Skip to main content

Introduction to the Zeolite Structure-Directing Phenomenon by Organic Species: General Aspects

  • Chapter
  • First Online:
Insights into the Chemistry of Organic Structure-Directing Agents in the Synthesis of Zeolitic Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 175))

Abstract

During the last years, a tremendous progress has been achieved in the application of new zeolite materials in many different sectors through different pioneering innovations in the field of zeolite synthesis. At the very core of the production of these new zeolite materials lies the use of organic species as structure-directing agents (SDA), which has been recognized as the most important factor to determine the zeolite product rendered after the crystallization process. These organic species organize the inorganic zeolitic units and drive the crystallization pathway towards the production of particular zeolite framework types. This structure-direction phenomenon frequently works in combination with several other factors related to the chemical composition of the synthesis gels, mainly use of fluoride, concentration (H2O/T ratio), and presence of different heteroatoms, which are also relevant for the crystallization of particular zeolite materials. Several properties determine the structure-directing effect of these organic species, especially their molecular size and shape, hydrophobicity, rigidity vs flexibility, and hydrothermal stability. The properties of the zeolitic materials synthesized can be tuned up to a certain point through the use of rationally selected organic species with particular physico-chemical features as SDA. In this introductory chapter, we briefly review the history of the use of organic cations as SDAs, and give the fundaments of the different aspects related to this structure-direction phenomenon and factors affecting it, explaining the main properties of SDAs, providing some examples of recent uses and trends of organic SDAs, as well as the host–guest chemistry involved. In addition, we pay particular attention to the use of imidazolium-based organic cations as SDAs because of their current relevance in the synthesis of new zeolite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cejka J, Corma A, Zones SI (2010) Zeolites and catalysis: synthesis reactions and applications. Wiley, Weinheim

    Book  Google Scholar 

  2. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  CAS  Google Scholar 

  3. Barrer RM (1948) Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J Chem Soc 2:127–132

    Article  CAS  Google Scholar 

  4. Rabo JA, Schoonover MW (2001) Early discoveries in zeolite chemistry and catalysis at union carbide, and follow-up in industrial catalysis. Appl Catal A 222:261–275

    Article  CAS  Google Scholar 

  5. Breck DW, Eversole EG, Milton RM (1956) New synthetic crystalline zeolites. J Am Chem Soc 78:2338–2339

    Article  CAS  Google Scholar 

  6. Sherman JD (1999) Synthetic zeolites and other microporous oxide molecular sieves. Proc Natl Acad Sci 96:3471–3478

    Article  CAS  Google Scholar 

  7. Barrer RM, Denny PJ (1961) Hydrothermal chemistry of the silicates. Part IX.* Nitrogenous aluminosilicates. J Chem Soc:971–982

    Google Scholar 

  8. Kerr GT, Kokotailo GT (1961) Sodium zeolite ZK-4, a new synthetic crystalline aluminosilicate. J Am Chem Soc 83:4675–4675

    Article  CAS  Google Scholar 

  9. Kerr GT (1966) Chemistry of crystalline aluminosilicates. II. The synthesis and properties of zeolite ZK-4. Inorg Chem 5:1537–1539

    Article  CAS  Google Scholar 

  10. Wadlinger RL, Kerr GT, Rosinski EJ (1967) US Patent 3,308,069

    Google Scholar 

  11. Argauer RJ, Landolt GR (1972) US Patent 3,702,886

    Google Scholar 

  12. Kokotailo GT, Chu P, Lawton SL, et al. (1978) Synthesis and structure of synthetic zeolite ZSM-11. Nature 275:119–120

    Article  CAS  Google Scholar 

  13. Kerr GT (1963) Zeolite ZK-5: A new molecular sieve. Science 140:1412

    Article  CAS  Google Scholar 

  14. Wilson ST, Lok BM, Flanigen EM (1982) US Patent 4,310,440

    Google Scholar 

  15. Wilson ST, Lok BM, Messina CA, et al. (1982) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J Am Chem Soc 104:1146–1147

    Article  CAS  Google Scholar 

  16. Lok BM, Cannan TR, Messina CA (1983) The role of organic molecules in molecular sieve synthesis. Zeolites 3:282–291

    Article  CAS  Google Scholar 

  17. Kundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78

    Article  CAS  Google Scholar 

  18. Gies H, Marler M (1992) The structure-controlling role of organic templates for the synthesis of porosils in the system SiO2/template/H2O. Zeolites 12:42–49

    Article  CAS  Google Scholar 

  19. Moliner M, Rey F, Corma A (2013) Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angew Chem Int Ed 52:13880–13889

