ (2004) Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol Biol Cell 15:1785-1792

    Article  PubMed  CAS  Google Scholar 

  • 38. Lee S, Sowa ME, Watanabe YH, Sigler PB, Chiu W, Yoshida M, Tsai FT (2003) The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state. Cell 115:229-240

    Article  PubMed  CAS  Google Scholar 

  • 39. Lindquist S, Kim G (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci USA 93:5301-5306

    Article  PubMed  CAS  Google Scholar 

  • 40. Lum R, Tkach JM, Vierling E, Glover JR (2004) Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279:29139-29146

    Article  PubMed  CAS  Google Scholar 

  • 41. Lupas AN, Martin J (2002) AAA proteins. Curr Opin Struct Biol 12:746-753

    Article  PubMed  CAS  Google Scholar 

  • 42. Mogk A, Schlieker C, Strub C, Rist W, Weibezahn J, Bukau B (2003) Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. J Biol Chem 278:17615-17624

    Article  PubMed  CAS  Google Scholar 

  • 43. Mosser DD, Ho S, Glover JR (2004) Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43:8107-8115

    Article  PubMed  CAS  Google Scholar 

  • 44. Motohashi K, Watanabe Y, Yohda M, Yoshida M (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci USA 96:7184-7189

    Article  PubMed  CAS  Google Scholar 

  • 45. Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27-43

    PubMed  CAS  Google Scholar 

  • 46. Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6:575-597

    Article  PubMed  CAS  Google Scholar 

  • 47. Opal P, Zoghbi HY (2002) The role of chaperones in polyglutamine disease. Trends Mol Med 8:232-236

    Article  PubMed  CAS  Google Scholar 

  • 48. Park SK, Kim KI, Woo KM, Seol JH, Tanaka K, Ichihara A, Ha DB, Chung CH (1993) Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. J Biol Chem 268:20170-20174

    PubMed  CAS  Google Scholar 

  • 49. Parsell DA, Sanchez Y, Stitzel JD, Lindquist S (1991) Hsp104 is a highly conserved protein with two essential nucleotide- binding sites. Nature 353:270-273

    Article  PubMed  CAS  Google Scholar 

  • 50. Parsell DA, Taulien J, Lindquist S (1993) The role of heat-shock proteins in thermotolerance. Philos Trans R Soc Lond B Biol Sci 339:279-285; discussion 285-276

    PubMed  CAS  Google Scholar 

  • 51. Parsell DA, Kowal AS, Lindquist S (1994a) Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J Biol Chem 269:4480-4487

    PubMed  CAS  Google Scholar 

  • 52. Parsell DA, Kowal AS, Singer MA, Lindquist S (1994b) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475-478

    Article  PubMed  CAS  Google Scholar 

  • 53. Parsell DA, Lindquist S (1994) Heat shock proteins and stress tolerance. In: (eds) The bilogy of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 457-493

    Google Scholar 

  • 54. Patino MM, Liu JJ, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622-626

    PubMed  CAS  Google Scholar 

  • 55. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363-13383

    Article  PubMed  CAS  Google Scholar 

  • 56. Reid BG, Fenton WA, Horwich AL, Weber-Ban EU (2001) ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc Natl Acad Sci USA 98:3768-3772

    Article  PubMed  CAS  Google Scholar 

  • 57. Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU (2002) Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc Natl Acad Sci USA 99 Suppl 4:16412-16418

    Article  CAS  Google Scholar 

  • 58. Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248:1112-1115

    PubMed  CAS  Google Scholar 

  • 59. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci USA 97:5750-5755

    Article  PubMed  CAS  Google Scholar 

  • 60. Scheibel T, Bloom J, Lindquist SL (2004) The elongation of yeast prion fibers involves separable steps of association and conversion. Proc Natl Acad Sci USA 101:2287-2292

    Article  PubMed  CAS  Google Scholar 

  • 61. Schirmer EC, Glover JR, Singer MA, Lindquist S (1996) HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21:289-296

    Article  PubMed  CAS  Google Scholar 

  • 62. Schirmer EC, Queitsch C, Kowal AS, Parsell DA, Lindquist S (1998) The ATPase activity of Hsp104, effects of environmental conditions and mutations. J Biol Chem 273:15546-15552

    Article  PubMed  CAS  Google Scholar 

  • 63. Schirmer EC, Ware DM, Queitsch C, Kowal AS, Lindquist SL (2001) Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci USA 98:914-919

    Article  PubMed  CAS  Google Scholar 

  • 64. Schlee S, Beinker P, Akhrymuk A, Reinstein J (2004) A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK. J Mol Biol 336:275-285

