Skip to main content

Phytoremediation and hyperaccumulator plants

Part of the Topics in Current Genetics book series (TCG,volume 14)

Abstract

Phytoremediation is a group of technologies that use plants to reduce, remove, degrade, or immobilize environmental toxins, primarily those of anthropogenic origin, with the aim of restoring area sites to a condition useable for private or public applications. Phytoremediation efforts have largely focused on the use of plants to accelerate degradation of organic contaminants, usually in concert with root rhizosphere microorganisms, or remove hazardous heavy metals from soils or water. Phytoremediation of contaminated sites is a relatively inexpensive and aesthetically pleasing to the public compared to alternate remediation strategies involving excavation/removal or chemical in situ stabilization/conversion. Many phytoremediation plans have multi-year timetables, but since most sites in need of remediatrion have been contaminated for more than ten years, as such a ten year remediation plan does not seem excessive. Seven aspects of phytoremediation are described in this chapter: phytoextraction, phytodegradation, rhizosphere degradation, rhizofiltration, phytostabilization, phytovolatization, and phytorestoration. Combining technologies offer the greatest potential to efficiently phytoremediate contaminated sites. The major focus of this chapter is phytoextraction of arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium, and zinc.

Keywords

  • Hairy Root
  • Indian Mustard
  • Bioconcentration Factor
  • Hyperaccumulator Plant
  • Cation Diffusion Facilitator

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/4735_100
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31719-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. (2000) Rapport de la commission au conseil et au parlement européen sur la mise en oeuvre de la législation communautaire en matière de déchets. Bruxelles, La Commission Au Conseil Et Au Parlement Européen. http://europa.eu.int/comm/environment/w̃aste/reporting/fr.pdf

    Google Scholar 

  • 2. (2001) Former badlands bombing range restoration advisory board meeting minutes, Former Badlands Bombing Range Restoration Advisory Board. http://www.nwo.usace.army.mil/html/pm-hc/RAB_Minutes/29-mar-2001.htm

    Google Scholar 

  • 3. (2005) Sandia National Laboratories. http://www.sandia.gov/

    Google Scholar 

  • 4. Akeeson B, Skerfing S (1985) Exposure in welding high nickel alloy. Int Arch Occup Environ Health 56:111-117

    Google Scholar 

  • 5. Aksoy A, Sahün U, Duman F (2000) Robinia pseudo-acacia L. as a posssible biomonitor of heavy metal pollution in Kayseri. Turk J Bot 24:279-284

    Google Scholar 

  • 6. Alvarado MC, Zsigmond LM, Kovács I, Csépl A, Koncz C, Szabados LM (2003) Gene trapping with firefly luciferase in Arabidopsis:tagging of stress-responsive genes. Plant Physiol 134:18-27

    Google Scholar 

  • 7. Anderson CWN, Brooks RR, Chiarucci A, Lacoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407-415

    CAS  Google Scholar 

  • 8. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation. Environ Sci Technol 27:2630-2636

    CAS  Google Scholar 

  • 9. Andren AW, Nriagu JO (1979) The Global Cycle of Mercury. In: Nriagu J (ed) The Biogeochemistry of mercury in the environment. ElsevierBiomedical, Amsterdam, pp 1-21

    Google Scholar 

  • 10. Assunção A, Martins P, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217-226

    Google Scholar 

  • 11. ATSDR (2001) ToxFAQsTM for Chromium, Agency for Toxic Substances and Disease Registry. http://atsdr1.atsdr.cdc.gov/tfacts7.html

    Google Scholar 

  • 12. ATSDR (2003) ToxFAQsTM for Nickel; Agency for Toxic Substances and Disease Registry http://www.atsdr.cdc.gov/tfacts15.html

    Google Scholar 

  • 13. Atgenex Microarrays. http://web.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex.htm

    Google Scholar 

  • 14. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements- a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126

    CAS  Google Scholar 

  • 15. Baker AJM, Whiting SN (2002) In search of the Holy Grail- a further step in understanding metal hyperaccumulation? New Phytol 155:1-4