    Article  CAS  Google Scholar 

  20. Burton AW, Zones SI (2007) Organic molecules in zeolite synthesis: their preparation and structure-directing effects. Stud Surf Sci Catal 168:137–179

    Article  CAS  Google Scholar 

  21. Nakagawa Y (1994) US Patent 5,281,407

    Google Scholar 

  22. Xie D, McCusker LB, Barlocher C, et al. (2013) SSZ-52, a zeolite with an 18-layer aluminosilicate framework structure related to that of the DeNOx catalyst Cu-SSZ-13. J Am Chem Soc 135:10519–10524

    Article  CAS  Google Scholar 

  23. Elomari S (2003) US Patent 6,616,911

    Google Scholar 

  24. Lew CM, Davis TM, Elomari S (2016) Synthesis of new molecular sieves using novel structure-directing agents (Chapter 2). In: Mintova S (ed) Verified syntheses of zeolitic materials, 3rd revised edition. XRD Patterns: N. Barrier. Published on behalf of the Synthesis Commission of the International Zeolite Association 2016, pp 29–35. ISBN: 978-0-692-68539-6

    Google Scholar 

  25. Moliner M, Rey F, Corma A (2016) Synthesis design of new molecular sieves (Chapter 3). In: Mintova S (ed) Verified syntheses of zeolitic materials, 3rd revised edition. XRD Patterns: N. Barrier. Published on behalf of the the Synthesis Commission of the International Zeolite Association 2016, pp 36–41. ISBN: 978-0-692-68539-6

    Google Scholar 

  26. Pérez-Pariente J, Gómez-Hortigüela L (2008) The role of templates in the synthesis of zeolites. In: Čejka J, Peréz-Pariente J, Roth WJ (eds) Zeolites: from model materials to industrial catalysts. Transworld Research Network, pp 33–62. ISBN: 978-81-7895-330-4

    Google Scholar 

  27. Davis ME, Lobo R (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768

    Article  CAS  Google Scholar 

  28. Ikuno T, Chaikittisilp W, Liu Z, et al. (2015) Structure-directing behaviors of tetraethylammonium cations toward zeolite beta revealed by the evolution of aluminosilicate species formed during the crystallization process. J Am Chem Soc 137:14533–14544

    Article  CAS  Google Scholar 

  29. Zones SI, Burton AW, Lee GS, et al. (2007) A study of piperidinium structure-directing agents in the synthesis of silica molecular sieves under fluoride-based conditions. J Am Chem Soc 129:9066–9079

    Article  CAS  Google Scholar 

  30. Jiang J, Yu J, Corma A (2010) Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew Chem Int Ed 49:3120–3145

    Article  CAS  Google Scholar 

  31. Li J, Corma A, Yu J (2015) Synthesis of new zeolite structures. Chem Soc Rev 44:7112–7127

    Article  CAS  Google Scholar 

  32. Jiang J, Xu Y, Cheng P, et al. (2011) Investigation of extra-large pore zeolite synthesis by a high-throughput approach. Chem Mater 23:4709–4715

    Article  CAS  Google Scholar 

  33. Li Y, Yu J (2014) New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chem Rev 114:7268–7316

    Article  CAS  Google Scholar 

  34. Willhammar T, Sun J, Wan W, et al. (2012) Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nat Chem 4:188–194

    Article  CAS  Google Scholar 

  35. Moliner M, González J, Portilla MT, et al. (2011) A new aluminosilicate molecular sieve with a system of pores between those of ZSM-5 and beta zeolite. J Am Chem Soc 133:9497–9505

    Article  CAS  Google Scholar 

  36. Moliner M, Willhammar T, Wan W, et al. (2012) Synthesis design and structure of a multipore zeolite with interconnected 12- and 10-MR channels. J Am Chem Soc 134:6473–6478

    Article  CAS  Google Scholar 

  37. Moliner M, Martínez C, Corma A (2015) Multipore zeolites: synthesis and catalytic applications. Angew Chem Int Ed 54:3560–3579

    Article  CAS  Google Scholar 

  38. Wang Z, Yu J, Xu R (2012) Needs and trends in rational synthesis of zeolitic materials. Chem Soc Rev 41:1729–1741

    Article  Google Scholar 

  39. Burton AW, Zones SI, Elomari S (2005) The chemistry of phase selectivity in the synthesis of high-silica zeolites. Curr Opin Colloid Interface Sci 10:211–219

    Article  CAS  Google Scholar 

  40. Boal BW, Zones SI, Davis ME (2015) Triptycene structure-directing agents in aluminophosphate synthesis. Microporous Mesoporous Mater 208:203–211

    Article  CAS  Google Scholar 

  41. Jackowski A, Zones SI, Hwang SJ, et al. (2009) Diquaternary ammonium compounds in zeolite synthesis: cyclic and polycyclic N-heterocycles connected by methylene chains. J Am Chem Soc 131:1092–1100

