Skip to main content

The unfolded protein response unfolds

  • Chapter
  • First Online:
  • 153 Accesses

Part of the book series: Topics in Current Genetics ((TCG,volume 16))

Abstract

As a key organelle of protein targeting and secretion, the endoplasmic reticulum (ER) plays host to a wide variety of protein maturation steps including folding, modification, and complex formation. Homeostasis of ER function is therefore critical to cell function. The unfolded protein response (UPR), a conserved eukaryotic signal transduction pathway, regulates the ER’s capacity to perform protein folding according to cellular demand. UPR signaling is initiated by ER transmembrane components that sense unfolded protein levels within the ER. In yeast, the only known UPR initiator is IRE1, a transmembrane serine/threonine kinase/ endoribonuclease. In higher eukaryotes, the UPR also comprises signals initiated by the ER-transmembrane kinase PERK and the ER-transmembrane transcription factor ATF6. A major consequence of UPR initiator activation is transcription induction of a wide variety of genes for ER-resident chaperons and protein folding enzymes, in order to increase ER protein folding capacity. Ultimately, UPR activation leads to remodeling the entire secretory pathway in order to meet cellular demand. The identification of these initiators and recent studies of their behaviors is revealing fascinating aspects of the overall UPR. This review discusses highlights of these discoveries and relationships between the UPR signaling branches initiated by each ER component.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Abeijon C, Hirschberg CB (1992) Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci 17:32-36

    PubMed  CAS  Google Scholar 

  • 2. Abelson J (1994) Transfer-Rna Splicing. FASEB J 8:A1259-A1259

    Google Scholar 

  • 3. Amundson SA, Zhan Q, Penn LZ, Fornace AJ (1998) Myc suppresses induction of the growth arrest genes gadd34, gadd45, and gadd153 by DNA-damaging agents. Oncogene 17:2149-2154

    PubMed  CAS  Google Scholar 

  • 4. Barone MV, Crozat A, Tabaee A, Philipson L, Ron D (1994) Chop (Gadd153) and its oncogenic variant, Tls-Chop, have opposing effects on the induction of G(1)/S arrest. Genes Dev 8:453-464

    PubMed  CAS  Google Scholar 

  • 5. Bertolotti A, Wang XZ, Novoa I, Jungreis R, Schlessinger K, Cho JH, West AB, Ron D (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1 beta-deficient mice. J Clin Invest 107:585-593

    Article  PubMed  CAS  Google Scholar 

  • 6. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326-332

    PubMed  CAS  Google Scholar 

  • 7. Bork P, Sander C (1993) A hybrid protein kinase-Rnase in an interferon-induced pathway. FEBS Lett 334:149-152

    PubMed  CAS  Google Scholar 

  • 8. Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97:12625-12630

    PubMed  CAS  Google Scholar 

  • 9. Brewer JW, Hendershot LM, Sherr CJ, Diehl JA (1999) Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci USA 96:8505-8510

    PubMed  CAS  Google Scholar 

  • 10. Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLOS Biology 2:1843-1853

    CAS  Google Scholar 

  • 11. Brown JD, Ng DTW, Ogg SC, Walter P (1995) Targeting pathways to the endoplasmic reticulum membrane. Cold Spring Harbor Symp Quant Biol 60:23-30

    PubMed  CAS  Google Scholar 

  • 12. Brown MS, Goldstein JL (1997) The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331-340

    PubMed  CAS  Google Scholar 

  • 13. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92-96

    PubMed  CAS  Google Scholar 

  • 14. Casagrande R, Stern P, Diehn M, Shamu C, Osario M, Zuniga M, Brown PO, Ploegh H (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell 5:729-735

    PubMed  CAS  Google Scholar 

  • 15. Chang HJ, Jones EW, Henry SA (2002) Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. Genetics 162:29-43

    PubMed  CAS  Google Scholar 

  • 16. Chen JJ, Crosby JS, London IM (1994) Regulation of heme-regulated Eif-2-alpha kinase and its expression in erythroid-cells. Biochimie 76:761-769

    PubMed  CAS  Google Scholar 

  • 17. Cox JS, Chapman RE, Walter P (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8:1805-1814

