Skip to main content

Regulation of Tumorigenesis by p38α MAP Kinase

  • Chapter
  • First Online:
Book cover Stress-Activated Protein Kinases

Part of the book series: Topics in Current Genetics ((TCG,volume 20))

Abstract

p38α is a stress-activated protein kinase that can suppress tumor formation by negatively regulating cell cycle progression or by inducing apoptosis. More recently, the ability of p38α to induce cell differentiation has also been connected to tumor suppression. Accordingly, several proteins that can potentially downregulate the activity of p38α have been found overexpressed in human tumors and cancer cell lines. However, p38α can impinge on cancer progression by modulating other cellular responses, in addition to proliferation and differentiation, such as cell migration as well as the processes of invasion and inflammation. This could explain why, in some cancer types, p38α activation has been correlated with malignancy and poor prognosis rather than with tumor suppression. Here, we will review the evidence connecting p38α to distinct cancer traits and will discuss the mechanisms that may account for the oncogenic and tumor suppressor roles of p38α.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345

    Article  PubMed  CAS  Google Scholar 

  2. Alonso G, Ambrosino C, Jones M, Nebreda AR (2000) Differential activation of p38 mitogen-activated protein kinase isoforms depending on signal strength. J Biol Chem 275:40641–40648

    Article  PubMed  CAS  Google Scholar 

  3. Alvarado-Kristensson M, Melander F, Leandersson K, Ronnstrand L, Wernstedt C, Andersson T (2004) p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med 199:449–458

    Article  PubMed  CAS  Google Scholar 

  4. Aouadi M, Bost F, Caron L, Laurent K, Le Marchand Brustel Y, Binetruy B (2006) p38 mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis or cardiomyogenesis. Stem Cells 24:1399–1406

    Article  PubMed  CAS  Google Scholar 

  5. Arthur JS, Darragh J (2006) Signaling downstream of p38 in psoriasis. J Invest Dermatol 126:1689–1691

    Article  PubMed  CAS  Google Scholar 

  6. Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20:147–155

    Article  PubMed  CAS  Google Scholar 

  7. Baniyash M (2006) Chronic inflammation, immunosuppression and cancer: new insights and outlook. Semin Cancer Biol 16:80–88

    Article  PubMed  CAS  Google Scholar 

  8. Bensaad K, Vousden KH (2005) Savior and slayer: the two faces of p53. Nat Med 11:1278–1279

    Article  PubMed  CAS  Google Scholar 

  9. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969–1978

    Article  PubMed  CAS  Google Scholar 

  10. Brozovic A, Fritz G, Christmann M, Zisowski J, Jaehde U, Osmak M, Kaina B (2004) Long-term activation of SAPK/JNK, p38 kinase and Fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance. Int J Cancer 112:974–985

    Article  PubMed  CAS  Google Scholar 

  11. Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, Ambrosino C, Sauter G, Nebreda AR, Anderson CW, Kallioniemi A, Fornace AJ, Appella E (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31:210–215

    Article  PubMed  CAS  Google Scholar 

  12. Bulavin DV, Fornace AJ Jr (2004) p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 92:95–118

    Article  PubMed  CAS  Google Scholar 

  13. Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, Appella E, Fornace AJ Jr (2001) Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411:102–107

    Article  PubMed  CAS  Google Scholar 

  14. Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350

    Article  PubMed  CAS  Google Scholar 

  15. Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  PubMed  CAS  Google Scholar 

  16. Cai B, Chang SH, Becker EB, Bonni A, Xia Z (2006) p38 MAP kinase mediates apoptosis through phosphorylation of BimEL at Ser-65. J Biol Chem 281:25215–25222

    Article  PubMed  CAS  Google Scholar 

  17. Cappellini A, Tazzari PL, Mantovani I, Billi AM, Tassi C, Ricci F, Conte R, Martelli AM (2005) Antiapoptotic role of p38 mitogen activated protein kinase in Jurkat T cells and normal human T lymphocytes treated with 8-methoxypsoralen and ultraviolet-A radiation. Apoptosis 10:141–152

    Article  PubMed  CAS  Google Scholar 

  18. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl3):4–10

    Article  PubMed  CAS  Google Scholar 

  19. Carter AB, Knudtson KL, Monick MM, Hunninghake GW (1999) The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 274:30858–30863

    Article  PubMed  CAS  Google Scholar 

  20. Casanovas O, Jaumot M, Paules AB, Agell N, Bachs O (2004) P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene 23:7537–7544

    Article  PubMed  CAS  Google Scholar 

  21. Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N, Bachs O (2000) Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J Biol Chem 275:35091–35097

    Article  PubMed  CAS  Google Scholar 

  22. Chen G, Hitomi M, Han J, Stacey DW (2000) The p38 pathway provides negative feedback for Ras proliferative signaling. J Biol Chem 275:38973–38980

    Article  PubMed  CAS  Google Scholar 

  23. Chen L, He HY, Li HM, Zheng J, Heng WJ, You JF, Fang WG (2004) ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett 215:239–247

    Article  PubMed  CAS  Google Scholar 

  24. Chen YC, Chen SY, Ho PS, Lin CH, Cheng YY, Wang JK, Sytwu HK (2006) Apoptosis of T-leukemia and B-myeloma cancer cells induced by hyperbaric oxygen increased phosphorylation of p38 MAPK. Leuk Res 31:805–815