    Google Scholar 

  • 16. Baker R, Simpson FS (1998) Cleanup Order Issued to Chrome Crankshaft. Sacramento, CA, California Environmental Protection Agency, Department of Toxic Substances Control:1-2, http://www.dtsc.ca.gov/SiteCleanup/Chrome_Crankshaft/NEWS_1998_Chrome_Crankshaft_Cleanup_Order_t-21-98.pdf

    Google Scholar 

  • 17. Bannick CG, Hahn J, Penning J (2002) Zur einheitlichen Ableitung von Schwermetallgrenzwerten bei Düngemitteln. Müll und Abfall 8:424-430

    Google Scholar 

  • 18. Banuelos GS, Ajwa HA, Terry N, Zayed A (1997) Phytoremediation of selenium laden soils:A new technology. J Soil Water Conserv 52:426-430

    Google Scholar 

  • 19. Barnett M, Harris L, Turner RR, Stevenson RJ, Henson TJ, Melton RC, Hoffman DP (1997) Formation of mercuric sulfide in soil. Environ Sci Technol 31:3037-3043

    CAS  Google Scholar 

  • 20. Becher M, Talke I, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251-268

    PubMed  CAS  Google Scholar 

  • 21. Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432-40

    PubMed  CAS  Google Scholar 

  • 22. Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9-18

    CAS  Google Scholar 

  • 23. Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, New York, pp 71-88

    Google Scholar 

  • 24. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956-60

    PubMed  CAS  Google Scholar 

  • 25. Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463-471

    PubMed  CAS  PubMed Central  Google Scholar 

  • 26. Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution:merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:808-813

    Google Scholar 

  • 27. Blaylock M, Huang J (2000) Phytoextraction of Metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, New York. pp 53-70

    Google Scholar 

  • 28. Blaylock M, Salt D, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley B, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860-865

    Google Scholar 

  • 29. Blaylock MJ, Huang JW, Elless MP, Edenspace Systems Corporation (2001) Phytoremediation of Arsenic in Soil. Annual International Conference on Soils, Sediments and Waters

    Google Scholar 

  • 30. Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158-167

    PubMed  CAS  Google Scholar 

  • 31. Boominathan RR, Saha-Chaudhury NM, Sahajwalla V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86:243-250

    PubMed  CAS  Google Scholar 

  • 32. Bouwman LA, Bloem J, Romkens PFAM, Boon GT, Vangronsveld J (2001) Beneficial effects of the growth of metal tolerant grass on biological and chemical parameters in copper- and zinc-contaminated sandy soils. Minerva Biotechnologica 13:19-26

    Google Scholar 

  • 33. Bradshaw A (1997) Restoration of mined lands - using natural processes. Ecol Eng 8:255-269

    Google Scholar 

  • 34. Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49-77

    CAS  Google Scholar 

  • 35. Brown S, Chaney R, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-contaminated and cadmium-contaminated soil. J Environ Qual 23:1151-1157

    CAS  Google Scholar 

  • 36. Brun LA, Maillet J, Hinsinger P, Pepin M (2001) Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ Pollut 111:293-302

    PubMed  CAS  Google Scholar 

  • 37. Burt R, Wilson M, Mays MD, Keck TJ, Fillmore M, Rodman AW, Alexander EB, Hernandez L (2000) Trace and major elemental analysis applications in the US Cooperative Soil Survey program. Commun Soil Sci Plant Anal 31:1757-1771

    CAS  Google Scholar 

  • 38. Burt R, Wilson M, Mays MD, Lee CW (2003) Major and trace elements of selected pedons in the USA. J Environ Qual 32:2109-2121

    PubMed  CAS  Google Scholar 

  • 39. Cannon H (1960) Botanical prospecting for ore deposits. Science 132:591-598Cape Cod Times (1997) http://www.capecodonline.com/base/bullets.htm

    Google Scholar 

  • 40. Carty A, Malone S (1979) The Chemistry of Mercury in Biological Systems. In: Nriagu J (ed) The Biogeochemistry of mercury in the environment. ElsevierBiomedical, Amsterdam, pp 433-479

    Google Scholar 

  • 41. Celik A, Kartal AA, Akdogan A, Kaka Y (2005) Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environ Int 31:105-112

    PubMed  CAS  Google Scholar 

  • 42. Chaney RL, Angle JS Li YM, Baker AJM (1999) Method for phytomining of nickel, cobalt and other metals from soil. U.S. Patent No. 5944872 (continuation in-part of US Patent 5711784 issued Jan. 27, 1998)