    PubMed  CAS  Google Scholar 

  • 18. Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197-1206

    PubMed  CAS  Google Scholar 

  • 19. Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391-404

    PubMed  CAS  Google Scholar 

  • 20. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108-20117

    PubMed  CAS  Google Scholar 

  • 21. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198-7209

    PubMed  CAS  Google Scholar 

  • 22. Dong BH, Niwa M, Walter P, Silverman RH (2001) Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. RNA 7:361-373

    PubMed  CAS  Google Scholar 

  • 23. Dong BH, Silverman RH (1997) A bipartite model of 2-5A-dependent RNase L. J Biol Chem 272:22236-22242

    PubMed  CAS  Google Scholar 

  • 24. Elgersma Y, Kwast L, van den Berg M, Snyder WB, Distel B, Subramani S, Tabak HF (1997) Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J 16:7326-7341

    PubMed  CAS  Google Scholar 

  • 25. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181-191

    PubMed  CAS  Google Scholar 

  • 26. Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339:135-141

    PubMed  CAS  Google Scholar 

  • 27. Feng B, Yao PM, Li YK, Devlin CM, Zhang DJ, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781-792

    PubMed  CAS  Google Scholar 

  • 28. Fewell SW, Travers KJ, Weissman JS, Brodsky JL (2001) The action of molecular chaperones in the early secretory pathway. Ann Rev Genet 35:149-191

    PubMed  CAS  Google Scholar 

  • 29. Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2:379-384

    PubMed  CAS  Google Scholar 

  • 30. Gething MJ (1999) Role and regulation of the ER chaperone BiP. Sem Cell Dev Biol 10:465-472

    CAS  Google Scholar 

  • 31. Gilmore R (1993) Protein translocation across the endoplasmic-reticulum - a tunnel with toll booths at entry and exit. Cell 75:589-592

    PubMed  CAS  Google Scholar 

  • 32. Gonzalez TN, Sidrauski C, Dorfler S, Walter P (1999) Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J 18:3119-3132

    PubMed  CAS  Google Scholar 

  • 33. Graves JA, Henry SA (2000) Regulation of the yeast INO1 gene: The products of the IN02, IN04 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 154:1485-1495

    PubMed  CAS  Google Scholar 

  • 34. Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality-control. Proc Natl Acad Sci USA 91:913-917

    PubMed  CAS  Google Scholar 

  • 35. Han AP, Yu C, Lu LR, Fujiwara Y, Browne C, Chin G, Fleming M, Leboulch P, Orkin SH,

    Google Scholar 

  • 36. Chen JJ (2001) Heme-regulated eIF2 alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J 20:6909-6918

    PubMed  Google Scholar 

  • 37. Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Ann Rev Cell Mol Biol 18:575-599

    CAS  Google Scholar 

  • 38. Harding HP, Novoa I, Zhang YH, Zeng HQ, Wek R, Schapira M, Ron D (2000a) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099-1108

    PubMed  CAS  Google Scholar 

  • 39. Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes - a review. Diabetes 51:S455-S461

    PubMed  CAS  Google Scholar 

  • 40. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271-274

    PubMed  CAS  Google Scholar 

  • 41. Harding HP, Zhang YH, Bertolotti A, Zeng HQ, Ron D (2000) PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897-904

    PubMed  CAS  Google Scholar 

  • 42. Harding HP, Zhang YH, Zeng HQ, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619-633

    PubMed  CAS  Google Scholar 

  • 43. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787-3799

    PubMed  CAS  Google Scholar 

  • 44. Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic-reticulum. Cell 81:425-433

    PubMed  CAS  Google Scholar 

  • 45. Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Ann Rev Biochem 73:1019-1049

    PubMed  CAS  Google Scholar 

  • 46. Hendershot LM (2004) The ER chaperone BiP is a master regulator of ER function. Mt Sinai J Med 71:289-297

    PubMed  Google Scholar 

  • 47. Hinnebusch AG (1985) A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol Cell Biol 5:2349-2360

    PubMed  CAS  Google Scholar 

  • 48. Hinnebusch AG (1997) Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. J Biol Chem 272:21661-21664