    Article  PubMed  CAS  Google Scholar 

  25. Choi S-Y, Kim M-J, Kang C-M, Bae S, Cho C-K, Soh J-W, Kim J-H, Kang S, Chung HY, Lee Y-S, Lee S-J (2006) Activation of Bak and Bax through c-Abl-protein kinase Cδ-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. J Biol Chem 281:7049–7059

    Article  PubMed  CAS  Google Scholar 

  26. Coltella N, Rasola A, Nano E, Bardella C, Fassetta M, Filigheddu N, Graziani A, Comoglio PM, Di Renzo MF (2006) p38 MAPK turns hepatocyte growth factor to a death signal that commits ovarian cancer cells to chemotherapy-induced apoptosis. Int J Cancer 118:2981–2990

    Article  PubMed  CAS  Google Scholar 

  27. Comoglio PM, Trusolino L (2005) Cancer: the matrix is now in control. Nat Med 11:1156–1159

    Article  PubMed  CAS  Google Scholar 

  28. Cosaceanu D, Budiu RA, Carapancea M, Castro J, Lewensohn R, Dricu A (2006) Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene 26:2423–2434

    Article  PubMed  CAS  Google Scholar 

  29. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  PubMed  CAS  Google Scholar 

  30. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852

    Article  PubMed  CAS  Google Scholar 

  31. Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, McDonough PM, GlEMBOtski CC (2000) p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem 275:23814–23824

    Article  PubMed  CAS  Google Scholar 

  32. Crawley JB, Rawlinson L, Lali FV, Page TH, Saklatvala J, Foxwell BM (1997) T cell proliferation in response to interleukins 2 and 7 requires p38MAP kinase activation. J Biol Chem 272:15023–15027

    Article  PubMed  CAS  Google Scholar 

  33. Cuadrado A, Lafarga V, Cheung PCF, Dolado I, Llanos S, Cohen P, Nebreda AR (2007) A new p38 MAP kinase-regulated transcriptional co-activator that stimulates p53-dependent apoptosis. EMBO J 26:2115–2126

    Article  PubMed  CAS  Google Scholar 

  34. De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P, Higashimoto Y, Damonte G, Armirotti A, Amodei S, Palamara AT, Russo T, Garaci E, Cozzolino F (2006) Bcl-2 Phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem 281:21353–21361

    Article  PubMed  CAS  Google Scholar 

  35. De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374

    Article  PubMed  CAS  Google Scholar 

  36. Deacon K, Mistry P, Chernoff J, Blank JL, Patel R (2003) p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell 14:2071–2087

    Article  PubMed  CAS  Google Scholar 

  37. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  38. Dmitrieva NI, Bulavin DV, Fornace AJ Jr, Burg MB (2002) Rapid activation of G2/M checkpoint after hypertonic stress in renal inner medullary epithelial (IME) cells is protective and requires p38 kinase. Proc Natl Acad Sci USA 99:184–189

    Article  PubMed  CAS  Google Scholar 

  39. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR (2007) p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11:191–205

    Article  PubMed  CAS  Google Scholar 

  40. Dreissigacker U, Mueller MS, Unger M, Siegert P, Genze F, Gierschik P, Giehl K (2006) Oncogenic K-Ras down-regulates Rac1 and RhoA activity and enhances migration and invasion of pancreatic carcinoma cells through activation of p38. Cell Signal 18:1156–1168

    Article  PubMed  CAS  Google Scholar 

  41. Edsjo A, Holmquist L, Pahlman S (2006) Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation. Semin Cancer Biol 17:248–256

    Article  PubMed  CAS  Google Scholar 

  42. Elenitoba-Johnson KS, Jenson SD, Abbott RT, Palais RA, Bohling SD, Lin Z, Tripp S, Shami PJ, Wang LY, Coupland RW, Buckstein R, Perez-Ordonez B, Perkins SL, Dube ID, Lim MS (2003) Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Proc Natl Acad Sci USA 100:7259–7264

    Article  PubMed  CAS  Google Scholar 

  43. Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS (2005) Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol 25:4853–4862

    Article  PubMed  CAS  Google Scholar 

  44. Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT (2005) p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19:1175–1187

    Article  PubMed  CAS  Google Scholar 

  45. Engelberg D (2004) Stress-activated protein kinases-tumor suppressors or tumor initiators? Semin Cancer Biol 14:271–282

    Article  PubMed  CAS  Google Scholar 

  46. Esteva FJ, Sahin AA, Smith TL, Yang Y, Pusztai L, Nahta R, Buchholz TA, Buzdar AU, Hortobagyi GN, Bacus SS (2004) Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma. Cancer 100:499–506

    Article  PubMed  CAS  Google Scholar 

  47. Fan L, Yang X, Du J, Marshall M, Blanchard K, Ye X (2005) A novel role of p38alpha MAPK in mitotic progression independent of its kinase activity. Cell Cycle 4:1616–1624

    Article  PubMed  CAS  Google Scholar 

  48. Fan M, Chambers TC (2001) Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist Updat 4:253–267

    Article  PubMed  CAS  Google Scholar 

  49. Farley N, Pedraza-Alva G, Serrano-Gomez D, Nagaleekar V, Aronshtam A, Krahl T, Thornton T, Rincon M (2006) p38 mitogen-activated protein kinase mediates the Fas-induced mitochondrial death pathway in CD8+ T cells. Mol Cell Biol 26:2118–2129