    Article  CAS  Google Scholar 

  42. Shvets O, Kasian N, Zukal A, et al. (2010) The role of template structure and synergism between inorganic and organic structure directing agents in the synthesis of UTL zeolite. Chem Mater 22:3482–3495

    Article  CAS  Google Scholar 

  43. Davis ME (2014) Zeolites from a materials chemistry perspective. Chem Mater 26:239–245

    Article  CAS  Google Scholar 

  44. Tsuji K, Beck LW, Davis ME (1999) Synthesis of 4,4’-trimethylenebis(1-benzyl-1-methylpiperidinium) diastereomers and their use as structure-directing agents in pure-silica molecular sieves syntheses. Microporous Mesoporous Mater 28:519–530

    Article  CAS  Google Scholar 

  45. Lee G, Nakagawa Y, Hwang S, et al. (2002) Organocations in zeolite synthesis: fused bicyclo [l.m.0] cations and the discovery of zeolite SSZ-48. J Am Chem Soc 124:7024–7034

    Article  CAS  Google Scholar 

  46. García R, Gómez-Hortigüela L, Sánchez F, et al. (2010) Diasteroselective structure directing effect of (1S,2S)-2-Hydroxymethyl-1-benzyl-1-methylpyrrolidinium in the synthesis of ZSM-12. Chem Mater 22:2276–2286

    Article  CAS  Google Scholar 

  47. Gallego EM, Portilla MT, Paris C (2017) “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355:1051–1054

    Article  CAS  Google Scholar 

  48. Burkett SL, Davis ME (1994) Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR. J Phys Chem 98:4647–4653

    Article  CAS  Google Scholar 

  49. Burkett SL, Davis ME (1995) Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5. Chem Mater 7:920–928

    Article  CAS  Google Scholar 

  50. Burkett SL, Davis ME (1995) Mechanism of structure direction in the synthesis of pure-silica zeolites. 2. Hydrophobic hydration and structural specificity. Chem Mater 7:1453–1463

    Article  CAS  Google Scholar 

  51. Kubota Y, Helmkamp MM, Zones SI, et al. (1996) Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Microporous Mater 6:213–229

    Article  CAS  Google Scholar 

  52. Jo C, Lee S, Cho SJ, et al. (2015) Synthesis of silicate zeolite analogues using organic sulfonium compounds as structure-directing agents. Angew Chem Int Ed 54:12805–12808

    Article  CAS  Google Scholar 

  53. Delprato F, Delmotte L, Guth JL, et al. (1990) Synthesis of new silica-rich cubic and hexagonal faujasites using crown-ether based supramolecules as templates. Zeolites 10:546–552

    Article  CAS  Google Scholar 

  54. Balkus KJ, Hargis CD, Kowalak S (1992) Synthesis of NaX zeolites with metallophthalocyanines. ACS Symp Ser 499:347–354

    Article  CAS  Google Scholar 

  55. Dorset DL, Kennedy GJ, Strohmaier KG, et al. (2006) P-derived organic cations as structure-directing agents: synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel system. J Am Chem Soc 128:8862–8867

    Article  CAS  Google Scholar 

  56. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860

    Article  CAS  Google Scholar 

  57. Moteki T, Keoh SH, Okubo T (2014) Synthesis of zeolites using highly amphiphilic cations as structure-directing agents by hydrothermal treatment of a dense silicate gel. Chem Commun 50:1330–1333

    Article  CAS  Google Scholar 

  58. Cho M, Na K, Kim J, et al. (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249

    Article  CAS  Google Scholar 

  59. Kim W, Kim JC, Kim J, et al. (2013) External surface catalytic sites of surfactant-tailored nanomorphic zeolites for benzene isopropylation to cumene. ACS Catal 3:192–195

    Article  CAS  Google Scholar 

  60. Luo HY, Michaelis VK, Hodges S, et al. (2015) One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chem Sci 6:6320–6324

    Article  CAS  Google Scholar 

  61. Seo Y, Lee S, Jo C, et al. (2013) Microporous aluminophosphate nanosheets and their nanomorphic zeolite analogues tailored by hierarchical structure-directing amines. J Am Chem Soc 135:8806–8809

    Article  CAS  Google Scholar 

  62. Corma A, Díaz-Cabañas MJ, Jorda JL, et al. (2008) A zeolitic structure (ITQ-34) with connected 9- and 10-ring channels obtained with phosphonium cations as structure directing agents. J Am Chem Soc 130:16482–16483

