RNA splicing and RNA editing in chloroplasts

Part of the Topics in Current Genetics book series (TCG, volume 19)


During the evolution of chloroplasts from their bacterial ancestor traits emerged that are absentor rare in bacteria. Prominent among these acquired traits are RNA splicing and RNA editing. Thenumbers and distribution of introns and editing sites in different taxa suggest that editing and splicinghave taken different evolutionary pathways in different chloroplast lineages. Both processes aredependent on nuclear-encoded factors and, intriguingly, PPR (pentatricopeptide repeat) proteins haverecently been recognized as a common player. This review summarizes recent progress in understandingthe mechanisms, regulation, and trans-acting factors for thesetwo types of RNA processing.


Splice Factor Editing Site Editing Efficiency Chloroplast Gene Expression Maize Chloroplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asakura Y, Barkan A (2006) Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol 142:1656–1663 PubMedCrossRefGoogle Scholar
  2. 2.
    Balczun C, Bunse A, Hahn D, Bennoun P, Nickelsen J, Kuck U (2005) Two adjacent nuclear genes are required for functional complementation of a chloroplast trans-splicing mutant from Chlamydomonas reinhardtii. Plant J 43:636–648 PubMedCrossRefGoogle Scholar
  3. 3.
    Balczun C, Bunse A, Schwarz C, Piotrowski M, Kuck U (2006) Chloroplast heat shock protein Cpn60 from Chlamydomonas reinhardtii exhibits a novel function as a group II intron-specific RNA-binding protein. FEBS Lett 580:4527–4532 PubMedCrossRefGoogle Scholar
  4. 4.
    Barkan A (1989) Tissue-dependent plastid RNA splicing in maize: transcripts from four plastid genes are predominantly unspliced in leaf meristems and roots. Plant Cell 1:437–445 PubMedGoogle Scholar
  5. 5.
    Barkan A, Klipcan L, Ostersetzer O, Kawamura T, Asakura Y, Watkins KP (2007) The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein. RNA 13:55–64 PubMedCrossRefGoogle Scholar
  6. 6.
    Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826 PubMedCrossRefGoogle Scholar
  7. 7.
    Bhattacharya S, Navaratnam N, Morrison JR, Scott J, Taylor WR (1994) Cytosine nucleoside/nucleotide deaminases and apolipoprotein B mRNA editing. Trends Biochem Sci 19:105–106 PubMedCrossRefGoogle Scholar
  8. 8.
    Bock R (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing. Biochimie 82:549–557 PubMedCrossRefGoogle Scholar
  9. 9.
    Bock R, Hagemann R, Kossel H, Kudla J (1993) Tissue- and stage-specific modulation of RNA editing of the psbF and psbL transcript from spinach plastids–a new regulatory mechanism? Mol Gen Genet 240:238–244 PubMedCrossRefGoogle Scholar
  10. 10.
    Bock R, Hermann M, Fuchs M (1997) Identification of critical nucleotide positions for plastid RNA editing site recognition. RNA 3:1194–1200 PubMedGoogle Scholar
  11. 11.
    Bock R, Hermann M, Kossel H (1996) In vivo dissection of cis-acting determinants for plastid RNA editing. EMBO J 15:5052–5059 PubMedGoogle Scholar
  12. 12.
    Bock R, Koop HU (1997) Extraplastidic site-specific factors mediate RNA editing in chloroplasts. EMBO J 16:3282–3288 PubMedCrossRefGoogle Scholar
  13. 13.
    Bock R, Kossel H, Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. EMBO J 13:4623–4628 PubMedGoogle Scholar
  14. 14.
    Bock R, Maliga P (1995) In vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing. Mol Gen Genet 247:439–443 PubMedCrossRefGoogle Scholar
  15. 15.
    Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 17:322–331 PubMedCrossRefGoogle Scholar
  16. 16.
    Cech TR (1986) The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44:207–210 PubMedCrossRefGoogle Scholar
  17. 17.
    Chateigner-Boutin AL, Hanson MR (2002) Cross-competition in transgenic chloroplasts expressing single editing sites reveals shared cis elements. Mol Cell Biol 22:8448–8456 PubMedCrossRefGoogle Scholar
  18. 18.
    Chateigner-Boutin AL, Hanson MR (2003) Developmental co-variation of RNA editing extent of plastid editing sites exhibiting similar cis-elements. Nucleic Acids Res 31:2586–2594 PubMedCrossRefGoogle Scholar
  19. 19.
    Chaudhuri S, Carrer H, Maliga P (1995) Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids. EMBO J 14:2951–2957 PubMedGoogle Scholar
  20. 20.