    Article  PubMed  CAS  Google Scholar 

  50. Fassetta M, D'Alessandro L, Coltella N, Di Renzo MF, Rasola A (2006) Hepatocyte growth factor installs a survival platform for colorectal cancer cell invasive growth and overcomes p38 MAPK-mediated apoptosis. Cell Signal 18:1967–1976

    Article  PubMed  CAS  Google Scholar 

  51. Faust D, Dolado I, Cuadrado A, Oesch F, Weiss C, Nebreda AR, Dietrich C (2005) p38alpha MAPK is required for contact inhibition. Oncogene 24:7941–7945

    Article  PubMed  CAS  Google Scholar 

  52. Finn GJ, Creaven BS, Egan DA (2004) Daphnetin induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinase. Biochem Pharmacol 67:1779–1788

    Article  PubMed  CAS  Google Scholar 

  53. Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M, Di Nardo P (2006) Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24:23–33

    Article  PubMed  CAS  Google Scholar 

  54. Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J (1994) Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78:1039–1049

    Article  PubMed  CAS  Google Scholar 

  55. Frey MR, Dise RS, Edelblum KL, Polk DB (2006) p38 kinase regulates epidermal growth factor receptor downregulation and cellular migration. EMBO J 25:5683–5692

    Article  PubMed  CAS  Google Scholar 

  56. Garner AP, Weston CR, Todd DE, Balmanno K, Cook SJ (2002) Delta MEKK3:ER* activation induces a p38 alpha/beta 2-dependent cell cycle arrest at the G2 checkpoint. Oncogene 21:8089–8104

    Article  PubMed  CAS  Google Scholar 

  57. Gauthier ML, Pickering CR, Miller CJ, Fordyce CA, Chew KL, Berman HK, Tlsty TD (2005) p38 regulates cyclooxygenase-2 in human mammary epithelial cells and is activated in premalignant tissue. Cancer Res 65:1792–1799

    Article  PubMed  CAS  Google Scholar 

  58. Godoy-Tundidor S, Cavarretta IT, Fuchs D, Fiechtl M, Steiner H, Friedbichler K, Bartsch G, Hobisch A, Culig Z (2005) Interleukin-6 and oncostatin M stimulation of proliferation of prostate cancer 22Rv1 cells through the signaling pathways of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Prostate 64:209–216

    Article  PubMed  CAS  Google Scholar 

  59. Gollob JA, Wilhelm S, Carter C, Kelley SL (2006) Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol 33:392–406

    Article  PubMed  CAS  Google Scholar 

  60. Goloudina A, Yamaguchi H, Chervyakova DB, Appella E, Fornace AJ Jr, Bulavin DV (2003) Regulation of human Cdc25A stability by Serine 75 phosphorylation is not sufficient to activate a S phase checkpoint. Cell Cycle 2:473–478

    Article  PubMed  CAS  Google Scholar 

  61. Gratton JP, Morales-Ruiz M, Kureishi Y, Fulton D, Walsh K, Sessa WC (2001) Akt down-regulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. J Biol Chem 276:30359–30365

    Article  PubMed  CAS  Google Scholar 

  62. Greenberg AK, Basu S, Hu J, Yie TA, Tchou-Wong KM, Rom WN, Lee TC (2002) Selective p38 activation in human non-small cell lung cancer. Am J Respir Cell Mol Biol 26:558–564

    PubMed  CAS  Google Scholar 

  63. Grethe S, Ares MP, Andersson T, Porn-Ares MI (2004) p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-x(L). Exp Cell Res 298:632–642

    Article  PubMed  CAS  Google Scholar 

  64. Grethe S, Coltella N, Di Renzo MF, Porn-Ares MI (2006) p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis. Biochem Biophys Res Commun 347:781–790

    Article  PubMed  CAS  Google Scholar 

  65. Grethe S, Porn-Ares MI (2006) p38 MAPK regulates phosphorylation of Bad via PP2A-dependent suppression of the MEK1/2-ERK1/2 survival pathway in TNF-alpha induced endothelial apoptosis. Cell Signal 18:531–540

    Article  PubMed  CAS  Google Scholar 

  66. Halawani D, Mondeh R, Stanton LA, Beier F (2004) p38 MAP kinase signaling is necessary for rat chondrosarcoma cell proliferation. Oncogene 23:3726–3731

    Article  PubMed  CAS  Google Scholar 

  67. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    Article  PubMed  CAS  Google Scholar 

  68. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  69. Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR, Piette J, Agostinis P (2003) Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem 278:52231–52239

    Article  PubMed  CAS  Google Scholar 

  70. Herrera B, Carracedo A, Diez-Zaera M, Guzman M, Velasco G (2005) p38 MAPK is involved in CB2 receptor-induced apoptosis of human leukaemia cells. FEBS Lett 579:5084–5088

    Article  PubMed  CAS  Google Scholar 

  71. Hickson JA, Huo D, Vander Griend DJ, Lin A, Rinker-Schaeffer CW, Yamada SD (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66:2264–2270

    Article  PubMed  CAS  Google Scholar 

  72. Hideshima T, Akiyama M, Hayashi T, Richardson P, Schlossman R, Chauhan D, Anderson KC (2003) Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 101:703–705