    Article  CAS  Google Scholar 

  63. Rey F, Simancas J (2017) Beyond nitrogen OSDAs. Struct Bond. https://doi.org/10.1007/430_2017_13 (in this volume)

  64. Villaescusa LA, Camblor MA (2016) Time evolution of an aluminogermanate zeolite synthesis: segregation of two closely similar phases with the same structure type. Chem Mater 28:3090–3098

    Article  CAS  Google Scholar 

  65. Caullet P, Guth JL, Hazm J, et al. (1991) Synthesis, characterization and crystal-structure of the new clathrasil phase octadecasil. Eur J Solid State Inorg Chem 28:345–361

    CAS  Google Scholar 

  66. Villaescusa LA, Barrett PA, Camblor MA (1998) Calcination of octadecasil: fluoride removal and symmetry of the pure SiO2 host. Chem Mater 10:3966–3973

    Article  CAS  Google Scholar 

  67. Caullet P, Paillaud JL, Mathieu Y, et al. (2007) Synthesis of zeolites in the presence of diquaternary alkylammonium ions as structure-directing agents. Oil Gas Sci Technol 62:819–825

    Article  CAS  Google Scholar 

  68. Lee SH, Shin CH, Yang DK, et al. (2004) Reinvestigation into the synthesis of zeolites using diquaternary alkylammonium ions (CH3)3N+(CH2)nN+(CH3)3 with n = 3–10 as structure-directing agents. Microporous Mesoporous Mater 68:97–104

    Article  CAS  Google Scholar 

  69. Rojas A, Gómez-Hortigüela L, Camblor MA (2013) Benzylimidazolium cations as zeolite structure-directing agents. Differences in performance brought about by a small change in size. Dalton Trans 42:2562–2571

    Article  CAS  Google Scholar 

  70. Parnham ER, Morris RE (2006) 1-Alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves. Chem Mater 18:4882–4887

    Article  CAS  Google Scholar 

  71. Parnham ER, Drylie EA, Wheatley PS, et al. (2006) Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew Chem 118:2084–5088

    Article  Google Scholar 

  72. Lee H, Zones SI, Davis ME (2003) A combustion-free methodology for synthesizing zeolites and zeolite-like materials. Nature 425:385–388

    Article  CAS  Google Scholar 

  73. Lee H, Zones SI, Davis ME (2005) Zeolite synthesis using degradable structure-directing agents and pore-filling agents. J Phys Chem B 109:2187–2191

    Article  CAS  Google Scholar 

  74. Lee H, Zones SI, Davis ME (2006) Synthesis of molecular sieves using ketal structure-directing agents and their degradation inside the pore space. Microporous Mesoporous Mater 88:266–274

    Article  CAS  Google Scholar 

  75. O’Brien MG, Beale AM, Catlow CRA, et al. (2006) Unique organic-inorganic interactions leading to a structure-directed microporous aluminophosphate crystallization as observed with in situ Raman spectroscopy. J Am Chem Soc 128:11744–11745

    Article  CAS  Google Scholar 

  76. Sánchez-Sánchez M, Sankar G, Gómez-Hortigüela L (2008) NMR evidence of different conformations of structure-directing cyclohexylamine in high-doped AlPO4-44 materials. Microporous Mesoporous Mater 114:485–494

    Article  CAS  Google Scholar 

  77. Bernardo-Maestro B, López-Arbeloa F, Pérez-Pariente J, et al. (2015) Supramolecular chemistry controlled by conformational space during structure-direction of nanoporous materials: self-assembly of ephedrine and pseudoephedrine. J Phys Chem C 119:28214–28225

    Article  CAS  Google Scholar 

  78. Takekiyo T, Yoshimura Y (2006) Raman spectroscopic study on the hydration structures of tetraethylammonium cation in water. J Phys Chem A 110:10829–10833

    Article  CAS  Google Scholar 

  79. Schmidt JE, Fu D, Deem MW, et al. (2016) Template–framework interactions in tetraethylammonium-directed zeolite synthesis. Angew Chem Int Ed 55:16044–16048

    Article  CAS  Google Scholar 

  80. Hong SB, Min HK, Shin CH, et al. (2007) Synthesis, crystal structure, characterization, and catalytic properties of TNU-9. J Am Chem Soc 129:10870–10885

    Article  CAS  Google Scholar 

  81. Gramm F, Baerlocher C, McCusker LB, et al. (2006) Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444:79–81

    Article  CAS  Google Scholar 

  82. Hong SB, Lear EG, Wright PA, et al. (2004) Synthesis, structure solution, characterization, and catalytic properties of TNU-10: a high-silica zeolite with the STI topology. J Am Chem Soc 126:5817–5826