    Article  PubMed  CAS  Google Scholar 

  • 65. Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A (2004) Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 11:607-615

    Article  PubMed  CAS  Google Scholar 

  • 66. Seol JH, Baek SH, Kang MS, Ha DB, Chung CH (1995) Distinctive roles of the two ATP-binding sites in ClpA, the ATPase component of protease Ti in Escherichia coli. J Biol Chem 270:8087-8092

    Article  PubMed  CAS  Google Scholar 

  • 67. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289:1317-1321

    Article  PubMed  CAS  Google Scholar 

  • 68. Sherman MY, Muchowski PJ (2003) Making yeast tremble: yeast models as tools to study neurodegenerative disorders. Neuromolecular Med 4:133-146

    Article  PubMed  CAS  Google Scholar 

  • 69. Shorter J, Lindquist S (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304:1793-1797

    Article  PubMed  CAS  Google Scholar 

  • 70. Siddiqui SM, Sauer RT, Baker TA (2004) Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev 18:369-374

    Article  PubMed  CAS  Google Scholar 

  • 71. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639-648

    Article  PubMed  CAS  Google Scholar 

  • 72. Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR (2000) Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc Natl Acad Sci USA 97:8898-8903

    Article  PubMed  CAS  Google Scholar 

  • 73. Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR (2001) Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis. J Biol Chem 276:29420-29429

    Article  PubMed  CAS  Google Scholar 

  • 74. Song HK, Hartmann C, Ramachandran R, Bochtler M, Behrendt R, Moroder L, Huber R (2000) Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci USA 97:14103-14108

    Article  PubMed  CAS  Google Scholar 

  • 75. Sousa MC, Trame CB, Tsuruta H, Wilbanks SM, Reddy VS, McKay DB (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103:633-643

    Article  PubMed  CAS  Google Scholar 

  • 76. Swan TM, Watson K (1999) Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Can J Microbiol 45:472-479

    Article  PubMed  CAS  Google Scholar 

  • 77. Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7:683-692

    PubMed  CAS  Google Scholar 

  • 78. Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671-676

    PubMed  CAS  Google Scholar 

  • 79. Tkach JM, Glover JR (2004) Amino acid substitutions in the C-terminal AAA+ module of Hsp104 prevent substrate recognition by disrupting oligomerization and Cause high temperature inactivation. J Biol Chem 279:35692-35701

    Article  PubMed  CAS  Google Scholar 

  • 80. Tuite MF, Mundy CR, Cox BS (1981) Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98:691-711

    PubMed  CAS  Google Scholar 

  • 81. Vogel JL, Parsell DA, Lindquist S (1995) Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol 5:306-317

    Article  PubMed  CAS  Google Scholar 

  • 82. Wah DA, Levchenko I, Rieckhof GE, Bolon DN, Baker TA, Sauer RT (2003) Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol Cell 12:355-363

    Article  PubMed  CAS  Google Scholar 

  • 83. Wakem LP, Sherman F (1990) Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. Genetics 124:515-522

    PubMed  CAS  Google Scholar 

  • 84. Wang J, Song JJ, Franklin MC, Kamtekar S, Im YJ, Rho SH, Seong IS, Lee CS, Chung CH, Eom SH (2001) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP- dependent proteolysis mechanism. Structure 9:177-184

    Article  PubMed  CAS  Google Scholar 

  • 85. Weibezahn J, Bukau B, Mogk A (2004a) Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb Cell Fact 3:1

    Article  PubMed  Google Scholar 

  • 86. Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FT, Mogk A, Bukau B (2004b) Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653-665

    Article  PubMed  CAS  Google Scholar 

  • 87. Wojtyra UA, Thibault G, Tuite A, Houry WA (2003) The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J Biol Chem 278:48981-48990

    Article  PubMed  CAS  Google Scholar 

  • 88. Wyttenbach A (2004) Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci 23:69-96

    Article  PubMed  CAS  Google Scholar 

  • 89. Xia D, Esser L, Singh SK, Guo F, Maurizi MR (2004) Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone. J Struct Biol 146:166-179

    Article  PubMed  CAS  Google Scholar 

  • 90. Zietkiewicz S, Krzewska J, Liberek K (2004) Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J Biol Chem 279:44376-44383

    Article  PubMed  CAS  Google Scholar 

  • 91. Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem 274:28083-28086

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ineke Braakman

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Tkach, J.M., Glover, J.R. Hsp104p: a protein disaggregase. In: Braakman, I. (eds) Chaperones. Topics in Current Genetics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_89

Download citation

Publish with us

Policies and ethics