    PubMed  CAS  Google Scholar 

  • 49. Holkeri H, Makarow M (1998) Different degradation pathways for heterologous glycoproteins in yeast. FEBS Lett 429:162-166

    PubMed  CAS  Google Scholar 

  • 50. Hong M, Luo SZ, Baumeister P, Huang JM, Gogia RK, Li MQ, Lee AS (2004) Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem 279:11354-11363

    PubMed  CAS  Google Scholar 

  • 51. Hopper AK, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17:162-180

    PubMed  CAS  Google Scholar 

  • 52. Hosokawa N, Tremblay LO, You ZP, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded null Hong Kong alpha(1)-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287-26294

    PubMed  CAS  Google Scholar 

  • 53. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415-422

    PubMed  CAS  Google Scholar 

  • 54. Hua XX, Nohturfft A, Goldstein JL, Brown MS (1996) Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 87:415-426

    PubMed  CAS  Google Scholar 

  • 55. Huang RFS, Huang SM, Lin BS, Wei JS, Liu TZ (2001) Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells. Life Sci 68:2799-2811

    PubMed  CAS  Google Scholar 

  • 56. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321-329

    PubMed  CAS  Google Scholar 

  • 57. Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3:158-164

    PubMed  CAS  Google Scholar 

  • 58. Jordan R, Wang LJ, Graczyk TM, Block TM, Romano PR (2002) Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress- mediated apoptosis of MDBK cells. J Virol 76:9588-9599

    PubMed  CAS  Google Scholar 

  • 59. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211-1233

    PubMed  CAS  Google Scholar 

  • 60. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389-1398

    PubMed  CAS  Google Scholar 

  • 61. Kim PS, Arvan P (1998) Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocrine Revi 19:173-202

    CAS  Google Scholar 

  • 62. Kimata YL, Shimizu Y, Abe H, Farcasanu RC, Takeuchi M, Rose MD, Kohno K (2003) Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol Biol Cell 14:2559-2569

    PubMed  CAS  Google Scholar 

  • 63. Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno KA (2004) A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol 167:445-456

    PubMed  CAS  Google Scholar 

  • 64. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:597-597

    CAS  Google Scholar 

  • 65. Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-actin element responsible for the ATF6-dependent mammalian unfolded protein response. J Biol Chem 276:9199-9205

    PubMed  CAS  Google Scholar 

  • 66. Kuznetsov G, Nigam SK (1998) Mechanisms of disease - folding of secretory and membrane proteins. New Eng J Med 339:1688-1695

    PubMed  CAS  Google Scholar 

  • 67. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23:7448-7459

    PubMed  CAS  Google Scholar 

  • 68. Lee K, Tirasophon W, Shen XH, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IREI-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16:452-466

    PubMed  CAS  Google Scholar 

  • 69. Li MQ, Baumeister P, Roy B, Phan T, Foti D, Luo SZ, Lee AS (2000) ATF6 as a transcription activator of the endoplasmic reticulum stress element: Thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol 20:5096-5106

    PubMed  CAS  Google Scholar 

  • 70. Liu CY, Schroder M, Kaufman RJ (2000) Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275:24881-24885

    PubMed  CAS  Google Scholar 

  • 71. Liu CY, Wong HN, Schauerte JA, Kaufman RJ (2002) The protein kinase/endoribonuclease IRE1alpha that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J Biol Chem 277:18346-18356

    PubMed  CAS  Google Scholar 

  • 72. Liu CY, Xu ZH, Kaufman RJ (2003) Structure and intermolecular interactions of the luminal dimerization domain of human IRE1 alpha. J Biol Chem 278:17680-17687

    PubMed  CAS  Google Scholar 

  • 73. Loewen CJR, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644-1647

    PubMed  CAS  Google Scholar 

  • 74. Ma K, Vattem KM, Wek RC (2002a) Dimerization and release of molecular chaperone inhibition facilitate activation of eukaryotic initiation factor-2 kinase in response to endoplasmic reticulum stress. J Biol Chem 277:18728-18735

    PubMed  CAS  Google Scholar 

  • 75. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002b) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351-1365