    Article  CAS  Google Scholar 

  83. Bernardo-Maestro B, López-Arbeloa F, Pérez-Pariente J et al (2017) Comparison of the structure-directing effect of ephedrine and pseudoephedrine during crystallization of nanoporous aluminophosphates. Microporous Mesoporous Mater, published in web. https://doi.org/10.1016/j.micromeso.2017.04.008 (in press)

  84. Camblor MA, Hong SB (2011) Synthetic silicate zeolites: diverse materials accessible through geoinspiration. In: Bruce DW, O’Hare D, Walton IR (eds) Porous materials. Wiley, Chichester

    Google Scholar 

  85. Flanigen EM, Patton RL (1978) US Patent 4,073,865

    Google Scholar 

  86. Guth JL, Kessler K, Higel JM, et al. (1989) Zeolite synthesis in the presence of fluoride ions. ACS Symp Ser 398:176–195

    Article  CAS  Google Scholar 

  87. Guth J, Kessler H, Caullet P et al (1993) F-: a multifunctional tool for microporous solids a) mineralizing, structure directing and templating effects in the synthesis. In: von Ballmoos R, Higgins J, Treacy M (eds) Proceedings of the 9th international zeolite conference, London, pp 215–222

    Google Scholar 

  88. Caullet P, Paillaud JL, Simon-Masseron A, et al. (2005) The fluoride route: a strategy to crystalline porous material. C R Chim 8:245–266

    Article  CAS  Google Scholar 

  89. Koller H, Lobo RF, Burkett SL, et al. (1995) SiO-···HOSi hydrogen bonds in as-synthesized high-silica zeolites. J Phys Chem 99:12588–12596

    Article  CAS  Google Scholar 

  90. Blasco T, Camblor MA, Corma A, et al. (1998) Direct synthesis and characterization of hydrophobic aluminum-free Ti-Beta zeolite. J Phys Chem 102:75–88

    Article  CAS  Google Scholar 

  91. Camblor MA, Corma A, Iborra S, et al. (1997) Beta zeolite as a catalyst for the preparation of alkyl glucoside surfactants: the role of crystal size and hydrophobicity. J Catal 172:76–84

    Article  CAS  Google Scholar 

  92. Eroshenko V, Regis RC, Soulard M, et al. (2001) Energetics: a new field of applications for hydrophobic zeolites. J Am Chem Soc 123:8129–8130

    Article  CAS  Google Scholar 

  93. Villaescusa LA, Camblor MA (2003) The fluoride route to new zeolites. Recent Res Dev Chem 1:93–141

    CAS  Google Scholar 

  94. Zicovich-Wilson CM, San-Román ML, Camblor MA, et al. (2007) Structure, vibrational analysis, and insights into host-guest interactions in as-synthesized pure silica ITQ-12 zeolite by periodic B3LYP calculations. J Am Chem Soc 129:11512–11523

    Article  CAS  Google Scholar 

  95. Zicovich-Wilson CM, Gándara F, Monge A, et al. (2010) In situ transformation of TON silica zeolite into the less dense ITW: structure-direction overcoming framework instability in the synthesis of SiO2 zeolites. J Am Chem Soc 132:3461–3471

    Article  CAS  Google Scholar 

  96. Camblor MA, Villaescusa LA, Díaz-Cabañas MJ (1999) Synthesis of all-silica and high-silica molecular sieves in fluoride. Top Catal 9:59–76

    Article  CAS  Google Scholar 

  97. Camblor MA, Barrett PA, Díaz-Cabañas MJ, et al. (2001) High silica zeolites with three-dimensional systems of large pore channels. Microporous Mesoporous Mater 48:11–22

    Article  CAS  Google Scholar 

  98. Zones SI, Darton RJ, Morris R, et al. (2005) Studies on the role of fluoride ion vs reaction concentration in zeolite synthesis. J Phys Chem B 109:652–661

    Article  CAS  Google Scholar 

  99. Burton AW, Lee GS, Zones SI (2006) Phase selectivity in the syntheses of cage-based zeolite structures: an investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous Mesoporous Mater 90:129–144

    Article  CAS  Google Scholar 

  100. Zones SI, Hwang SJ, Elomari S, et al. (2005) The fluoride-based route to all-silica molecular sieves; a strategy for synthesis of new materials based upon close-packing of guest–host products. C R Chim 8:267–282

    Article  CAS  Google Scholar 

  101. Camblor MA, Díaz-Cabañas MJ, Cox PA, et al. (1999) A synthesis, MAS NMR, synchrotron X-ray powder diffraction, and computational study of zeolite SSZ-23. Chem Mater 11:2878–2885