    Article  PubMed  CAS  Google Scholar 

  73. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  74. Hirose Y, Katayama M, Stokoe D, Haas-Kogan DA, Berger MS, Pieper RO (2003) The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol 23:8306–8315

    Article  PubMed  CAS  Google Scholar 

  75. Hou ST, Xie X, Baggley A, Park DS, Chen G, Walker T (2002) Activation of the Rb/E2F1 pathway by the nonproliferative p38 MAPK during Fas (APO1/CD95)-mediated neuronal apoptosis. J Biol Chem 277:48764–48770

    Article  PubMed  CAS  Google Scholar 

  76. Houghton J, Morozov A, Smirnova I, Wang TC (2006) Stem cells and cancer. Semin Cancer Biol 17:191–203

    Article  PubMed  CAS  Google Scholar 

  77. Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093

    Article  PubMed  CAS  Google Scholar 

  78. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  PubMed  CAS  Google Scholar 

  79. Iyoda K, Sasaki Y, Horimoto M, Toyama T, Yakushijin T, Sakakibara M, Takehara T, Fujimoto J, Hori M, Wands JR, Hayashi N (2003) Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 97:3017–3026

    Article  PubMed  CAS  Google Scholar 

  80. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164

    Article  PubMed  CAS  Google Scholar 

  81. Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF, Molkentin JD (2004) Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. J Biol Chem 279:15524–15530

    Article  PubMed  CAS  Google Scholar 

  82. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  83. Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3:513–519

    PubMed  CAS  Google Scholar 

  84. Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi D, Flavell RA, Davis RJ (2003) Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev 17:629–637

    Article  PubMed  CAS  Google Scholar 

  85. Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281:21256–21265

    Article  PubMed  CAS  Google Scholar 

  86. Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E (2002a) The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J Biol Chem 277:29792–29802

    Article  PubMed  CAS  Google Scholar 

  87. Kim JY, Choi JA, Kim TH, Yoo YD, Kim JI, Lee YJ, Yoo SY, Cho CK, Lee YS, Lee SJ (2002b) Involvement of p38 mitogen-activated protein kinase in the cell growth inhibition by sodium arsenite. J Cell Physiol 190:29–37

    Article  PubMed  CAS  Google Scholar 

  88. Kim MS, Lee EJ, Kim HR, Moon A (2003) p38 kinase is a key signaling molecule for H-Ras-induced cell motility and invasive phenotype in human breast epithelial cells. Cancer Res 63:5454–5461

    PubMed  CAS  Google Scholar 

  89. Klein F, Feldhahn N, Herzog S, Sprangers M, Mooster JL, Jumaa H, Muschen M (2006) BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene 25:1118–1124

    Article  PubMed  CAS  Google Scholar 

  90. Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K (2006) MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 25:713–726

    Article  PubMed  CAS  Google Scholar 

  91. Kohno K, Uchiumi T, Niina I, Wakasugi T, Igarashi T, Momii Y, Yoshida T, Matsuo K, Miyamoto N, Izumi H (2005) Transcription factors and drug resistance. Eur J Cancer 41:2577–2586

    Article  PubMed  CAS  Google Scholar 

  92. Kumar P, Miller AI, Polverini PJ (2004) p38 MAPK mediates -irradiation-induced endothelial cell apoptosis, and vascular endothelial growth factor protects endothelial cells through the phosphoinositide-3-kinase-Akt-Bcl-2 pathway. J Biol Chem 279:43352–43360

    Article  PubMed  CAS  Google Scholar 

  93. Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  PubMed  CAS  Google Scholar 

  94. Kurosu T, Takahashi Y, Fukuda T, Koyama T, Miki T, Miura O (2005) p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide. Apoptosis 10:1111–1120

    Article  PubMed  CAS  Google Scholar 

  95. Kwon Y-W, Ueda S, Ueno M, Yodoi J, Masutani H (2002) Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene. J Biol Chem 277:1837–1844

    Article  PubMed  CAS  Google Scholar 

  96. Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J (1996) Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 271:20608–20616

    Article  PubMed  CAS  Google Scholar 

  97. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Keys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746

    Article  PubMed  CAS  Google Scholar 

  98. Lee RJ, Albanese C, Stenge RJ, Watanab G, Inghiram G, Haines GK 3rd, Webster M, Muller WJ, Brugge JS, Davis RJ, Pestell RG (1999) pp60(v-src) induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP response element-binding protein and activating transcription factor-2 in pp60(v-src) signaling in breast cancer cells. J Biol Chem 274:7341–7350

    Article  PubMed  CAS  Google Scholar 

  99. Lee S-K, Jang H-J, Lee HJ, Lee J, Jeon B-H, Jun C-D, Lee S-K, Kim E-C (2006) p38 and ERK MAP kinase mediate iron chelator-induced apoptosis and suppressed differentiation of immortalized and malignant human oral keratinocytes. Life Sci 79:1419–1427

    Article  PubMed  CAS  Google Scholar 

  100. Lemaire M, Froment C, Boutros R, Mondesert O, Nebreda AR, Monsarrat B, Ducommun B (2006) CDC25B Phosphorylation by p38 and MK-2. Cell Cycle 5:1649–1653