    Google Scholar 

  • 43. Chavez K (1999) Lead contamination spurs public meeting. Tennessean. http://www.tennessean.com/sii/99/08/14/lead14.shtml

    Google Scholar 

  • 44. Che D, Meagher R, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotech J 1:311-319

    CAS  Google Scholar 

  • 45. Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309-315

    PubMed  CAS  Google Scholar 

  • 46. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu Rev Plant Bio 53:159-182

    CAS  Google Scholar 

  • 47. Cosgrove J (2001) Selenium and Livestock Metabolism, Toxicity, and Deficiency. Cornell University, http://www.ansci.cornell.edu/plants/toxicagents/selenium/selenium.html

    Google Scholar 

  • 48. Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot doi:10.1093/jxb/eri062

    Google Scholar 

  • 49. Cosio C, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716-725

    PubMed  CAS  PubMed Central  Google Scholar 

  • 50. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716-725

    PubMed  CAS  PubMed Central  Google Scholar 

  • 51. Davies J (1986). Occupational asthma caused by nickel salts. J Soc Occ Med 36:29-31

    CAS  Google Scholar 

  • 52. Davis LC, Vanderhoof S, Dana J, Selk K, Smith K, Goplen B, Erickson LE (1998) Movement of chlorinated solvents and other volatile organics through plants monitored by Fourier transform infrared (FT-IR) spectrometry. J Hazardous Subst Research 1:4-1, 4-26

    Google Scholar 

  • 53. Delnomdedieu M, Basti M, Otvos JD, Thomas DJ (1994) reduction and binding of arsenate and dimethylarsinate by glutathione - a magnetic-resonance study. Chem Biol Interact 90:139-155

    PubMed  CAS  Google Scholar 

  • 54. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140-1145

    PubMed  CAS  Google Scholar 

  • 55. DiDonato RL, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403-414

    PubMed  CAS  Google Scholar 

  • 56. Ebbs S, Lasat M, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424-1430

    CAS  Google Scholar 

  • 57. Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescenes (J. and C. Presl). Planta 214:635-640

    PubMed  CAS  Google Scholar 

  • 58. Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273-279

    PubMed  CAS  Google Scholar 

  • 59. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1

    PubMed  PubMed Central  Google Scholar 

  • 60. Ensley B (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley Interscience, NewYork, pp 3-12

    Google Scholar 

  • 61. EPA (1989) EPA Superfund Record of Decision: Picatinny Arsenal (US Army). Rockaway Township, NJ, U.S. Environmental Protection Agency Superfund. http://www.epa.gov/superfund/sites/rods/fulltext/r0289093.pdf

    Google Scholar 

  • 62. EPA (2000) Chromium contamination in the San Fernando Valley (SFV), California Environmental Protection Agency, Los Angeles Regional Water Quality Control Board. http://www.swrcb.ca.gov/rwqcb4/html/water_qty/chromium_S1.html

    Google Scholar 

  • 63. EPA (2004) National priorities list for Smalley-Piper. Collierville, Tennessee, U.S. Environmental Protection Agency http://www.epa.gov/superfund/sites/npl/nar1727.htm

    Google Scholar 

  • 64. EPA (2005) Lead in paint, dust, and soil, U.S. Environmental Protection Agency. http://www.epa.gov/lead/

    Google Scholar 

  • 65. Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163-167

    CAS  Google Scholar 

  • 66. Falandysz J, Lipka K, Kawano M, Brzostowski A, Dadej M, Jedrusiak A, Puzyn T (2003) Mercury content and its bioconcentration factors in wild mushrooms at Lukta and Morag, northeastern Poland. J Agric Food Chem 51:2832-2836

    PubMed  CAS  Google Scholar 

  • 67. Farmer JG, Graham MC, Thomas RP, Licona-Manzur C, Paterson E, Campbell CD, Geelhoed JS, Lumsdon DG, Meeussen LCL, Roe MJ, Conner A, Fallick AE, Bewley RJF (1999) Assessment and modelling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land. Environ Geochem Health 21:331-337

    CAS  Google Scholar 

  • 68. Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione mediated nickel tolerance in Thlaspi Nickel hyperaccumulators. Plant Physiol 137 (3), in press