    Article  CAS  Google Scholar 

  102. Lobo RF, Zones SI, Davis ME (1995) Structure-direction in zeolite synthesis. J Incl Phenom Macrocycl Chem 21:47–78

    CAS  Google Scholar 

  103. Catlow CRA, Coombes DS, Lewis D, et al. (1998) Computer modeling of nucleation, growth, and templating in hydrothermal synthesis. Chem Mater 10:3249–3265

    Article  CAS  Google Scholar 

  104. Jorge M, Auerbach SM, Monson PA (2005) Modeling spontaneous formation of precursor nanoparticles in clear-solution zeolite synthesis. J Am Chem Soc 127:14388–14400

    Article  CAS  Google Scholar 

  105. Piccione P, Yang S, Navrotsky A, et al. (2002) Thermodynamics of pure-silica molecular sieve synthesis. J Phys Chem B 106:3629–3638

    Article  CAS  Google Scholar 

  106. Piccione P, Woodfield B, Boerio-Goates J, et al. (2001) Entropy of pure-silica molecular sieves. J Phys Chem B 105(25):6025–6030

    Article  CAS  Google Scholar 

  107. Khan MN, Auerbach SM, Monson PA (2015) Lattice Monte Carlo simulations in search of zeolite analogues: effects of structure directing agents. J Phys Chem C 119:28046–28054

    Article  CAS  Google Scholar 

  108. Yu J, Xu R (2003) Rich structure chemistry in the aluminophosphate family. Acc Chem Res 36:481–490

    Article  CAS  Google Scholar 

  109. Lewis DW, Freeman CM, Catlow CRA (1995) Predicting the templating ability of organic additives for the synthesis of microporous materials. J Phys Chem 99:11194–11202

    Article  CAS  Google Scholar 

  110. Lewis DW, Willock DJ, Catlow CRA, et al. (1996) De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382:604–606

    Article  CAS  Google Scholar 

  111. Schmidt JE, Deem MW, Davis ME (2014) Synthesis of a specified, silica molecular sieve using computationally predicted organic structure-directing agents. Angew Chem Int Ed 126:8512–8514

    Article  Google Scholar 

  112. Brunklaus G, Koller H, Zones SI (2016) Defect models of as-made high-silica zeolites: clusters of hydrogen-bonds and their interaction with the organic structure-directing agents determined from 1H double and triple quantum NMR spectroscopy. Angew Chem Int Ed 55:14459–14463

    Article  CAS  Google Scholar 

  113. Dib E, Grand J, Mintova S, et al. (2015) Structure-directing agent governs the location of silanol defects in zeolites. Chem Mater 27:7577–7579

    Article  CAS  Google Scholar 

  114. Gómez-Hortigüela L, Pinar AB, Corà F, et al. (2010) Dopant-siting selectivity in nanoporous catalysts: control of proton accessibility in zeolite catalysts through the rational use of templates. Chem Commun 46:2073–2075

    Article  CAS  Google Scholar 

  115. Román-Leshkov Y, Moliner M, Davis ME (2011) Impact of controlling the site distribution of Al atoms on catalytic properties in ferrierite-type zeolites. J Phys Chem C 115:1096–1102

    Article  CAS  Google Scholar 

  116. Yokoi T, Mochizuki H, Namba S, et al. (2015) Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties. J Phys Chem C 119:15303–15315

    Article  CAS  Google Scholar 

  117. Gómez-Hortigüela L, Álvaro-Muñoz T, Bernardo-Maestro B, et al. (2015) Towards chiral distributions of dopants in microporous frameworks: helicoidal supramolecular arrangement of (1R,2S)-ephedrine and transfer of chirality. Phys Chem Chem Phys 17:348–357

    Article  CAS  Google Scholar 

  118. Lemishko T, Simancas J, Hernández-Rodríguez M, et al. (2016) An INS study of entrapped organic cations within the micropores of zeolite RTH. Phys Chem Chem Phys 18:17244–17252

    Article  CAS  Google Scholar 

  119. Gómez-Hortigüela L, Hamad S, Pinar AB, et al. (2009) Molecular insights into the self-aggregation of aromatic molecules in the synthesis of nanoporous aluminophosphates: a multilevel approach. J Am Chem Soc 131:16509–16524

    Article  CAS  Google Scholar 

  120. Wang Y, Yu J, Li Y, et al. (2003) Chirality transfer from guest chiral metal complexes to inorganic framework: the role of hydrogen bonding. Chem Eur J 9:5048–5055

    Article  CAS  Google Scholar 

  121. Gómez-Hortigüela L, Bernardo-Maestro B (2017) Chiral organic structure-directing agents. Struct Bond. https://doi.org/10.1007/430_2017_9 (in this volume)

  122. Behrens P, van de Goor G, Freyhardt CC (1995) Structure-determining C-H···O-Si hydrogen bonds in cobaltocenium fluoride nonasil. Angew Chem Int Ed 34:2680–2682