    Article  PubMed  CAS  Google Scholar 

  101. Lewis JS, Vijayanathan V, Thomas TJ, Pestell RG, Albanese C, Gallo MA, Thomas T (2005) Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol Res 15:113–128

    PubMed  CAS  Google Scholar 

  102. Li J, Campanale NV, Liang RJ, Deane JA, Bertram JF, Ricardo SD (2006) Inhibition of p38 mitogen-activated protein kinase and transforming growth factor-{beta}1/Smad signaling pathways modulates the development of fibrosis in adriamycin-induced nephropathy. Am J Pathol 169:1527–1540

    Article  PubMed  CAS  Google Scholar 

  103. Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KC, Gabriele T, McCurrach ME, Marks JR, Hoey T, Lowe SW, Powers S (2002) Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31:133–134

    Article  PubMed  CAS  Google Scholar 

  104. Li SP, Junttila MR, Han J, Kahari VM, Westermarck J (2003) p38 Mitogen-activated protein kinase pathway suppresses cell survival by inducing dephosphorylation of mitogen-activated protein/extracellular signal-regulated kinase kinase1,2. Cancer Res 63:3473–3477

    PubMed  CAS  Google Scholar 

  105. Liu Q, Hofmann PA (2004) Protein phosphatase 2A-mediated cross-talk between p38 MAPK and ERK in apoptosis of cardiac myocytes. Am J Physiol Heart Circ Physiol 286:H2204–2212

    Article  PubMed  CAS  Google Scholar 

  106. Liu RY, Fan C, Liu G, Olashaw NE, Zuckerman KS (2000) Activation of p38 mitogen-activated protein kinase is required for tumor necrosis factor-alpha -supported proliferation of leukemia and lymphoma cell lines. J Biol Chem 275:21086–21093

    Article  PubMed  CAS  Google Scholar 

  107. Lluis F, Perdiguero E, Nebreda AR, Munoz-Canoves P (2006) Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol 16:36–44

    Article  PubMed  CAS  Google Scholar 

  108. Losa JH, Parada Cobo C, Viniegra JG, Sanchez-Arevalo Lobo VJ, Ramon y Cajal S, Sanchez-Prieto R (2003) Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22:3998–4006

    Article  PubMed  CAS  Google Scholar 

  109. Lu J, Quearry B, Harada H (2006) p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Lett 580:3539–3544

    Article  PubMed  CAS  Google Scholar 

  110. Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17:37–48

    Article  PubMed  CAS  Google Scholar 

  111. Manning AM, Davis RJ (2003) Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2:554–565

    Article  PubMed  CAS  Google Scholar 

  112. Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970

    Article  PubMed  CAS  Google Scholar 

  113. Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, Siddik ZH, Mills GB, Claret FX (2003) Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem 278:19245–19256

    Article  PubMed  CAS  Google Scholar 

  114. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790

    Article  PubMed  CAS  Google Scholar 

  115. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2004) The ASK1-MAP Kinase cascades in mammalian stress response. J Biochem 136:261–265

    Article  PubMed  CAS  Google Scholar 

  116. Matsuo Y, Amano S, Furuya M, Namiki K, Sakurai K, Nishiyama M, Sudo T, Tatsumi K, Kuriyama T, Kimura S, Kasuya Y (2006) Involvement of p38{alpha} Mitogen-activated protein kinase in lung metastasis of tumor cells. J Biol Chem 281:36767–36775

    Article  PubMed  CAS  Google Scholar 

  117. McMullen ME, Bryant PW, GlEMBOtski CC, Vincent PA, Pumiglia KM (2005) Activation of p38 has opposing effects on the proliferation and migration of endothelial cells. J Biol Chem 280:20995–21003

    Article  PubMed  CAS  Google Scholar 

  118. Merritt C, Enslen H, Diehl N, Conze D, Davis RJ, Rincon M (2000) Activation of p38 mitogen-activated protein kinase in vivo selectively induces apoptosis of CD8(+) but not CD4(+) T cells. Mol Cell Biol 20:936–946

    Article  PubMed  CAS  Google Scholar 

  119. Mikhailov A, Shinohara M, Rieder CL (2004) Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. J Cell Biol 166:517–526

    Article  PubMed  CAS  Google Scholar 

  120. Mikhailov A, Shinohara M, Rieder CL (2005) The p38-mediated stress-activated checkpoint. A rapid response system for delaying progression through antephase and entry into mitosis. Cell Cycle 4:57–62

    Article  PubMed  CAS  Google Scholar 

  121. Miller AL, Webb MS, Copik AJ, Wang Y, Johnson BH, Kumar R, Thompson EB (2005) p38 Mitogen-activated protein kinase (MAPK) is a key mediator in glucocorticoid-induced apoptosis of lymphoid cells: correlation between p38 MAPK activation and site-specific phosphorylation of the human glucocorticoid receptor at serine 211. Mol Endocrinol 19:1569–1583

    Article  PubMed  CAS  Google Scholar 

  122. Molnar A, Theodoras AM, Zon LI, Kyriakis JM (1997) Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. J Biol Chem 272:13229–13235

    Article  PubMed  CAS  Google Scholar 

  123. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275

    Article  PubMed  CAS  Google Scholar 

  124. Nakayama K, Gazdoiu S, Abraham R, Pan ZQ, Ronai Z (2007) Hypoxia-induced assembly of prolyl-hydroxylase, PHD3 into complexes: implications for its activity and susceptibility for degradation by the E3 ligase Siah2. Biochem J 401:217–226