    Chaudhuri S, Maliga P (1996) Sequences directing C to U editing of the plastid psbL mRNA are located within a 22 nucleotide segment spanning the editing site. EMBO J 15:5958–5964 PubMedGoogle Scholar
  21. 21.
    Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kuck U, Bennoun P, Rochaix JD (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52:903–913 PubMedCrossRefGoogle Scholar
  22. 22.
    Christopher DA, Hallick RB (1989) Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III. Nucleic Acids Res 17:7591–7608 PubMedCrossRefGoogle Scholar
  23. 23.
    Copertino DW, Hallick RB (1993) Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem Sci 18:467–471 PubMedCrossRefGoogle Scholar
  24. 24.
    Daniels DL, Michels WJ Jr, Pyle AM (1996) Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J Mol Biol 256:31–49 PubMedCrossRefGoogle Scholar
  25. 25.
    Del Campo EM, Sabater B, Martin M (2002) Post-transcriptional control of chloroplast gene expression: Accumulation of stable psaC mRNA is due to downstream RNA cleavages in ndhD gene. J Biol Chem 277:36457–36464 PubMedCrossRefGoogle Scholar
  26. 26.
    Deshpande NN, Bao Y, Herrin DL (1997) Evidence for light/redox-regulated splicing of psbA pre-RNAs in Chlamydomonas chloroplasts. RNA 3:37–48 PubMedGoogle Scholar
  27. 27.
    Driscoll DM, Wynne JK, Wallis SC, Scott J (1989) An in vitro system for the editing of apolipoprotein B mRNA. Cell 58:519–525 PubMedCrossRefGoogle Scholar
  28. 28.
    Duff RJ, Moore FB (2005) Pervasive RNA editing among hornwort rbcL transcripts except Leiosporoceros. J Mol Evol 61:571–578 PubMedCrossRefGoogle Scholar
  29. 29.
    Durrenberger F, Rochaix JD (1991) Chloroplast ribosomal intron of Chlamydomonas reinhardtii: in vitro self-splicing, DNA endonuclease activity and in vivo mobility. EMBO J 10:3495–3501 PubMedGoogle Scholar
  30. 30.
    Eberhard S, Drapier D, Wollman F (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31:149–160 PubMedCrossRefGoogle Scholar
  31. 31.
    Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733 PubMedCrossRefGoogle Scholar
  32. 32.
    Faivre-Nitschke SE, Grienenberger JM, Gualberto JM (1999) A prokaryotic-type cytidine deaminase from Arabidopsis thaliana gene expression and functional characterization. Eur J Biochem 263:896–903 PubMedCrossRefGoogle Scholar
  33. 33.
    Fiebig A, Stegemann S, Bock R (2004) Rapid evolution of editing sites in a small non-essential plastid gene. Nucl Acids Res 7:3615–3622 CrossRefGoogle Scholar
  34. 34.
    Freyer R, Hoch B, Neckermann K, Maier RM, Kossel H (1993) RNA editing in maize chloroplasts is a processing step independent of splicing and cleavage to monocistronic mRNAs. Plant J 4:621–629 PubMedCrossRefGoogle Scholar
  35. 35.
    Freyer R, Kiefer-Meyer MC, Kossel H (1997) Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci USA 94:6285–6290 PubMedCrossRefGoogle Scholar
  36. 36.
    Fromm H, Edelman M, Koller B, Goloubinoff P, Galun E (1986) The enigma of the gene coding for ribosomal protein S12 in the chloroplast of Nicotiana. Nucleic Acids Res 14:883–898 PubMedCrossRefGoogle Scholar
  37. 37.
    Fuchs M, Maier RM, Zeltz P (2001) RNA editing in higher plant plastids: oligoribonucleotide SSCP analysis allows the proof of base conversion directly at the RNA level. Curr Genet 39:384–387 PubMedCrossRefGoogle Scholar
  38. 38.
    Glanz S, Bunse A, Wimbert A, Balczun C, Kuck U (2006) A nucleosome assembly protein-like polypeptide binds to chloroplast group II intron RNA in Chlamydomonas reinhardtii. Nucleic Acids Res 34:5337–5351 PubMedCrossRefGoogle Scholar
  39. 39.
    Golden BL, Gooding AR, Podell ER, Cech TR (1998) A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282:259–264 PubMedCrossRefGoogle Scholar
  40. 40.
    Goldschmidt-Clermont M, Choquet Y, Girard-Bascou J, Michel F, Schirmer-Rahire M, Rochaix JD (1991) A small chloroplast RNA may be required for trans-splicing in Chlamydomonas reinhardtii. Cell 65:135–143 PubMedCrossRefGoogle Scholar
  41. 41.
