Skip to main content

Stress-activated MAP Kinases in Chromatin and Transcriptional Complexes

  • Chapter
  • First Online:
Stress-Activated Protein Kinases

Part of the book series: Topics in Current Genetics ((TCG,volume 20))

Abstract

Stress-activated MAP kinases (SAPKs) are activated by stressors or by certain physiological stimuli and mediate an intracellular response appropriate to the change in environment. Long-term adaptation requires reprogramming of transcription and one of the most significant actions of SAPK cascades is therefore induction of gene expression. SAPKs and their downstream kinases phosphorylate many chromatin-associated and transcription factors. Further, they can induce localised histone modification by regulating histone acetyltransferases and deacetylases. p38/SAPK2 also elicits phosphorylation of the nucleosomal proteins histone H3 and HMGN1 (previously HMG-14) via the downstream mitogen- and stress-stimulated kinases MSK1/2. Finally, recent evidence indicates a novel non-enzymatic SAPK function in transcriptional complexes, suggesting a more structural role. The yeast SAPK Hog1p is recruited to a proportion of its target genes on activation and localises beyond the promoter into coding regions. The observation that Hog1p interacts with elongating RNA polymerase II in addition to several transcriptional elongation factors has led to the suggestion that this SAPK may behave like an elongation factor at some target genes. The generality of this new function is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22:2433–2442

    Article  PubMed  CAS  Google Scholar 

  2. Atienza JM, Suh M, Xenarios I, Landgraf R, Colicelli J (2000) Human ERK1 induces filamentous growth and cell wall remodeling pathways in Saccharomyces cerevisiae. J Biol Chem 275:20638–20646

    Article  PubMed  CAS  Google Scholar 

  3. Bruna A, Nicolas M, Munoz A, Kyriakis JM, Caelles C (2003) Glucocorticoid receptor-JNK interaction mediates inhibition of the JNK pathway by glucocorticoids. EMBO J 22:6035–6044

    Article  PubMed  CAS  Google Scholar 

  4. Carter AB, Knudtson KL, Monick MM, Hunninghake GW (1999) The p38 mitogen-activated protein kinase is required for NF-κB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 274:30858–30863

    Article  PubMed  CAS  Google Scholar 

  5. Carter AB, Tephly LA, Hunninghake GW (2001) The absence of activator protein 1-dependent gene expression in THP-1 macrophages stimulated with phorbol esters is due to lack of p38 mitogen-activated protein kinase activation. J Biol Chem 276:33826–33832

    Article  PubMed  CAS  Google Scholar 

  6. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  7. Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  PubMed  CAS  Google Scholar 

  8. Clayton AL, Mahadevan LC (2003) MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 546:51–58

    Article  PubMed  CAS  Google Scholar 

  9. de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–740

    Article  PubMed  CAS  Google Scholar 

  10. de Nadal E, Casadome L, Posas F (2003) Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol 23:229–237

    Article  PubMed  CAS  Google Scholar 

  11. de Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374

    Article  PubMed  CAS  Google Scholar 

  12. Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441

    Article  PubMed  CAS  Google Scholar 

  13. Dunn KL, Davie JR (2005) Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28. Oncogene 24:3492–3502

    Article  PubMed  CAS  Google Scholar 

  14. Dyson MH, Thomson S, Inagaki M, Goto H, Arthur SJ, Nightingale K, Iborra FJ, Mahadevan LC (2005) MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J Cell Sci 118:2247–2259

    Article  PubMed  CAS  Google Scholar 

  15. Edmunds JW, Mahadevan LC (2004) MAP kinases as structural adaptors and enzymatic activators in transcription complexes. J Cell Sci 117:3715–3723

    Article  PubMed  CAS  Google Scholar 

  16. Galcheva-Gargova Z, Derijard B, Wu IH, Davis RJ (1994) An osmosensing signal transduction pathway in mammalian cells. Science 265:806–808

    Article  PubMed  CAS  Google Scholar 

  17. Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T (2004) Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 14:1436–1450

    Article  PubMed  CAS  Google Scholar 

  18. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  PubMed  CAS  Google Scholar 

  19. Kawasaki H, Schiltz L, Chiu R, Itakura K, Taira K, Nakatani Y, Yokoyama KK (2000) ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405:195–200

    Article  PubMed  CAS  Google Scholar 

  20. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  21. Li QJ, Yang SH, Maeda Y, Sladek FM, Sharrocks AD, Martins-Green M (2003) MAP kinase phosphorylation-dependent activation of Elk-1 leads to activation of the co-activator p300. EMBO J 22:281–291