    Google Scholar 

  • 69. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer WA, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176-2191

    PubMed  CAS  PubMed Central  Google Scholar 

  • 70. Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675-687

    CAS  Google Scholar 

  • 71. Gao S, Tanji K, Peters D, Lin Z, Terry N (2003) Selenium removal from irrigation drainage water flowing through constructed wetland cells with special attention to accumulation in sediments. Water Air Soil Pollut 144:263-284

    CAS  Google Scholar 

  • 72. Garcia G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int Biodeter & Biodeg 54:245-250

    Google Scholar 

  • 73. Gardea-Torresdey JL, de la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol. PMID:15696348

    Google Scholar 

  • 74. Gong J, Lee D, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118-10123

    PubMed  CAS  PubMed Central  Google Scholar 

  • 75. Gray JE, Labson VF, Weaver JN, Krabbenhoft DP (2002) Mercury and methylmercury contamination related to artisanal gold mining, Surinam. Geophys Res Lett 29:2105

    Google Scholar 

  • 76. Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220-7224

    PubMed  CAS  PubMed Central  Google Scholar 

  • 77. Gstoettner EM, Fisher NS (1995) Accumulation of cadmium, chromium and zinc by the moss Sphagnum papillosum Lindle. Water Air Soil Pollut 93:321-330

    Google Scholar 

  • 78. Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198-3208

    PubMed  CAS  PubMed Central  Google Scholar 

  • 79. Gupta UC, Gupta SC (1998) Trace element toxicity relationships to crop production and livestock and human health: Implications for management. Commun Soil Sci Plant Anal 29:1491-1522

    CAS  Google Scholar 

  • 80. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1-11

    PubMed  CAS  Google Scholar 

  • 81. Hansen D, Duda PJ, Zayed A, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591-597

    CAS  Google Scholar 

  • 82. Harper FA, Smith S, Macnair MR (1998) Can an increased copper requirement in copper-tolerant Mimulus guttatus explain the cost of tolerance? II. Reproductive phase. New Phytol 140:637-654

    CAS  Google Scholar 

  • 83. Huang J, Chen J, Berti W, Cunningham S (1997) Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800-805

    CAS  Google Scholar 

  • 84. Jiang LY, Yang XE, He ZL (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179-1187

    PubMed  CAS  Google Scholar 

  • 85. Johnson D, Hale B (2004) White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada. Environ Pollut 127:65-72

    PubMed  CAS  Google Scholar 

  • 86. Jones R, Sun W, Tang, CS, Robert, FM (2004) Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Environ Sci Pollut Research 11:340-346

    CAS  Google Scholar 

  • 87. Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716-24

    PubMed  CAS  PubMed Central  Google Scholar 

  • 88. Kim D, Gustin J, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237-251

    PubMed  CAS  Google Scholar 

  • 89. Kirk J, Klironomos J, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455-465

    PubMed  CAS  Google Scholar 

  • 90. Koike S, Inoue H, Mizuno, D, Takahashi, M, Nakanishi, H, Mori, S, Nishizawa, NK(2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415-424

    PubMed  CAS  Google Scholar 

  • 91. Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343-1353

    PubMed  CAS  PubMed Central  Google Scholar 

  • 92. Kramer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel nyperaccumulation by Thlaspi goesingense halacsy. Plant Physiol 115:1641-1650

    PubMed  CAS  PubMed Central  Google Scholar 

  • 93. Krishnani K, Parimala V, Meng, XG (2004) Detoxification of chromium(VI) in coastal water using lignocellulosic agricultural waste. Water SA 30:541-545

    CAS  Google Scholar 

  • 94. Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction - the use of plants to remove heavy-metals from soils. Environ Sci Technol 29:1232-1238

    PubMed  CAS  Google Scholar 

  • 95. Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75-84

    PubMed  CAS  Google Scholar 

  • 96. Kupper H, Zhao F, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305-311

    CAS  PubMed Central  Google Scholar 

  • 97. Kuzovkina YA, Knee M, Quigley MF (2004) Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int J Phytoremediation 6:269-287

    PubMed  CAS  Google Scholar 

  • 98. Lasat MM, Baker A, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715-1722

    PubMed  CAS  PubMed Central  Google Scholar 

  • 99. Lasat MM, Baker AJ, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875-883