    Goldschmidt-Clermont M, Girard-Bascou J, Choquet Y, Rochaix JD (1990) Trans-splicing mutants of Chlamydomonas reinhardtii. Mol Gen Genet 223:417–425 PubMedCrossRefGoogle Scholar
  42. 42.
    Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531 PubMedCrossRefGoogle Scholar
  43. 43.
    Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544 PubMedCrossRefGoogle Scholar
  44. 44.
    Halls C, Mohr S, Del Campo M, Yang Q, Jankowsky E, Lambowitz AM (2007) Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. J Mol Biol 365:835–855 PubMedCrossRefGoogle Scholar
  45. 45.
    Halter C, Peeters N, Hanson M (2004) RNA editing in ribosome-less plastids of iojap maize. Curr Genet 45:331–337 PubMedCrossRefGoogle Scholar
  46. 46.
    Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549 PubMedCrossRefGoogle Scholar
  47. 47.
    Hayes ML, Reed ML, Hegeman CE, Hanson MR (2006) Sequence elements critical for efficient RNA editing of a tobacco chloroplast transcript in vivo and in vitro. Nucleic Acids Res 34:3742–3754 PubMedCrossRefGoogle Scholar
  48. 48.
    Hegeman CE, Halter CP, Owens TG, Hanson MR (2005a) Expression of complementary RNA from chloroplast transgenes affects editing efficiency of transgene and endogenous chloroplast transcripts. Nucleic Acids Res 33:1454–1464 PubMedCrossRefGoogle Scholar
  49. 49.
    Hegeman CE, Hayes ML, Hanson MR (2005b) Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro. Plant J 42:124–132 PubMedCrossRefGoogle Scholar
  50. 50.
    Herrin DL, Bao Y, Thompson AJ, Chen Y-F (1991) Self-splicing of the Chlamydomonas chloroplast psbA introns. Plant Cell 3:10951107 Google Scholar
  51. 51.
    Herrin DL, Chen Y-F, Schmidt GW (1990) RNA splicing in Chlamydomonas chloroplasts: self-splicing of 23S preRNA. J Biol Chem 265:21134–21140 PubMedGoogle Scholar
  52. 52.
    Herrin DL, Schmidt GW (1988) trans-splicing of transcripts for the chloroplast psaA1 gene. In vivo requirement for nuclear gene products. J Biol Chem 263:14601–14604 PubMedGoogle Scholar
  53. 53.
    Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874 PubMedGoogle Scholar
  54. 54.
    Hess WR, Hoch B, Zeltz P, Hubschmann T, Kossel H, Borner T (1994) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465 PubMedGoogle Scholar
  55. 55.
    Hetzer M, Wurzer G, Schweyen R, Mueller M (1997) Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 386:417–420 PubMedCrossRefGoogle Scholar
  56. 56.
    Hirose T, Fan H, Suzuki JY, Wakasugi T, Tsudzuki T, Kossel H, Sugiura M (1996) Occurrence of silent RNA editing in chloroplasts: its species specificity and the influence of environmental and developmental conditions. Plant Mol Biol 30:667–672 PubMedCrossRefGoogle Scholar
  57. 57.
    Hirose T, Kusumegi T, Tsudzuki T, Sugiura M (1999) RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet 262:462–467 PubMedCrossRefGoogle Scholar
  58. 58.
    Hirose T, Miyamoto T, Obokata J, Sugiura M (2004) In vitro RNA editing systems from higher plant chloroplasts. Methods Mol Biol 265:333–344 PubMedGoogle Scholar
  59. 59.
    Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16:6804–6811 PubMedCrossRefGoogle Scholar
  60. 60.
    Hirose T, Sugiura M (2001) Involvement of a site-specific trans-acting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: development of a chloroplast in vitro RNA editing system. EMBO J 20:1144–1152 PubMedCrossRefGoogle Scholar
  61. 61.
    Hoch B, Maier RM, Appel K, Igloi GL, Kossel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353:178–180 PubMedCrossRefGoogle Scholar
  62. 62.
    Holloway SP, Deshpande NN, Herrin DL (1999) The catalytic group-I introns of the psbA gene of Chlamydomonas reinhardtii : core structures, ORFs and evolutionary implications. Curr Genet 36:69–78 PubMedCrossRefGoogle Scholar
  63. 63.
    Horlitz M, Klaff P (2000) Gene-specific trans-regulatory functions of magnesium for chloroplast mRNA stability in higher plants. J Biol Chem 275:35638–35645 PubMedCrossRefGoogle Scholar
  64. 64.
    Inada M, Sasaki T, Yukawa M, Tsudzuki T, Sugiura M (2004) A systematic search for RNA editing sites in pea chloroplasts: an editing event causes diversification from the evolutionarily conserved amino acid sequence. Plant Cell Physiol 45:1615–1622 PubMedCrossRefGoogle Scholar
  65. 65.