    Article  PubMed  CAS  Google Scholar 

  125. Nebreda AR, Porras A (2000) p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25:257–260

    Article  PubMed  CAS  Google Scholar 

  126. Nemoto S, Xiang J, Huang S, Lin A (1998) Induction of apoptosis by SB202190 through inhibition of p38beta mitogen-activated protein kinase. J Biol Chem 273:16415–16420

    Article  PubMed  CAS  Google Scholar 

  127. Neve RM, Holbro T, Hynes NE (2002) Distinct roles for phosphoinositide 3-kinase, mitogen-activated protein kinase and p38 MAPK in mediating cell cycle progression of breast cancer cells. Oncogene 21:4567–4576

    Article  PubMed  CAS  Google Scholar 

  128. Nicke B, Bastien J, Khanna SJ, Warne PH, Cowling V, Cook SJ, Peters G, Delpuech O, Schulze A, Berns K, Mullenders J, Beijersbergen RL, Bernards R, Ganesan TS, Downward J, Hancock DC (2005) Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol Cell 20:673–685

    Article  PubMed  CAS  Google Scholar 

  129. O'Neill LA (2006) Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov 5:549–563

    Article  PubMed  CAS  Google Scholar 

  130. Olson JM, Hallahan AR (2004) p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med 10:125–129

    Article  PubMed  CAS  Google Scholar 

  131. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13

    Article  PubMed  CAS  Google Scholar 

  132. Park JG, Yuk Y, Rhim H, Yi SY, Yoo YS (2002a) Role of p38 MAPK in the regulation of apoptosis signaling induced by TNF-alpha in differentiated PC12 cells. J Biochem Mol Biol 35:267–272

    PubMed  CAS  Google Scholar 

  133. Park JM, Greten FR, Li ZW, Karin M (2002b) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297:2048–2051

    Article  PubMed  CAS  Google Scholar 

  134. Pedraza-Alva G, Koulnis M, Charland C, Thornton T, Clements JL, Schlissel MS, Rincon M (2006) Activation of p38 MAP kinase by DNA double-strand breaks in V(D)J recombination induces a G2/M cell cycle checkpoint. EMBO J 25:763–773

    Article  PubMed  CAS  Google Scholar 

  135. Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, Baeza-Raja B, Jardi M, Bosch-Comas A, Esteller M, Caelles C, Serrano AL, Wagner EF, Munoz-Canoves P (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 26:1245–1256

    Article  PubMed  CAS  Google Scholar 

  136. Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439

    Article  PubMed  CAS  Google Scholar 

  137. Platanias LC (2003) Map kinase signaling pathways and hematologic malignancies. Blood 101:4667–4679

    Article  PubMed  CAS  Google Scholar 

  138. Pomerance M, Quillard J, Chantoux F, Young J, Blondeau JP (2006) High-level expression, activation, and subcellular localization of p38-MAP kinase in thyroid neoplasms. J Pathol 209:298–306

    Article  PubMed  CAS  Google Scholar 

  139. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C, Benito M, Nebreda AR (2004) p38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15:922–933

    Article  PubMed  CAS  Google Scholar 

  140. Potter VR (1978) Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. The 10th Walter Hubert Lecture. Br J Cancer 38:1–23

    Article  PubMed  CAS  Google Scholar 

  141. Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23:241–250

    Article  PubMed  CAS  Google Scholar 

  142. Pruitt K, Pruitt WM, Bilter GK, Westwick JK, Der CJ (2002) Raf-independent deregulation of p38 and JNK mitogen-activated protein kinases are critical for Ras transformation. J Biol Chem 277:31808–31817

    Article  PubMed  CAS  Google Scholar 

  143. Puri PL, Wu Z, Zhang P, Wood LD, Bhakta KS, Han J, Feramisco JR, Karin M, Wang JY (2000) Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev 14:574–584

    PubMed  CAS  Google Scholar 

  144. Ramesh G, Reeves WB (2005) p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am J Physiol Renal Physiol 289:F166–174

    Article  PubMed  CAS  Google Scholar 

  145. Ranganathan AC, Adam AP, Aguirre-Ghiso JA (2006) Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5:1799–1807

    Article  PubMed  CAS  Google Scholar 

  146. Rausch O, Marshall CJ (1999) Cooperation of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways during granulocyte colony-stimulating factor-induced hemopoietic cell proliferation. J Biol Chem 274:4096–4105

    Article  PubMed  CAS  Google Scholar 

  147. Recio JA, Merlino G (2002) Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene 21:1000–1008

    Article  PubMed  CAS  Google Scholar 

  148. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189

    Article  PubMed  CAS  Google Scholar 

  149. Rennefahrt U, Janakiraman M, Ollinger R, Troppmair J (2005) Stress kinase signaling in cancer: fact or fiction? Cancer Lett 217:1–9

    Article  PubMed  CAS  Google Scholar 

  150. Ricote M, Garcia-Tunon I, Bethencourt F, Fraile B, Onsurbe P, Paniagua R, Royuela M (2006) The p38 transduction pathway in prostatic neoplasia. J Pathol 208:401–407