    PubMed  CAS  Google Scholar 

  • 76. Ma YJ, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28:51-65

    PubMed  CAS  Google Scholar 

  • 77. Marcu MG, Hendershot L, Bertolotti A, Ron D, Neckers L (2001) Heat shock protein 90 (Hsp90) stabilizes IRE1 and PERK, transmembrane kinases of the endoplasmic reticulum that mediate the unfolded protein response. Clin Cancer Res 7:620

    Google Scholar 

  • 78. Masuda A, Kuwano M, Shimada T (1983) Ultrastructural-changes during the enhancement of cellular 3-hydroxy-3-methylglutaryl-coenzyem-a reductase in a Chinese-hamster cell mutant resistant to compactin (Ml236b). Cell Struct Func 8:309-312

    CAS  Google Scholar 

  • 79. Matlack KES, Mothes W, Rapoport TA (1998) Protein translocation: tunnel vision. Cell 92:381-390

    PubMed  CAS  Google Scholar 

  • 80. Mori K (1999) Cellular response to endoplasmic reticulum stress mediated by unfolded protein response pathway. Tanpakushitsu Kakusan Koso 44:2442-2448

    PubMed  CAS  Google Scholar 

  • 81. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451-454

    PubMed  CAS  Google Scholar 

  • 82. Mori K, Kawahara T, Yanagi H, Yura T (1997) ER stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 8:2056-2056

    Google Scholar 

  • 83. Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Molecular cloning and characterization of a major component of the unfolded protein-response transcription factor. Mol Biol Cell 7:770-770

    Google Scholar 

  • 84. Mori K, Ma WZ, Gething MJ, Sambrook J (1993) A Transmembrane protein with a Cdc2+/Cdc28-related kinase- activity is required for signaling from the ER to the nucleus. Cell 74:743-756

    PubMed  CAS  Google Scholar 

  • 85. Mori K, Sant A, Kohno K, Normington K, Gething MJ, Sambrook JF (1992) A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 11:2583-2593

    PubMed  CAS  Google Scholar 

  • 86. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan JY (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98-103

    PubMed  CAS  Google Scholar 

  • 87. Nikawa JI, Yamashita S (1992) Ire1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces-cerevisiae. Mol Microbiol 6:1441-1446

    PubMed  CAS  Google Scholar 

  • 88. Niwa M, Sidrauski C, Kaufman RJ, Walter P (1999) A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell 99:691-702

    PubMed  CAS  Google Scholar 

  • 89. Niwa M, Patil CK, DeRisi J, Walter P (2004) Genome-scale approaches for discovering novel non-conventional splicing substrates of the Ire1 nuclease. Genome Biol 6:R3.1-10

    PubMed  Google Scholar 

  • 90. Nohturfft A, DeBose-Boyd RA, Scheek S, Goldstein JL, Brown MS (1999) Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci USA 96:11235-11240

    PubMed  CAS  Google Scholar 

  • 91. Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102:315-323

    PubMed  CAS  Google Scholar 

  • 92. Novoa I, Zeng HQ, Harding HP, Ron D (2001) Feedback inhibition of the unfolded protein response by GADD34- mediated dephosphorylation of eIF2 alpha. J Cell Biol 153:1011-1021

    PubMed  CAS  Google Scholar 

  • 93. Novoa I, Zhang YH, Zeng HQ, Jungreis R, Harding HP, Ron D (2003) Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 22:1180-1187

    PubMed  CAS  Google Scholar 

  • 94. Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394-1397

    PubMed  CAS  Google Scholar 

  • 95. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366:585-594

    PubMed  CAS  Google Scholar 

  • 96. Oono K, Yoneda T, Manabe T, Yamagishi S, Matsuda S, Hitomi J, Miyata S, Mizuno T, Imaizumi K, Katayama T, Tohyama M (2004) JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochem Int 45:765-772

    PubMed  CAS  Google Scholar 

  • 97. Outinen PA, Sood SK, Pfeifer SI, Pamidi S, Podor TJ, Li J, Weitz JI, Austin RC (1999) Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 94:959-967