    Iost I, Guillerez J, Dreyfus M (1992) Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J Bacteriol 174:619–622 PubMedGoogle Scholar
  66. 66.
    Jenkins BD, Barkan A (2001) Recruitment of a peptidyl-tRNA hydrolase as a facilitator of group II intron splicing in chloroplasts. EMBO J 20:872–879 PubMedCrossRefGoogle Scholar
  67. 67.
    Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296 PubMedGoogle Scholar
  68. 68.
    Johanningmeier U, Heiss S (1993) Construction of a Chlamydomonas reinhardtii mutant with an intronless psbA gene. Plant Mol Biol 22:91–99 PubMedCrossRefGoogle Scholar
  69. 69.
    Kapoor M, Nagai T, Wakasugi T, Yoshinaga K, Sugiura M (1997) Organization of chloroplast ribosomal RNA genes and in vitro self-splicing activity of the large subunit rRNA intron from the green alga Chlorella vulgaris C-27. Curr Genet 31:503–510 PubMedCrossRefGoogle Scholar
  70. 70.
    Karcher D, Bock R (1998) Site-selective inhibition of plastid RNA editing by heat shock and antibiotics: a role for plastid translation in RNA editing. Nucleic Acids Res 26:1185–1190 PubMedCrossRefGoogle Scholar
  71. 71.
    Karcher D, Bock R (2002a) The amino acid sequence of a plastid protein is developmentally regulated by RNA editing. J Biol Chem 277:5570–5574 PubMedCrossRefGoogle Scholar
  72. 72.
    Karcher D, Bock R (2002b) Temperature sensitivity of RNA editing and intron splicing reactions in the plastid ndhB transcript. Curr Genet 41:48–52 PubMedCrossRefGoogle Scholar
  73. 73.
    Kim M, Rapp JC, Mullet JE (1993) Direct evidence for selective modulation of psbA, rpoA, rbcL, and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22:447–463 PubMedCrossRefGoogle Scholar
  74. 74.
    Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330 PubMedCrossRefGoogle Scholar
  75. 75.
    Kuck U, Choquet Y, Schneider M, Dron M, Bennoun P (1987) Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing. EMBO J 6:2185–2195 PubMedGoogle Scholar
  76. 76.
    Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K (2003a) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res 31:716–721 PubMedCrossRefGoogle Scholar
  77. 77.
    Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003b) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423 PubMedCrossRefGoogle Scholar
  78. 78.
    Lahmy S, Barneche F, Derancourt J, Filipowicz W, Delseny M, Echeverria M (2000) A chloroplastic RNA-binding protein is a new member of the PPR family. FEBS Lett 480:255–260 PubMedCrossRefGoogle Scholar
  79. 79.
    Lambowitz AM, Caprara MG, Zimmerly S, Perlman PS (1999) Group I and group II ribozymes as RNPs: clues to the past and guides to the future. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA World. 2nd edn Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp 451–485 Google Scholar
  80. 80.
    Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35 PubMedCrossRefGoogle Scholar
  81. 81.
    Lee J, Herrin DL (2003) Mutagenesis of a light-regulated psbA intron reveals the importance of efficient splicing for photosynthetic growth. Nucleic Acids Res 31:4361–4372 PubMedCrossRefGoogle Scholar
  82. 82.
    Lehnert V, Jaeger L, Michel F, Westhof E (1996) New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem Biol 3:993–1009 PubMedCrossRefGoogle Scholar
  83. 83.
    Lemieux C, Otis C, Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652 PubMedCrossRefGoogle Scholar
  84. 84.
    Liere K, Link G (1994) Structure and expression characteristics of the chloroplast DNA region containing the split gene for tRNA-gly (UCC) from mustard. Curr Genet 26:557–563 PubMedCrossRefGoogle Scholar
  85. 85.
    Liere K, Link G (1995) RNA-binding activity of the matK protein encoded by the chloroplast trnK intron from mustard (Sinapis alba L). Nucleic Acids Res 23:917–921 PubMedCrossRefGoogle Scholar
  86. 86.
    Lorsch JR (2002) RNA chaperones exist and DEAD box proteins get a life. Cell 109:797–800 PubMedCrossRefGoogle Scholar
  87. 87.
    Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103 PubMedCrossRefGoogle Scholar
  88. 88.
    Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730 PubMedCrossRefGoogle Scholar
  89. 89.
    Maier RM, Hoch B, Zeltz P, Kossel H (1992a) Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids. Plant Cell 4:609–616 PubMedGoogle Scholar
  90. 90.