    Article  PubMed  CAS  Google Scholar 

  151. Ringshausen I, Dechow T, Schneller F, Weick K, Oelsner M, Peschel C, Decker T (2004) Constitutive activation of the MAP kinase p38 is critical for MMP-9 production and survival of B-CLL cells on bone marrow stromal cells. Leukemia 18:1964–1970

    Article  PubMed  CAS  Google Scholar 

  152. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037

    Article  PubMed  CAS  Google Scholar 

  153. Rousseau S, Dolado I, Beardmore V, Shpiro N, Marquez R, Nebreda AR, Arthur JS, Case LM, Tessier-Lavigne M, Gaestel M, Cuenda A, Cohen P (2006) CXCL12 and C5a trigger cell migration via a PAK1/2-p38alpha MAPK-MAPKAP-K2-HSP27 pathway. Cell Signal 18:1897–1905

    Article  PubMed  CAS  Google Scholar 

  154. Sabbah M, Courilleau D, Mester J, Redeuilh G (1999) Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci USA 96:11217–11222

    Article  PubMed  CAS  Google Scholar 

  155. Sainz-Perez A, Gary-Gouy H, Portier A, Davi F, Merle-Beral H, Galanaud P, Dalloul A (2006) High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia. Leukemia 20:498–504

    Article  PubMed  CAS  Google Scholar 

  156. Saklatvala J (2004) The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4:372–377

    Article  PubMed  CAS  Google Scholar 

  157. Sanchez-Prieto R, Rojas JM, Taya Y, Gutkind JS (2000) A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res 60:2464–2472

    PubMed  CAS  Google Scholar 

  158. Sarkar D, Su Z-Z, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K, Dent P, Fisher PB (2002) mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 99:10054–10059

    Article  PubMed  CAS  Google Scholar 

  159. Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:1182–1184

    Article  PubMed  CAS  Google Scholar 

  160. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  PubMed  CAS  Google Scholar 

  161. Shemirani B, Crowe DL (2002) Hypoxic induction of HIF-1alpha and VEGF expression in head and neck squamous cell carcinoma lines is mediated by stress activated protein kinases. Oral Oncol 38:251–257

    Article  PubMed  CAS  Google Scholar 

  162. Silva G, Cunha A, Gregoire IP, Seldon MP, Soares MP (2006) The antiapoptotic effect of heme oxygenase-1 in endothelial cells involves the degradation of p38 alpha MAPK isoform. J Immunol 177:1894–1903

    PubMed  CAS  Google Scholar 

  163. Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H (2005) The Notch pathway in cancer: differentiation gone awry. Eur J Cancer 41:2620–2629

    Article  PubMed  CAS  Google Scholar 

  164. Srinivasa SP, Doshi PD (2002) Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways cooperate in mediating cytokine-induced proliferation of a leukemic cell line. Leukemia 16:244–253

    Article  PubMed  CAS  Google Scholar 

  165. Stadheim TA, Xiao H, Eastman A (2001) Inhibition of extracellular-signal regulated kinase (ERK) mediates cell cycle phase independent apoptosis in vinblastine-treated ML-1 cells. Cancer Res 61:1533–1540

    PubMed  CAS  Google Scholar 

  166. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480-481:243–268

    PubMed  CAS  Google Scholar 

  167. Timoshenko AV, Chakraborty C, Wagner GF, Lala PK (2006) COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer 94:1154–1163

    Article  PubMed  CAS  Google Scholar 

  168. Todd DE, Densham RM, Molton SA, Balmanno K, Newson C, Weston CR, Garner AP, Scott L, Cook SJ (2004) ERK1/2 and p38 cooperate to induce a p21CIP1-dependent G1 cell cycle arrest. Oncogene 23:3284–3295

    Article  PubMed  CAS  Google Scholar 

  169. Tourian L Jr, Zhao H, Srikant CB (2004) p38alpha, but not p38beta, inhibits the phosphorylation and presence of c-FLIPS in DISC to potentiate Fas-mediated caspase-8 activation and type I apoptotic signaling. J Cell Sci 117:6459–6471

    Article  PubMed  CAS  Google Scholar 

  170. Tront JS, Hoffman B, Liebermann DA (2006) Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res 66:8448–8454

    Article  PubMed  CAS  Google Scholar 

  171. Uddin S, Ah-Kang J, Ulaszek J, Mahmud D, Wickrema A (2004) Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells. Proc Natl Acad Sci USA 101:147–152

    Article  PubMed  CAS  Google Scholar 

  172. Vander Griend DJ, Kocherginsky M, Hickson JA, Stadler WM, Lin A, Rinker-Schaeffer CW (2005) Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res 65:10984–10991

    Article  PubMed  CAS  Google Scholar 

  173. Ventura JJ, Hubner A, Zhang C, Flavell RA, Shokat KM, Davis RJ (2006) Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 21:701–710

    Article  PubMed  CAS  Google Scholar 

  174. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  175. Wang L, Kwak JH, Kim SI, He Y, Choi ME (2004a) Transforming growth factor-β1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38α and p38δ mitogen-activated protein kinase-dependent pathway in murine mesangial cells. J Biol Chem 279:33213–33219

    Article  PubMed  CAS  Google Scholar 

  176. Wang L, Pan Y, Dai JL (2004b) Evidence of MKK4 pro-oncogenic activity in breast and pancreatic tumors. Oncogene 23:5978–5985