    Article  CAS  Google Scholar 

  123. Lee JK, Shin J, Ahn NH, et al. (2015) A family of molecular sieves containing framework-bound organic structure-directing agents. Angew Chem Int Ed 54:11097–11101

    Article  CAS  Google Scholar 

  124. Lee JK, Lee JH, Ahn NH, et al. (2016) Solid solution of a zeolite and a framework-bound OSDA-containing molecular sieve. Chem Sci 7:5805–5814

    Article  CAS  Google Scholar 

  125. Gómez-Hortigüela L, López-Arbeloa F, Corà F, et al. (2008) Supramolecular chemistry in the structure direction of microporous materials from aromatic structure-directing agents. J Am Chem Soc 130:13274–13284

    Article  CAS  Google Scholar 

  126. Corma A, Rey F, Rius J, et al. (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290

    Article  CAS  Google Scholar 

  127. Moliner M (2015) Design of zeolites with specific architectures using self-assembled aromatic organic structure-directing agents. Top Catal 25:502–512

    Article  CAS  Google Scholar 

  128. Paris C, Moliner M (2017) Role of supramolecular chemistry during templating phenomenon in zeolite synthesis. Struct Bond. https://doi.org/10.1007/430_2017_11 (in this volume)

  129. Corma A, Díaz-Cabañas MJ, Jordá JL, et al. (2006) High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443:842–845

    Article  CAS  Google Scholar 

  130. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  131. Arduengo AJ, Harlow RL, Kline M (1991) A stable crystalline carbene. J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  132. Brand SK, Schmidt JE, Deem MW, et al. (2017) Enantiomerically enriched, polycrystalline molecular sieves. Proc Natl Acad Sci U S A 114:5101–5106

    Article  CAS  Google Scholar 

  133. Zones SI (1989) Synthesis of pentasil zeolites from sodium silicate solutions in the presence of quaternary imidazole compounds. Zeolites 9:458–467

    Article  CAS  Google Scholar 

  134. Barrett PA, Boix T, Puche M, et al. (2003) ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separations. Chem Commun:2114–2115

    Google Scholar 

  135. Parnham ER, Morris RE (2006) The ionothermal synthesis of cobalt aluminophosphate zeolite frameworks. J Am Chem Soc 128:2204–2205

    Article  CAS  Google Scholar 

  136. Lorgouilloux Y, Dodin M, Paillaud JL, et al. (2009) IM-16: a new microporous germanosilicate with a novel framework topology containing D4R and MTW composite building units. J Solid State Chem 182:622–629

    Article  CAS  Google Scholar 

  137. Dodin M, Paillaud JL, Lorgouilloux Y, et al. (2010) A zeolitic material with a three-dimensional pore system formed by straight 12- and 10-ring channels synthesized with an imidazolium derivative as structure-directing agent. J Am Chem Soc 132:10221–10223

    Article  CAS  Google Scholar 

  138. Schmidt JE, Xie D, Rea T, et al. (2015) CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings. Chem Sci 6:1728–1734

    Article  CAS  Google Scholar 

  139. Boal BW, Deem MW, Xie D, et al. (2016) Synthesis of germanosilicate molecular sieves from mono- and di-quaternary ammonium OSDAs constructed from benzyl imidazolium derivatives: stabilization of large micropore volumes including new molecular sieve CIT-13. Chem Mater 28:2158–2164

    Article  CAS  Google Scholar 

  140. Olson DH, Yang X, Camblor MA (2004) ITQ-12: a zeolite having temperature dependent adsorption selectivity and potential for propene separation. J Am Chem Soc 108:11044–11048

    CAS  Google Scholar 

  141. Rojas A, Martínez-Morales A, Zicovich-Wilson CM, Camblor MA (2012) Zeolite synthesis in fluoride media: structure direction toward ITW by small methylimidazolium cations. J Am Chem Soc 134:2255–2263

    Article  CAS  Google Scholar 

  142. Rojas A, San-Roman ML, Zicovich-Wilson CM, et al. (2013) Host−guest stabilization of a zeolite strained framework: in situ transformation of zeolite MTW into the less dense and more strained ITW. Chem Mater 25:729–738

    Article  CAS  Google Scholar 

  143. Rojas A, Camblor MA (2014) Structure-direction in the crystallization of ITW zeolites using 2-ethyl-1,3,4-trimethylimidazolium. Dalton Trans 43:10760–10766