    Maier RM, Neckermann K, Hoch B, Akhmedov NB, Kossel H (1992b) Identification of editing positions in the ndhB transcript from maize chloroplasts reveals sequence similarities between editing sites of chloroplasts and plant mitochondria. Nucleic Acids Res 20:6189–6194 PubMedCrossRefGoogle Scholar
  91. 91.
    Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628 PubMedCrossRefGoogle Scholar
  92. 92.
    Maier RM, Zeltz P, Kossel H, Bonnard G, Gualberto JM, Grienenberger JM (1996) RNA editing in plant mitochondria and chloroplasts. Plant Mol Biol 32:343–365 PubMedCrossRefGoogle Scholar
  93. 93.
    Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679 PubMedCrossRefGoogle Scholar
  94. 94.
    McCullough AJ, Kangasjarvi J, Gengenback BG, Jones RJ (1992) Plastid DNA in developing maize endosperm. Plant Physiol 100:958–964 PubMedCrossRefGoogle Scholar
  95. 95.
    Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G (2003) HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–1495 PubMedCrossRefGoogle Scholar
  96. 96.
    Merendino L, Perron K, Rahire M, Howald I, Rochaix JD, Goldschmidt-Clermont M (2006) A novel multifunctional factor involved in trans-splicing of chloroplast introns in Chlamydomonas. Nucleic Acids Res 34:262–274 PubMedCrossRefGoogle Scholar
  97. 97.
    Michel F, Dujon B (1983) Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast- and nuclear-encoded members. EMBO J 2:33–38 PubMedGoogle Scholar
  98. 98.
    Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461 PubMedCrossRefGoogle Scholar
  99. 99.
    Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns–a review. Gene 82:5–30 PubMedCrossRefGoogle Scholar
  100. 100.
    Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610 PubMedCrossRefGoogle Scholar
  101. 101.
    Miyamoto T, Obokata J, Sugiura M (2002) Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol Cell Biol 22:6726–6734 PubMedCrossRefGoogle Scholar
  102. 102.
    Miyamoto T, Obokata J, Sugiura M (2004) A site-specific factor interacts directly with its cognate RNA editing site in chloroplast transcripts. Proc Natl Acad Sci USA 101:48–52 PubMedCrossRefGoogle Scholar
  103. 103.
    Miyata Y, Sugita M (2004) Tissue- and stage-specific RNA editing of rps14 transcripts in moss (Physcomitrella patens) chloroplasts. J Plant Physiol 161:113–115 PubMedCrossRefGoogle Scholar
  104. 104.
    Miyata Y, Sugiura C, Kobayashi Y, Hagiwara M, Sugita M (2002) Chloroplast ribosomal S14 protein transcript is edited to create a translation initiation codon in the moss Physcomitrella patens. Biochim Biophys Acta 1576:346–349 PubMedCrossRefGoogle Scholar
  105. 105.
    Mohr G, Lambowitz AM (2003) Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res 31:647–652 PubMedCrossRefGoogle Scholar
  106. 106.
    Morton BR (2003) The role of context-dependent mutations in generating compositional and codon usage bias in grass chloroplast DNA. J Mol Evol 56:616–629 PubMedCrossRefGoogle Scholar
  107. 107.
    Morton BR, Oberholzer VM, Clegg MT (1997) The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome. J Mol Evol 45:227–231 PubMedCrossRefGoogle Scholar
  108. 108.
    Nakajima Y, Mulligan RM (2001) Heat stress results in incomplete C-to-U editing of maize chloroplast mRNAs and correlates with changes in chloroplast transcription rate. Curr Genet 40:209–213 PubMedCrossRefGoogle Scholar
  109. 109.
    Nakajima Y, Mulligan RM (2005) Nucleotide specificity of the RNA editing reaction in pea chloroplasts. J Plant Physiol 162:1347–1354 PubMedCrossRefGoogle Scholar
  110. 110.
    Nakamura T, Meierhoff K, Westhoff P, Schuster G (2003) RNA-binding properties of HCF152, an Arabidopsis PPR protein involved in the processing of chloroplast RNA. Eur J Biochem 270:4070–4081 PubMedCrossRefGoogle Scholar
  111. 111.
    Navaratnam N, Morrison JR, Bhattacharya S, Patel D, Funahashi T, Giannoni F, Teng BB, Davidson NO, Scott J (1993) The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 268:20709–20712 PubMedGoogle Scholar
  112. 112.
    Neuhaus H, Link G (1987) The chloroplast tRNA(Lys)(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially encoding for a maturase-related polypeptide. Curr Genet 11:251–257 PubMedCrossRefGoogle Scholar
  113. 113.