    Article  PubMed  CAS  Google Scholar 

  177. Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Sun P (2002) Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22:3389–3403

    Article  PubMed  CAS  Google Scholar 

  178. Weber HO, Ludwig RL, Morrison D, Kotlyarov A, Gaestel M, Vousden KH (2005) HDM2 phosphorylation by MAPKAP kinase 2. Oncogene 24:1965–1972

    Article  PubMed  CAS  Google Scholar 

  179. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, Rudolf M, Siziopikou K, Kast WM, Miele L (2002) Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8:979–986

    Article  PubMed  CAS  Google Scholar 

  180. Weldon CB, Parker AP, Patten D, Elliott S, Tang Y, Frigo DE, Dugan CM, Coakley EL, Butler NN, Clayton JL, Alam J, Curiel TJ, Beckman BS, Jaffe BM, Burow ME (2004) Sensitization of apoptotically-resistant breast carcinoma cells to TNF and TRAIL by inhibition of p38 mitogen-activated protein kinase signaling. Int J Oncol 24:1473–1480

    PubMed  CAS  Google Scholar 

  181. Winograd-Katz SE, Levitzki A (2006) Cisplatin induces PKB/Akt activation and p38(MAPK) phosphorylation of the EGF receptor. Oncogene 25:7382–7390

    Article  CAS  Google Scholar 

  182. Wu G, Luo J, Rana JS, Laham R, Sellke FW, Li J (2006) Involvement of COX-2 in VEGF-induced angiogenesis via P38 and JNK pathways in vascular endothelial cells. Cardiovasc Res 69:512–519

    Article  PubMed  CAS  Google Scholar 

  183. Yamamoto T, Kozawa O, Tanabe K, Akamatsu S, Matsuno H, Doh S, Uemats T (2001) Involvement of p38 MAP kinase in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle cells. J Cell Biochem 82:591–598

    Article  PubMed  CAS  Google Scholar 

  184. Yang YA, Zhan GM, Feigenbau L, Zhang YE (2006) Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell 9:445–457

    Article  PubMed  CAS  Google Scholar 

  185. Yee AS, Paulso EK, McDevit MA, Rieger-Chris K, Summerhaye I, Beras SP, Kim J, Huang CY, Zhang X (2004) The HBP1 transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene 336:1–13

    Article  PubMed  CAS  Google Scholar 

  186. Yoshino Y, Aoyagi M, Tamaki M, Duan L, Morimoto T, Ohno K (2006) Activation of p38 MAPK and/or JNK contributes to increased levels of VEGF secretion in human malignant glioma cells. Int J Oncol 29:981–987

    PubMed  CAS  Google Scholar 

  187. Yosimichi G, Nakanishi T, Nishida T, Hattori T, Takano-Yamamoto T, Takigawa M (2001) CTGF/Hcs24 induces chondrocyte differentiation through a p38 mitogen-activated protein kinase (p38MAPK), and proliferation through a p44/42 MAPK/extracellular-signal regulated kinase (ERK). Eur J Biochem 268:6058–6065

    Article  PubMed  CAS  Google Scholar 

  188. Yu C, Wang S, Dent P, Grant S (2001) Sequence-dependent potentiation of paclitaxel-mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway. Mol Pharmacol 60:143–154

    PubMed  CAS  Google Scholar 

  189. Yu W, Imoto I, Inoue J, Onda M, Emi M, Inazawa J (2006) A novel amplification target, DUSP26, promotes anaplastic thyroid cancer cell growth by inhibiting p38 MAPK activity. Oncogene 26:1178–1187

    Article  PubMed  CAS  Google Scholar 

  190. Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ (2003) AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem 278:23432–23440

    Article  PubMed  CAS  Google Scholar 

  191. Zhang Q-X, Feng R, Zhang W, Ding Y, Yang J-Y, Liu G-H (2005) Role of stress-activated MAP kinase p38 in cisplatin- and DTT-induced apoptosis of the esophageal carcinoma cell line Eca109. World J Gastroenterol 11:4451–4456

    PubMed  CAS  Google Scholar 

  192. Zhou J, Schmid T, Schnitzer S, Brune B (2006) Tumor hypoxia and cancer progression. Cancer Lett 237:10–21

    Article  PubMed  CAS  Google Scholar 

  193. Zhuang ZH, Zhou Y, Yu MC, Silverman N, Ge BX (2006) Regulation of Drosophila p38 activation by specific MAP2 kinase and MAP3 kinase in response to different stimuli. Cell Signal 18:441–448

    Article  PubMed  CAS  Google Scholar 

  194. Zuluaga S, Alvarez-Barrientos A, Gutierrez-Uzquiza A, Benito M, Nebreda AR, Porras A (2007) Negative regulation of Akt activity by p38alpha MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cell Signal 19:62–74

    Article  PubMed  CAS  Google Scholar 

  195. Zwang Y, Yarden Y (2006) p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy. EMBO J 25:4195–4206

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel R. Nebreda .

Editor information

Francesc Posas Angel R. Nebreda

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dolado, I., Nebreda, A.R. (2007). Regulation of Tumorigenesis by p38α MAP Kinase. In: Posas, F., Nebreda, A.R. (eds) Stress-Activated Protein Kinases. Topics in Current Genetics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0245

Download citation

Publish with us

Policies and ethics