    PubMed  CAS  PubMed Central  Google Scholar 

  • 100. Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71-79

    PubMed  CAS  Google Scholar 

  • 101. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, deSouza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377-383

    PubMed  CAS  PubMed Central  Google Scholar 

  • 102. Lee S, Moon J, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656-663

    PubMed  CAS  PubMed Central  Google Scholar 

  • 103. Leustek T (2002) Sulfate Metabolism. In: Somerville C, Meyerowitz E (eds) The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD, pp 1-16

    Google Scholar 

  • 104. Li YM, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003a) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Tech 37:1463-1468

    CAS  Google Scholar 

  • 105. Li Y, Chaney R, Brewer EP, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003b) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107-115

    CAS  Google Scholar 

  • 106. Liao S, Chang N (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquatic Plant Manag 42:60-68

    Google Scholar 

  • 107. Liu C, Muchhal U, Uthappa M, Kononowicz AK, Raghothama KG (1998) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91-99

    PubMed  CAS  PubMed Central  Google Scholar 

  • 108. Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP (2004) Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. J Environ Qual 33:902-910

    PubMed  CAS  Google Scholar 

  • 109. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11-20

    CAS  Google Scholar 

  • 110. Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawesford MJ, McGrath SP (2002a) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Phyiol 128:1359-1367

    CAS  Google Scholar 

  • 111. Lombi E, Zhao F, Fuhrmann M, Ma LQ, McGrath SP (2002b) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195-203

    CAS  Google Scholar 

  • 112. Lombi E, Zhao F, McGrath S, Young S, Sacchi G (2001a) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53-60

    CAS  Google Scholar 

  • 113. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001b) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919-1926

    PubMed  CAS  Google Scholar 

  • 114. Lopez W (2004) Case Studies in Environmental Medicine- Arsenic Toxicity, Agency for Toxic Substances and Disease Registry

    Google Scholar 

  • 115. Lucero ME, Mueller W, Hubstenberger J, Phillips GC, O'Connell MA (1999) Tolerance to nitrogenous explosives and metabolism of TNT by cell suspensions of Datura innoxia. In Vitro Cell Dev Biol-Plant 35:480-486

    Google Scholar 

  • 116. Lupankwa K, Love D, Mapani, BS, Mseka, S (2004) Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe. Physics Chem Earth 29:1145-1151

    Google Scholar 

  • 117. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    PubMed  CAS  Google Scholar 

  • 118. Macnair M, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc Royal Soc of London Series B-Biol Sci 266:2175-2179

    Google Scholar 

  • 119. Maier R (2004) Phytostabilization of mine tailings in the southwestern United States: plant-soil-microbe interactions and metal speciation dynamics, superfund project. Superfund Basic Research Program, University of Arizona

    Google Scholar 

  • 120. Marseille F, Tiffreau C, Laboudigue A, Lecomte P (2000) Impact of vegetation on the mobility and bioavailability of trace elements in a dredged sediment deposit: a greenhouse study. Agronomie 20:547-556

    Google Scholar 

  • 121. McArthur J, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research 37:109-117

    CAS  Google Scholar 

  • 122. Mccluskey T, Scarf A, Anderson JW (1986) Enzyme catalyzed alpha,beta-elimination of selenocystathionine and selenocystine and their sulfur isologs by plant-extracts. Phytochemistry 25:2063-2068

    CAS  Google Scholar 

  • 123. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277-282

    PubMed  CAS  Google Scholar 

  • 124. Mebane C (1997) Use Attainability Analysis Blackbird Creek Lemhi County Idaho, Idaho Division of Environmental Quality, Water Quality Assessment and Standards Bureau and U.S. Environmental Protection Agency Region 10

    Google Scholar 

  • 125. Meharg A, Macnair M (1992a) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus L. Heredity 69:336-341

    CAS  Google Scholar 

  • 126. Meharg A, Macnair M (1992b) Suppression of the high-affinity phosphate-uptake system - a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Botany 43:519-524

    CAS  Google Scholar 

  • 127. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29-43

    CAS  Google Scholar 

  • 128. Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell-survival against oxidative stress.” Free Rad Biol Medicine 17:235-248

    Google Scholar 

  • 129. Muchhal U, Raghothama K (1999) Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci USA 96:5868-5872