    Article  CAS  Google Scholar 

  144. Rojas A, Camblor MA (2012) A pure silica chiral polymorph with helical pores. Angew Chem Int Ed 51:3854–3856

    Article  CAS  Google Scholar 

  145. Rojas A, Camblor MA (2014) HPM-2, the layered precursor to zeolite MTF. Chem Mater 26:1161–1169

    Article  CAS  Google Scholar 

  146. Rojas AE (2012) Dirección de estructuras en la síntesis de zeolitas usando cationes orgánicos imidazolios. PhD thesis, Universidad Autónoma de Madrid

    Google Scholar 

  147. Cooper ER, Andrews CD, Wheatley PS, et al. (2004) Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430:1012–1016

    Article  CAS  Google Scholar 

  148. Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal-organic frameworks, and inorganic-organic hybrids. Acc Chem Res 40:1005–1013

    Article  CAS  Google Scholar 

  149. Parnham ER (2006) Ionothermal synthesis. A new synthesis methodology using ionic liquids and eutectic mixtures as both solvent and template in zeotype synthesis. PhD thesis, University of St. Andrews

    Google Scholar 

  150. Wagner P, Yoshikawa M, Lovallo M, et al. (1997) CIT-5: a high-silica zeolite with 14-ring pores. J. Chem. Soc, Chem. Commun 21:2179–2180

    Article  Google Scholar 

  151. Kang JH, Xie D, Zones SI, et al. (2016) Synthesis and characterization of CIT-13, a germanosilicate molecular sieve with extra-large pore openings. Chem Mater 28:6250–6259

    Article  CAS  Google Scholar 

  152. Tang L, Shi L, Bonneau C, et al. (2008) A zeolite family with chiral and achiral structures built from the same building layer. Nat Mater 7:381–385

    Article  CAS  Google Scholar 

  153. Kapko V, Dawson C, Treacy MMJ, et al. (2010) Flexibility of ideal zeolite frameworks. Phys Chem Chem Phys 12:8531–8541

    Article  CAS  Google Scholar 

  154. Sastre G, Corma A (2010) Predicting structural feasibility of silica and germania zeolites. J Phys Chem C 114:1667–1673

    Article  CAS  Google Scholar 

  155. Sartbaeva A, Wells SA, Treacy MMJ, et al. (2006) The flexibility window in zeolites. Nat Mater 5:962–965

    Article  CAS  Google Scholar 

  156. Medina ME, Platero-Prats AE, Snejko N, et al. (2011) Towards inorganic porous materials by design: looking for new architectures. Adv Mater 23:5283–5292

    Article  CAS  Google Scholar 

  157. Rojas A, Arteaga O, Kahr B, et al. (2013) Synthesis, structure and optical activity of HPM-1, a pure silica chiral zeolite. J Am Chem Soc 135:11975–11984

    Article  CAS  Google Scholar 

  158. Jo D, Hong SB, Camblor MA (2015) Monomolecular skeletal isomerization of 1-butene over selective zeolite catalysts. ACS Catal 5:2270–2274

    Article  CAS  Google Scholar 

  159. Pophale R, Daeyaert F, Deem MW (2013) Computational prediction of chemically synthesizable organic structure directing agents for zeolites. J Mater Chem A 1:6750–6760

    Article  CAS  Google Scholar 

  160. Schmidt JE, Deimund MA, Davis ME (2014) Facile preparation of aluminosilicate RTH across a wide composition range using a new organic structure-directing agent. Chem Mater 26:7099–7105

    Article  CAS  Google Scholar 

  161. Schmidt JE, Deimund ME, Xie D, et al. (2015) Synthesis of RTH-type zeolites using a diverse library of imidazolium cations. Chem Mater 27:3756–3762

    Article  CAS  Google Scholar 

  162. Jo D, Lim JB, Ryu T, et al. (2015) Unseeded hydroxide-mediated synthesis and CO2 adsorption properties of an aluminosilicate zeolite with the RTH topology. J Mater Chem A 3:19322–19329

    Article  CAS  Google Scholar 

  163. Schmidt JE, Xie D, Davis ME (2015) Synthesis of the RTH-type layer: the first small-pore, two dimensional layered zeolite precursor. Chem Sci 6:5955–5963

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the Spanish Ministry of Economy, Industry, and Competitiveness (through projects MAT2015-65767-P and MAT2015-71117-R) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Gómez-Hortigüela or Miguel Á. Camblor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Gómez-Hortigüela, L., Camblor, M.Á. (2017). Introduction to the Zeolite Structure-Directing Phenomenon by Organic Species: General Aspects. In: Gómez-Hortigüela, L. (eds) Insights into the Chemistry of Organic Structure-Directing Agents in the Synthesis of Zeolitic Materials. Structure and Bonding, vol 175. Springer, Cham. https://doi.org/10.1007/430_2017_8

Download citation

Publish with us

Policies and ethics