    PubMed  CAS  Google Scholar 

  • 98. Papa FR, Zhang C, Shokat K, Walter P (2003) Bypassing a kinase activity with an ATP-competitive drug. Science 302:1533-1537

    PubMed  CAS  Google Scholar 

  • 99. Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349-355

    PubMed  CAS  Google Scholar 

  • 100. Patil CK, Li H, Walter P (2004) Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. Plos Biology 2:1208-1223

    CAS  Google Scholar 

  • 101. Pavio N, Romano PR, Graczyk TM, Feinstone SM, Taylor DR (2003) Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2 alpha kinase PERK. J Virol 77:3578-3585

    PubMed  CAS  Google Scholar 

  • 102. Reimold A, Friend D, Alt F, Glimcher L (1999) Control of terminal B cell differentiation by transcription factor XBP-1. Arthritis Rheum 42:S177-S177

    Google Scholar 

  • 103. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E,

    Google Scholar 

  • 104. Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300-307

    PubMed  Google Scholar 

  • 105. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383-1388

    PubMed  CAS  Google Scholar 

  • 106. Ron D, Habener JF (1992) Chop, a novel developmentally regulated nuclear-protein that dimerizes with transcription factors C/Ebp and Lap and functions as a dominant-negative inhibitor of gene-transcription. Genes Dev 6:439-453

    PubMed  CAS  Google Scholar 

  • 107. Roy B, Lee AS (1999) The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res 27:1437-1443

    PubMed  CAS  Google Scholar 

  • 108. Ruegsegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107:103-114

    PubMed  CAS  Google Scholar 

  • 109. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20-28

    PubMed  CAS  Google Scholar 

  • 110. Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL,

    Google Scholar 

  • 111. Brown MS (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 2:505-514

    PubMed  Google Scholar 

  • 112. Samuel CE, Kuhen KL, George CX, Ortega LG, RendeFournier R, Tanaka H (1997) The PKR protein kinase - An interferon-inducible regulator of cell growth and differentiation. Int J Hematol 65:227-237

    PubMed  CAS  Google Scholar 

  • 113. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S, Kaufman RJ (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165-1176

    PubMed  CAS  Google Scholar 

  • 114. Shamu CE (1998) Splicing: HACking into the unfolded-protein response. Curr Biol 8:R121-R123

    PubMed  CAS  Google Scholar 

  • 115. Shamu CE, Walter P (1996) Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 15:3028-3039

    PubMed  CAS  Google Scholar 

  • 116. Shen JS, Chen X, Hendershot L, Prywes R (2002a) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3:99-111

    PubMed  CAS  Google Scholar 

  • 117. Shen XJ, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ (2002b) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. FASEB J 16:A891-A891

    Google Scholar 

  • 118. Shi YG, Taylor SI, Tan SL, Sonenberg N (2003) When translation meets metabolism: Multiple links to diabetes. Endocr Rev 24:91-101

    PubMed  CAS  Google Scholar 

  • 119. Shi YG, Vattem KM, Sood R, An J, Liang JD, Stramm L, Wek RC (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18:7499-7509

    PubMed  CAS  Google Scholar 

  • 120. Sidrauski C, Chapman R, Walter P (1998) The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol 8:245-249

    PubMed  CAS  Google Scholar 

  • 121. Sidrauski C, Cox JS, Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87:405-413

    PubMed  CAS  Google Scholar 

  • 122. Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031-1039

    PubMed  CAS  Google Scholar 

  • 123. Sitia R, Helenius A, Swoboda BEP (2001) Quality control in the secretory assembly line - discussion. Philos Trans R Soc Lond B Biol Sci 356:150-150

    Google Scholar 

  • 124. Spinelli SL, Consaul SA, Phizicky EM (1997) A conditional lethal yeast phosphotransferase (tpt1) mutant accumulates tRNAs with a 2 '-phosphate and an undermodified base at the splice junction. RNA 3:1388-1400

    PubMed  CAS  Google Scholar 

  • 125. Sriburi R, Jackowski S, Mori K, Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167:35-41

    PubMed  CAS  Google Scholar 

  • 126. Tessitore A, del P Martin M, Sano R, Ma YJ, Mann L, Ingrassia A, Laywell ED, Steindler DA, Hendershot LM, d'Azzo A (2004) G(M1)-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753-766