    Odom OW, Holloway SP, Deshpande NN, Lee J, Herrin DL (2001) Mobile self-splicing group I introns from the psbA gene of Chlamydomonas reinhardtii: highly efficient homing of an exogenous intron containing its own promoter. Mol Cell Biol 21:3472–3481 PubMedCrossRefGoogle Scholar
  114. 114.
    .Odom OW, Shenkenberg DL, Garcia JA, Herrin DL (2004) A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. RNA 10:1097–1107 PubMedCrossRefGoogle Scholar
  115. 115.
    Okuda K, Nakamura T, Sugita M, Shimizu T, Shikanai T (2006) A pentatricopeptide repeat protein is a site-recognition factor in chloroplast RNA editing. J Biol Chem 281:37661–37667 PubMedCrossRefGoogle Scholar
  116. 116.
    Ostersetzer O, Cooke AM, Watkins KP, Barkan A (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255 PubMedCrossRefGoogle Scholar
  117. 117.
    Ostheimer GJ, Barkan A, Matthews BW (2002) Crystal structure of E. coli YhbY: a representative of a novel class of RNA binding proteins. Structure (Camb) 10:1593–1601 CrossRefGoogle Scholar
  118. 118.
    Ostheimer GJ, Hadjivasiliou H, Kloer DP, Barkan A, Matthews BW (2005) Structural analysis of the group II intron splicing factor CRS2 yields insights into its protein and RNA interaction surfaces. J Mol Biol 345:51–68 PubMedCrossRefGoogle Scholar
  119. 119.
    Ostheimer GJ, Rojas M, Hadjivassiliou H, Barkan A (2006) Formation of the CRS2-CAF2 group II intron splicing complex is mediated by a 22-amino acid motif in the COOH-terminal region of CAF2. J Biol Chem 281:4732–4738 PubMedCrossRefGoogle Scholar
  120. 120.
    Ostheimer GJ, Williams-Carrier R, Belcher S, Osborne E, Gierke J, Barkan A (2003) Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J 22:3919–3929 PubMedCrossRefGoogle Scholar
  121. 121.
    Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet 6:115–120 PubMedCrossRefGoogle Scholar
  122. 122.
    Peeters NM, Hanson MR (2002) Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. RNA 8:497–511 PubMedCrossRefGoogle Scholar
  123. 123.
    Perron K, Goldschmidt-Clermont M, Rochaix JD (1999) A factor related to pseudouridine synthases is required for chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 18:6481–6490 PubMedCrossRefGoogle Scholar
  124. 124.
    Perron K, Goldschmidt-Clermont M, Rochaix JD (2004) A multiprotein complex involved in chloroplast group II intron splicing. RNA 10:704–711 PubMedCrossRefGoogle Scholar
  125. 125.
    Pyle A (2002) Metal ions in the structure and function of RNA. J Biol Inorg Chem 7:679–690 PubMedCrossRefGoogle Scholar
  126. 126.
    Qin PZ, Pyle AM (1998) The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol 8:301–308 PubMedCrossRefGoogle Scholar
  127. 127.
    Rajasekhar VK, Mulligan RM (1993) RNA editing in plant mitochondria: [alpha]-phosphate is retained during C-to-U conversion in mRNAs. Plant Cell 5:1843–1852 PubMedGoogle Scholar
  128. 128.
    Reed ML, Hanson MR (1997) A heterologous maize rpoB editing site is recognized by transgenic tobacco chloroplasts. Mol Cell Biol 17:6948–6952 PubMedGoogle Scholar
  129. 129.
    Reed ML, Lyi SM, Hanson MR (2001a) Edited transcripts compete with unedited mRNAs for trans-acting editing factors in higher plant chloroplasts. Gene 272:165–171 PubMedCrossRefGoogle Scholar
  130. 130.
    Reed ML, Peeters NM, Hanson MR (2001b) A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo. Nucleic Acids Res 29:1507–1513 PubMedCrossRefGoogle Scholar
  131. 131.
    Rivier C, Goldschmidt-Clermont M, Rochaix JD (2001) Identification of an RNA-protein complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. EMBO J 20:1765–1773 PubMedCrossRefGoogle Scholar
  132. 132.
    Roitgrund C, Mets JL (1990) Localization of two novel chloroplast genome functions: trans-splicing of RNA and protochlorophyllide reduction. Curr Genet 17:147–153 CrossRefGoogle Scholar
  133. 133.
    Ruf S, Kössel H (1997) Tissue-specific and differential editing of the two ycf3 editing sites in maize plastids. Curr Genet 32:19–23 PubMedCrossRefGoogle Scholar
  134. 134.
    Ruf S, Zeltz P, Kossel H (1994) Complete RNA editing of unspliced and dicistronic transcripts of the intron-containing reading frame IRF170 from maize chloroplasts. Proc Natl Acad Sci USA 91:2295–2299 PubMedCrossRefGoogle Scholar
  135. 135.