    PubMed  CAS  PubMed Central  Google Scholar 

  • 130. Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149-21157

    PubMed  CAS  Google Scholar 

  • 131. Murphy AS, Eisinger WR, Shaff JE, Kochian LV, Taiz L (1999) Early copper-induced leakage of K(+) from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol 121:1375-1382

    PubMed  CAS  PubMed Central  Google Scholar 

  • 132. Narayanan MT, Tracy JC, Davis LC, Erickson LE (1998) Modeling the fate of toluene in a chamber with alfalfa plants 2. Numerical results and comparison study. J of Hazardous Substance Research 1:5b-1 - 5b-28

    Google Scholar 

  • 133. Negri C, Hinchman R (1996) Plants that remove contaminants from the environment. Lab Med 27:36-40

    Google Scholar 

  • 134. Neumann PM, De Souza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ 26:897-905

    PubMed  CAS  Google Scholar 

  • 135. Newman L, Strand S, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff B, Wilmoth J, Heilman P, Gordon M (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Tech 31:1062-1067

    CAS  Google Scholar 

  • 136. Ng BH, Anderson JW (1979) Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochemistry 18:573-580

    CAS  Google Scholar 

  • 137. Ng J, Kratzmann SM, Qi LX, Crawley H, Chiswell B, Moore MR (1998) Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst 123:889-892

    PubMed  CAS  Google Scholar 

  • 138. Papagiannis I, Kagalou I, Leonardos, J, Petridis, D, Kalfakakou, V (2004) Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int 30:357-362

    PubMed  CAS  Google Scholar 

  • 139. Parimala V, Krishnani K, Gupta, BP, Jayanthi, M, Abraham, M (2004) Phytoremediation of chromium from seawater using five different products from coconut husk. Bull Environ Contam Tox 73:31-37

    CAS  Google Scholar 

  • 140. Peer WA, Mamoudian M, Lahner B, Reeves, RD, Murphy AS, Salt DE (2003) Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographic area. New Phytol 159:421-430

    CAS  Google Scholar 

  • 141. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956-4960

    PubMed  CAS  PubMed Central  Google Scholar 

  • 142. Persans M, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995-10000

    PubMed  CAS  PubMed Central  Google Scholar 

  • 143. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171-1177

    PubMed  CAS  PubMed Central  Google Scholar 

  • 144. Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460-1467

    PubMed  CAS  PubMed Central  Google Scholar 

  • 145. Pieper DH, Martins dos Santos VAP, Golyshin PN (2004) Genomic and mechanistic insights into the biodegredation of organic pollutants. Curr Opin Biotechnol 15:215-224

    PubMed  CAS  Google Scholar 

  • 146. Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EA

    Google Scholar 

  • 147. (2003). Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250-1257

    Google Scholar 

  • 148. Piñeros M, Kochian L (2003) Differences in whole-cell and single-channel ion currents across the plasma membrane of mesophyll cells from two closely related Thlaspi species. Plant Physiol 131:583-594

    Google Scholar 

  • 149. Pollard JA, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. CRC Crit Rev Plant Sci 21:539-566

    CAS  Google Scholar 

  • 150. Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Sci Total Environ 4:365-371

    CAS  Google Scholar 

  • 151. Poynton CY, Huang JW, Blaylock M J, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080-1088

    PubMed  CAS  Google Scholar 

  • 152. Pulford I, Watson C, McGregor, SD (2001) Uptake of chromium by trees: Prospects for phytoremediation. Environ Geochem Health 23:307-311

    CAS  Google Scholar 

  • 153. Pyatt FB (2001) Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquata in sites contaminated as a consequence of extensive ancient mining activities in Cyprus. Ecotoxicol Environ Saf 50:60-64

    PubMed  CAS  Google Scholar 

  • 154. Quaghebeur M, Rengel Z (2003) The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol 132:1600-1609

    PubMed  CAS  PubMed Central  Google Scholar 

  • 155. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113-1122

    PubMed  CAS  PubMed Central  Google Scholar 

  • 156. Ramaswami A, Rubin E, Bonola S (2003) Non-significance of rhizosphere degradation during phytoremediation of MTBE. Int J Phytoremediation 5:315-31