    PubMed  CAS  Google Scholar 

  • 127. Thuerauf DJ, Morrison L, Glembotski CC (2004) Opposing roles for ATF6 alpha and ATF6 beta in endoplasmic reticulum stress response gene induction. J Biol Chem 279:21078-21084

    PubMed  CAS  Google Scholar 

  • 128. Tirasophon W, Lee K, Callaghan B, Welihinda A, Kaufman RJ (2000) The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response. Genes Dev 14:2725-2736

    PubMed  CAS  Google Scholar 

  • 129. Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812-1824

    PubMed  CAS  Google Scholar 

  • 130. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249-258

    PubMed  CAS  Google Scholar 

  • 131. Trotta CR, Miao F, Arn EA, Stevens SW, Ho CK, Rauhut R, Abelson, JN (1997) The yeast tRNA splicing endonuclease: A tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89:849-858

    PubMed  CAS  Google Scholar 

  • 132. Urano F, Bertolotti A, Ron D (2000a) IRE1 and efferent signaling from the endoplasmic reticulum. J Cell Sci 113:3697-3702

    PubMed  CAS  Google Scholar 

  • 133. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000b) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664-666

    PubMed  CAS  Google Scholar 

  • 134. van Anken E, Romijn EP, Maggioni C, Mezghrani A, Sitia R, Braakman I, Heck AJR (2003) Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18:243-253

    Google Scholar 

  • 135. Vattem KM, Wek RC (2004) Re-initiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101:11269-11274

    PubMed  CAS  Google Scholar 

  • 136. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3:944-950

    PubMed  CAS  Google Scholar 

  • 137. Wang T, Hebert DN (2003) EDEM an ER quality control receptor. Nat Struct Biol 10:319-321

    PubMed  CAS  Google Scholar 

  • 138. Wang XD, Sato R, Brown MS, Hua XX, Goldstein JL (1994) Srebp-1, a Membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53-62

    PubMed  CAS  Google Scholar 

  • 139. Wang XZ, Harding HP, Zhang YH, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708-5717

    PubMed  CAS  Google Scholar 

  • 140. Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ, Prywes R (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 275:27013-27020

    PubMed  CAS  Google Scholar 

  • 141. Welihinda AK, Tirasophon W, Kaufman RJ (2000) The transcriptional co-activator ADA5 is required for HAC1 mRNA processing in vivo. J Biol Chem 275:3377-3381

    PubMed  CAS  Google Scholar 

  • 142. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107:1263-1273

    Article  PubMed  CAS  Google Scholar 

  • 143. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355-1364

    PubMed  CAS  Google Scholar 

  • 144. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins - Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741-33749

    PubMed  CAS  Google Scholar 

  • 145. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265-271

    PubMed  CAS  Google Scholar 

  • 146. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001a) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881-891

    PubMed  CAS  Google Scholar 

  • 147. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755-6767

    PubMed  CAS  Google Scholar 

  • 148. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2001b) Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol 21:1239-1248

    PubMed  CAS  Google Scholar 

  • 149. Zeng LF, Lu M, Mori K, Luo SZ, Lee AS, Zhu Y, Shyy JYJ (2004) ATF6 modulates SREBP2-mediated lipogenesis. EMBO J 23:950-958

    PubMed  CAS  Google Scholar 

  • 150. Zhang C, Cai Y, Adachi MT, Oshiro S, Aso T, Kaufman RJ, Kitajima S (2001) Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 276:35867-35874

    PubMed  CAS  Google Scholar 

  • 151. Zhou AM, Hassel BA, Silverman RH (1993) Expression cloning of 2-5a-dependent Rnase - a uniquely regulated mediator of interferon action. Cell 72:753-765

    PubMed  CAS  Google Scholar 

  • 152. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982-995

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maho Niwa .

Editor information

Ineke Braakman

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Niwa, M. The unfolded protein response unfolds. In: Braakman, I. (eds) Chaperones. Topics in Current Genetics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_115

Download citation

Publish with us

Policies and ethics