    Sasaki T, Yukawa Y, Miyamoto T, Obokata J, Sugiura M (2003) Identification of RNA editing sites in chloroplast transcripts from the maternal and paternal progenitors of tobacco (Nicotiana tabacum): comparative analysis shows the involvement of distinct trans-factors for ndhB editing. Mol Biol Evol 20:1028–1035 PubMedCrossRefGoogle Scholar
  136. 136.
    Sasaki T, Yukawa Y, Wakasugi T, Yamada K, Sugiura M (2006) A simple in vitro RNA editing assay for chloroplast transcripts using fluorescent dideoxynucleotides: distinct types of sequence elements required for editing of ndh transcripts. Plant J 47:802–810 PubMedCrossRefGoogle Scholar
  137. 137.
    Sasaki Y, Kozaki A, Ohmori A, Iguchi H, Nagano Y (2001) Chloroplast RNA editing required for functional acetyl-CoA carboxylase in plants. J Biol Chem 276:3937–3940 PubMedCrossRefGoogle Scholar
  138. 138.
    Sashital DG, Cornilescu G, McManus CJ, Brow DA, Butcher SE (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 11:1237–1242 PubMedCrossRefGoogle Scholar
  139. 139.
    Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann RG, Maier RM (2005a) Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit mRNA. Plant Cell 17:1815–1828 PubMedCrossRefGoogle Scholar
  140. 140.
    Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602–1612 PubMedCrossRefGoogle Scholar
  141. 141.
    Schmitz-Linneweber C, Tillich M, Herrmann RG, Maier RM (2001) Heterologous, splicing-dependent RNA editing in chloroplasts: allotetraploidy provides trans-factors. EMBO J 20:4874–4883 PubMedCrossRefGoogle Scholar
  142. 142.
    Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005b) RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5' region of mRNAs whose translation it activates. Plant Cell 17:2791–2804 PubMedCrossRefGoogle Scholar
  143. 143.
    Schmitz-Linneweber C, Williams-Carrier R, Williams P, Kroeger T, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein binds to and facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663 PubMedCrossRefGoogle Scholar
  144. 144.
    Sheveleva EV, Hallick RB (2004) Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res 32:803–810 PubMedCrossRefGoogle Scholar
  145. 145.
    Shields DC, Wolfe KH (1997) Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts. Mol Biol Evol 14:344–349 PubMedCrossRefGoogle Scholar
  146. 146.
    Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci 63:698–708 PubMedCrossRefGoogle Scholar
  147. 147.
    Shukla G, Padgett R (2002) A catalytically active group II intron domain 5 can function in the U12-dependent spliceosome. Mol Cell 9:1145–1150 PubMedCrossRefGoogle Scholar
  148. 148.
    Simon D, Fewer D, Friedl T, Bhattacharya D (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I Intron. J Mol Evol 57:710–720 PubMedCrossRefGoogle Scholar
  149. 149.
    Small I, Peeters N (2000) The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47 PubMedCrossRefGoogle Scholar
  150. 150.
    Smith H, Gott J, Hanson M (1997) A guide to RNA editing. RNA 3:1105–1123 PubMedGoogle Scholar
  151. 151.
    Sugita M, Miyata Y, Maruyama K, Sugiura C, Arikawa T, Higuchi M (2006) Extensive RNA editing in transcripts from the PsbB operon and RpoA gene of plastids from the enigmatic moss Takakia lepidozioides. Biosci Biotechnol Biochem 70:2268–2274 PubMedCrossRefGoogle Scholar
  152. 152.
    Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324–5331 PubMedCrossRefGoogle Scholar
  153. 153.
    Swisher J, Su L, Brenowitz M, Anderson V, Pyle A (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297–310 PubMedCrossRefGoogle Scholar
  154. 154.
    Thompson AJ, Herrin DL (1991) In vitro self-splicing reactions of the chloroplast group I intron Cr.LSU from Chlamydomonas reinhardtii and in vivo manipulation via gene-replacement. Nucleic Acids Res 19:6611–6618 PubMedCrossRefGoogle Scholar
  155. 155.
    Till B, Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2001) CRS1 is a novel group II intron splicing factor that was derived from a domain of ancient origin. RNA 7:1227–1238 PubMedCrossRefGoogle Scholar
  156. 156.
    Tillich M, Funk HT, Schmitz-Linneweber C, Poltnigg P, Sabater B, Martin M, Maier RM (2005) Editing of plastid RNA in Arabidopsis thaliana ecotypes. Plant J 43:708–715 PubMedCrossRefGoogle Scholar
  157. 157.