    PubMed  CAS  Google Scholar 

  • 157. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126-134

    PubMed  CAS  PubMed Central  Google Scholar 

  • 158. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19-48

    PubMed  CAS  Google Scholar 

  • 159. Ravichandran M, Aiken G, Reddy, MM, Ryan, JN (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Tech 32:3305-3311

    CAS  Google Scholar 

  • 160. Reeves R, Brooks R (1983) European species of Thlaspi L (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275-283

    CAS  Google Scholar 

  • 161. Reeves RD (1992) The Hyperaccumulation of Ni by serpentine plants. In: Baker AJM et al. (eds) The Vegetation of Ultramafic (Serpentine) Soils. Intercept Ltd, Andover, Hampshire, UK, pp 253-277

    Google Scholar 

  • 162. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley, BD (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley & Sons, Inc, New York, pp 193-229

    Google Scholar 

  • 163. Robinson B, Fernandez J, Madejon P, Maranon T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117-125

    CAS  Google Scholar 

  • 164. Rubin E, Ramaswami A (2001) The potential for phytoremediation of MTBE. Water Res 35:1348-1353

    PubMed  CAS  Google Scholar 

  • 165. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925-928

    PubMed  CAS  Google Scholar 

  • 166. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182-3187

    PubMed  CAS  PubMed Central  Google Scholar 

  • 167. Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344-1352

    PubMed  CAS  PubMed Central  Google Scholar 

  • 168. Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. In: Hofmeister W (ed) Handbuch der Physiologischen Botanik. Engelmann, Leipzig, pp 153-154

    Google Scholar 

  • 169. Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676-4680

    PubMed  Google Scholar 

  • 170. Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5:89-103

    PubMed  CAS  Google Scholar 

  • 171. Salt DE, Persans MW (2000) Possible molecular mechanisms involved in nickel, zinc, and selenium hyperaccumulation in plants. Biotechnol Genet Eng Rev 17:389-413

    PubMed  Google Scholar 

  • 172. Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley B (eds) Phytoremediation of Toxic Metals. John Wiley and Sons Inc., New York, pp 231-246

    Google Scholar 

  • 173. Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol 31:1635-1644

    Google Scholar 

  • 174. Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Tech 33:713-717

    CAS  Google Scholar 

  • 175. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643-668

    PubMed  CAS  Google Scholar 

  • 176. Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse AS, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815-1826

    PubMed  CAS  PubMed Central  Google Scholar 

  • 177. Schnoor J, Licht L, Mccutcheon S, Wolfe N, Carreira L (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:A318-A323

    Google Scholar 

  • 178. Schnoor J (1997) Phytoremediation: ground water remediation technologies analysis center evaluation report TE-98-01, 37

    Google Scholar 

  • 179. Schroder P, Harvey PJ, Schwitzguebel JP (2002) Prospects for the phytoremediation of organic pollutants in Europe. Environ Sci Pollut Res Int 9:1-3

    PubMed  CAS  Google Scholar 

  • 180. Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, YoneyamaT, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475-486

    PubMed  CAS  Google Scholar 

  • 181. Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128:307-315

    PubMed  CAS  Google Scholar 

  • 182. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914-919

    PubMed  CAS  Google Scholar 

  • 183. Suresh B, Ravishankar G (2004) Phytoremediation - A novel and promising approach for environmental clean-up. Crit Rev Biotech 24:97-124

    CAS  Google Scholar 

  • 184. Thompson P, Ramer L, Guffey AP, Schnoor JL (1998) Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Environ Toxicol Chem 17:902-906

    CAS  Google Scholar 

  • 185. Tollsten L, Muller P (1996) Volatile organic compounds emitted from beech leaves. Phytochem 43:759-762

    CAS  Google Scholar 

  • 186. Tolra R, Poschenrieder C, Barcelo J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. 2. Influence on organic acids. J Plant Nutr 19:1541-1550

    CAS  Google Scholar 

  • 187. Tom J, Miles AM (1935) Brief authentic history of St. Francois County, Missouri. In: Tom J, Miles AM (eds) The Farmington News, Farmington, MO

    Google Scholar 

  • 188. Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7-9

    PubMed  CAS  Google Scholar 

  • 189. Turgut C, Pepe KM, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollution 131:147-154