    Article  PubMed  CAS  Google Scholar 

  22. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  23. Macdonald N, Welburn JP, Noble ME, Nguyen A, Yaffe MB, Clynes D, Moggs JG, Orphanides G, Thomson S, Edmunds JW, Clayton AL, Endicott JA, Mahadevan LC (2005) Molecular basis for the recognition of phosphorylated and phosphoacetylated histone H3 by 14-3-3. Mol Cell 20:199–211

    Article  PubMed  CAS  Google Scholar 

  24. Mahadevan LC, Willis AC, Barratt MJ (1991) Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65:775–783

    Article  PubMed  CAS  Google Scholar 

  25. Meek SE, Lane WS, Piwnica-Worms H (2004) Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J Biol Chem 279:32046–32054

    Article  PubMed  CAS  Google Scholar 

  26. Mellor J (2005) The dynamics of chromatin remodeling at promoters. Mol Cell 19:147–157

    Article  PubMed  CAS  Google Scholar 

  27. Nissen LJ, Gelly JC, Hipskind RA (2001) Induction-independent recruitment of CREB-binding protein to the c-fos serum response element through interactions between the bromodomain and Elk-1. J Biol Chem 276:5213–5221

    Article  PubMed  CAS  Google Scholar 

  28. Nowak SJ, Corces VG (2000) Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev 14:3003–3013

    Article  PubMed  CAS  Google Scholar 

  29. O'Rourke SM, Herskowitz I, O'Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18:405–412

    Article  PubMed  Google Scholar 

  30. Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA (2006) Activated signal transduction kinases frequently occupy target genes. Science 313:533–536

    Article  PubMed  CAS  Google Scholar 

  31. Posas F, Takekawa M, Saito H (1998) Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1:175–182

    Article  PubMed  CAS  Google Scholar 

  32. Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23:241–250

    Article  PubMed  CAS  Google Scholar 

  33. Proft M, Pascual-Ahuir A, de Nadal E, Arino J, Serrano R, Posas F (2001) Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20:1123–1133

    Article  PubMed  CAS  Google Scholar 

  34. Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9:1307–1317

    Article  PubMed  CAS  Google Scholar 

  35. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674

    Article  PubMed  CAS  Google Scholar 

  36. Read MA, Whitley MZ, Gupta S, Pierce JW, Best J, Davis RJ, Collins T (1997) Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-κB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem 272:2753–2761

    Article  PubMed  CAS  Google Scholar 

  37. Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285:886–891

    Article  PubMed  CAS  Google Scholar 

  38. Simone C, Forcales SV, Hill DA, Imbalzano AN, Latella L, Puri PL (2004) p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 36:738–743

    Article  PubMed  CAS  Google Scholar 

  39. Sims RJ 3rd, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18:2437–2468

    Article  PubMed  CAS  Google Scholar 

  40. Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH, Hazzalin CA, Mahadevan LC, Arthur JS (2003) MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22:2788–2797

    Article  PubMed  CAS  Google Scholar 

  41. Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC (1999a) The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J 18:4779–4793

    Article  PubMed  CAS  Google Scholar 

  42. Thomson S, Hollis A, Hazzalin CA, Mahadevan LC (2004) Distinct stimulus-specific histone modifications at hsp70 chromatin targeted by the transcription factor heat shock factor-1. Mol Cell 15:585–594

    Article  PubMed  CAS  Google Scholar 

  43. Thomson S, Mahadevan LC, Clayton AL (1999b) MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol 10:205–214

    Article  PubMed  CAS  Google Scholar 

  44. Weiss C, Schneider S, Wagner EF, Zhang X, Seto E, Bohmann D (2003) JNK phosphorylation relieves HDAC3-dependent suppression of the transcriptional activity of c-Jun. EMBO J 22:3686–3695

    Article  PubMed  CAS  Google Scholar 

  45. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  46. Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JS (2002) MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol 22:2871–2881

    Article  PubMed  CAS  Google Scholar 

  47. Yang SH, Sharrocks AD (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13:611–617

    Article  PubMed  CAS  Google Scholar 

  48. Yang SH, Sharrocks AD, Whitmarsh AJ (2003) Transcriptional regulation by the MAP kinase signaling cascades. Gene 320:3–21

    Article  PubMed  CAS  Google Scholar 

  49. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis C. Mahadevan .

Editor information

Francesc Posas Angel R. Nebreda

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crump, N.T., Han, Y.T., Mahadevan, L.C. (2007). Stress-activated MAP Kinases in Chromatin and Transcriptional Complexes. In: Posas, F., Nebreda, A.R. (eds) Stress-Activated Protein Kinases. Topics in Current Genetics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0254

Download citation

Publish with us

Policies and ethics