    Tillich M, Lehwark P, Morton BR, Maier UG (2006a) The evolution of chloroplast RNA editing. Mol Biol Evol 23:1912–1921 PubMedCrossRefGoogle Scholar
  158. 158.
    Tillich M, Poltnigg P, Kushnir S, Schmitz-Linneweber C (2006b) Maintenance of plastid RNA editing activities independently of their target sites. EMBO Rep 7:308–313 PubMedCrossRefGoogle Scholar
  159. 159.
    Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332 PubMedCrossRefGoogle Scholar
  160. 160.
    Turmel M, Choquet Y, Goldschmidt-Clermont M, Rochaix JD, Otis C, Lemieux C (1995) The trans-spliced intron 1 in the psaA gene of the Chlamydomonas chloroplast: a comparative analysis. Curr Genet 27:270–279 PubMedCrossRefGoogle Scholar
  161. 161.
    Turmel M, Otis C, Lemieux C (2002) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280 PubMedCrossRefGoogle Scholar
  162. 162.
    Turmel M, Otis C, Lemieux C (2006) The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324–1338 PubMedCrossRefGoogle Scholar
  163. 163.
    Villa T, Pleiss J, Guthrie C (2002) Spliceosomal snRNAs: Mg2+- dependent chemistry at the catalytic core? Cell 109:149–152 PubMedCrossRefGoogle Scholar
  164. 164.
    Vogel J, Borner T (2002) Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO J 21:3794–3803 PubMedCrossRefGoogle Scholar
  165. 165.
    Vogel J, Borner T, Hess WR (1999) Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res 27:3866–3874 PubMedCrossRefGoogle Scholar
  166. 166.
    Vogel J, Hubschmann T, Borner T, Hess WR (1997) Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor. J Mol Biol 270:179–187 PubMedCrossRefGoogle Scholar
  167. 167.
    Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798 PubMedCrossRefGoogle Scholar
  168. 168.
    Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: Gene content and alteration of genomic information by RNA editing. Photosynthesis Res 70:107–118 CrossRefGoogle Scholar
  169. 169.
    Weeks KM (1997) Protein-facilitated RNA folding. Curr Opin Struct Biol 7:336–342 PubMedCrossRefGoogle Scholar
  170. 170.
    Weihe A (2004) The transcription of plant organelle genomes. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant Organelles. Chloroplasts and mitochondria. Springer, Dordrecht, pp 213–237 CrossRefGoogle Scholar
  171. 171.
    Westhof E (2002) Group I introns and RNA folding. Biochem Soc Trans 30:1149–1152 PubMedCrossRefGoogle Scholar
  172. 172.
    Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686 PubMedCrossRefGoogle Scholar
  173. 173.
    Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97 PubMedCrossRefGoogle Scholar
  174. 174.
    Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652 PubMedCrossRefGoogle Scholar
  175. 175.
    Xu MQ, Kathe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA (1990) Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Science 250:1566–1570 PubMedCrossRefGoogle Scholar
  176. 176.
    Yoshinaga K, Iinuma H, Masuzawa T, Uedal K (1996) Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24:1008–1014 PubMedCrossRefGoogle Scholar
  177. 177.
    Yoshinaga K, Kakehi T, Shima Y, Iinuma H, Masuzawa T, Ueno M (1997) Extensive RNA editing and possible double-stranded structures determining editing sites in the atpB transcripts of hornwort chloroplasts. Nucleic Acids Res 25:4830–4834 PubMedCrossRefGoogle Scholar
  178. 178.
    Yu W, Schuster W (1995) Evidence for a site-specific cytidine deamination reaction involved in C to U RNA editing of plant mitochondria. J Biol Chem 270:18227–18233 PubMedCrossRefGoogle Scholar
  179. 179.
    Zaita N, Torazawa K, Shinozaki K, Sugiura M (1987) Trans-splicing in vivo: joining of transcripts from the "divided" gene for ribosomal protein S12 in the chloroplasts of tobacco. FEBS Lett 210:153–156 CrossRefGoogle Scholar
  180. 180.
    Zeltz P, Hess WR, Neckermann K, Borner T, Kossel H (1993) Editing of the chloroplast rpoB transcript is independent of chloroplast translation and shows different patterns in barley and maize. EMBO J 12:4291–4296 PubMedGoogle Scholar
  181. 181.
    Zito F, Kuras R, Choquet Y, Kossel H, Wollman FA (1997) Mutations of cytochrome b6 in Chlamydomonas reinhardtii disclose the functional significance for a proline to leucine conversion by petB editing in maize and tobacco. Plant Mol Biol 33:79–86 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute of BiologyHumboldt-University BerlinBerlinGermany
  2. 2.Institute of Molecular BiologyUniversity of OregonEugeneUSA

Personalised recommendations