    CAS  Google Scholar 

  • 190. US DOI (2004) Review of the Department of the Interior's National Irrigation Water Quality Program: Planning and Remediation, U.S. Department of the Interior, Bureau of Reclamation Committee on Planning and Remediation for Irrigation-Induced Water Quality Problems Water Science and Technology Board, Commission on Geosciences Environment, and Resources, National Research Council.http://www.usbr.gov/niwqp/Bibliography/niwqp.abs/html

    Google Scholar 

  • 191. Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloffel D, Lebru, M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740-2745

    PubMed  CAS  Google Scholar 

  • 192. Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Indian Mustard overexpressing ATP sulfurylase or cystathionine-?-synthase. Int J Phytoremediation 6:1-8

    Google Scholar 

  • 193. Vazquez M, Barcelo J, Poschenrieder C, Madico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350-355

    CAS  Google Scholar 

  • 194. Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181-189

    PubMed  CAS  Google Scholar 

  • 195. Virupaksha TK, Shrift A (1965) Biochemical differences between selenium accumulator and non-accumulator Astragalus species. Biochim Biophys Acta 107:69-80

    PubMed  CAS  Google Scholar 

  • 196. Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233-242

    PubMed  CAS  Google Scholar 

  • 197. Wang J, Evangelou VP (1994) Metal tolerance aspects of plant cell walls and vacuoles. In: Pessaraki M (ed) Handbook of Plant and Crop Phyiology. Marcel Dekker, Inc, New York, pp. 695-717

    Google Scholar 

  • 198. Wang J, Zhao F, Meharg AA, Raab A, Feldmann,J, McGrath SP (2002)Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552-1561

    PubMed  CAS  PubMed Central  Google Scholar 

  • 199. Wang Y, Bock A, Neuhierl B (1999) Acquisition of selenium tolerance by a selenium non-accumulating Astragalus species via selection. Biofactors 9:3-10

    PubMed  CAS  Google Scholar 

  • 200. Wang Y, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Eniron Qual 33(5):1779-1785

    CAS  Google Scholar 

  • 201. Webb SM, Gaillard JF, Ma LQ, Tu C (2003) XAS speciation of arsenic in a hyper-accumulating fern. Environ Sci Technol 37:754-760

    PubMed  CAS  Google Scholar 

  • 202. Wong JWC, Lai KM, Su DS, Fang M (2001) Availability of heavymetals for Brassica chinensis grown in an acidic loamy soil amended with a domestic and an industrial sewage sludge. Water Air Soil Pollut 128:339-353

    CAS  Google Scholar 

  • 203. Wu J, Hsu F, Cunningham S (1999) Chelate-assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environ Sci Tech 33:1898-1904

    CAS  Google Scholar 

  • 204. Wu L, Li H, Luo YM, Christie P (2004) Nutrients can enhance phytoremediation of copper-polluted soil by Indian mustard. Environ Geochem Health 26:331-335

    PubMed  CAS  Google Scholar 

  • 205. Wycisk K, Kim EJ, Schroeder JL, Kramer U (2004) Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett 578:128-134

    PubMed  CAS  Google Scholar 

  • 206. Xintaras C (1992) Analysis paper: Impact of lead-contaminated soil on public health. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/cxlead.html.

    Google Scholar 

  • 207. Yoon JM, Oh B-T, Just CL, Schnoor JL (2002) Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine by hybrid poplar trees. Environ Sci Tech 36:4649-4655

    CAS  Google Scholar 

  • 208. Zantopoulos N, Antoniou V, Nikolaidis E (1999) Copper, zinc, cadmium, and lead in sheep grazing in North Greece. Bull Environ Cont Tox 62:691-699

    CAS  Google Scholar 

  • 209. Zhao F, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27-31

    CAS  Google Scholar 

  • 210. Zhao F, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Envirion 23:507-514

    CAS  Google Scholar 

  • 211. Zhao F, Wang J, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403-410

    CAS  Google Scholar 

  • 212. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169-1178

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peer, W.A., Baxter, I.R., Richards, E.L., Freeman, J.L., Murphy, A.S. (2005). Phytoremediation and hyperaccumulator plants. In: Tamas, M.J., Martinoia, E. (eds) Molecular Biology of Metal Homeostasis and Detoxification. Topics in Current Genetics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_100

Download citation