Advertisement

Building Block Libraries and Structural Considerations in the Self-assembly of Polyoxometalate and Polyoxothiometalate Systems

  • James McAllister
  • Haralampos N. Miras
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 176)

Abstract

Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems.

Keywords

Chalcogenides Clusters Polyoxometalates Polyoxothiometalates Self-assembly 

References

  1. 1.
    Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl 30:34–48CrossRefGoogle Scholar
  2. 2.
    Long D-L, Tsunashima R, Cronin L (2010) Polyoxometalates building blocks for functional nanoscale systems. Angew Chem Int Ed Engl 49:1736–1758CrossRefGoogle Scholar
  3. 3.
    Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A (2002) Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angew Chem Int Ed 41:1162–1167CrossRefGoogle Scholar
  4. 4.
    Long D-L, Burkholder E, Cronin L (2006) Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem Soc Rev 36:105–121CrossRefGoogle Scholar
  5. 5.
    Hasenknopf B (2005) Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front Biosci J Virtual Libr 10:275–287CrossRefGoogle Scholar
  6. 6.
    Keggin JF (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc Lond Ser A 144:75–100CrossRefGoogle Scholar
  7. 7.
    Hill CL (1998) Introduction: polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems. Chem Rev 98:1–2CrossRefGoogle Scholar
  8. 8.
    Rosnes MH, Yvon C, Long D-L, Cronin L (2012) Mapping the synthesis of low nuclearity polyoxometalates from octamolybdates to Mn-Anderson clusters. Dalton Trans 41:10071–10079CrossRefGoogle Scholar
  9. 9.
    Miras HN, Yan J, Long D-L, Cronin L (2012) Engineering polyoxometalates with emergent properties. Chem Soc Rev 41:7403–7430CrossRefGoogle Scholar
  10. 10.
    Long D-L, Kögerler P, Farrugia LJ, Cronin L (2003) Restraining symmetry in the formation of small polyoxomolybdates: building blocks of unprecedented topology resulting from “shrink-wrapping” [H2Mo16O52]10−-type clusters. Angew Chem Int Ed 42:4180–4183CrossRefGoogle Scholar
  11. 11.
    Long D-L, Cronin L (2006) Towards polyoxometalate-integrated nanosystems. Chem Eur J 12:3698–3706CrossRefGoogle Scholar
  12. 12.
    Scheele CW (1971) In: Werke DSF, Hermbstädt M (eds) Sämtliche physische und chemische, vol 1. Sändig oHG, Niederwalluf/Wiesbaden, pp 185–200Google Scholar
  13. 13.
    Müller A, Krickemeyer E, Meyer J, Bögge H, Peters F, Plass W, Diemann E, Dillinger S, Nonnenbruch F, Randerath M, Menke C (1995) [Mo154(NO)14O420(OH)28(H2O)70](25±5)−: a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000. Angew Chem Int Ed Engl 34:2122–2124CrossRefGoogle Scholar
  14. 14.
    Cronin L, Diemann E, Müller A (2003) Polyoxomolybdate clusters: nanoscopic wheels and balls. In: Woollins JD (ed) Inorganic experiments. Wiley-VCH, Weinheim, pp 340–346Google Scholar
  15. 15.
    Cronin L, Beugholt C, Krickemeyer E, Schmidtmann M, Bögge H, Kögerler P, Luong TKK, Müller A (2002) “Molecular symmetry breakers” generating metal-oxide-based nanoobject fragments as synthons for complex structures: [{Mo128Eu4O388H10(H2O)81}2]20−, a giant-cluster dimer. Angew Chem Int Ed 41:2805–2808CrossRefGoogle Scholar
  16. 16.
    Müller A, Das SK, Talismanov S, Roy S, Beckmann E, Bögge H, Schmidtmann M, Merca A, Berkle A, Allouche L, Zhou Y, Zhang L (2003) Trapping cations in specific positions in tuneable “artificial cell” channels: new nanochemistry perspectives. Angew Chem Int Ed 42:5039–5044CrossRefGoogle Scholar
  17. 17.
    Radkov E, Beer RH (1995) High yield synthesis of mixed-metal keggin polyoxoanions in non-aqueous solvents: preparation of (n-Bu4N)4[PMW11O40] (M = V, Nb, Ta). Polyhedron 14:2139–2143CrossRefGoogle Scholar
  18. 18.
    Canny J, Teze A, Thouvenot R, Herve G (1986) Disubstituted tungstosilicates. 1. Synthesis, stability, and structure of the lacunary precursor polyanion of a tungstosilicate γ-SiW10O36 8−. Inorg Chem 25:2114–2119CrossRefGoogle Scholar
  19. 19.
    Herve G, Teze A (1977) Study of α- and β-enneatungstosilicates and -germanates. Inorg Chem 16:2115–2117CrossRefGoogle Scholar
  20. 20.
    Tézé A, Hervé G (1990) Inorganic syntheses. Wiley, New YorkGoogle Scholar
  21. 21.
    Wassermann K, Pope MT (2001) Large cluster formation through multiple substitution with lanthanide cations (La, Ce, Nd, Sm, Eu, and Gd) of the polyoxoanion [(B-α-AsO3W9O30)4(WO2)4]28−. Synthesis and structural characterization. Inorg Chem 40:2763–2768CrossRefGoogle Scholar
  22. 22.
    Müller A, Peters F, Pope MT, Gatteschi D (1998) Polyoxometalates: very large clustersnanoscale magnets. Chem Rev 98:239–272CrossRefGoogle Scholar
  23. 23.
    Wassermann K, Dickman MH, Pope MT (1997) Self-assembly of supramolecular polyoxometalates: the compact, water-soluble heteropolytungstate anion [As12 IIICe16 III(H2O)36W148O524]76−. Angew Chem Int Ed Engl 36:1445–1448CrossRefGoogle Scholar
  24. 24.
    Contant R (1990) Inorganic syntheses. Wiley, New YorkGoogle Scholar
  25. 25.
    Ibrahim M, Lan Y, Bassil BS, Xiang Y, Suchopar A, Powell AK, Kortz U (2011) Hexadecacobalt(II)-containing polyoxometalate-based single-molecule magnet. Angew Chem Int Ed 50:4708–4711CrossRefGoogle Scholar
  26. 26.
    Pradeep CP, Long D-L, Kögerler P, Cronin L (2007) Controlled assembly and solution observation of a 2.6 nm polyoxometalate “super” tetrahedron cluster: [KFe12(OH)18(α-1,2,3-P2W15O56)4]29−. Chem Commun 2007:4254–4256CrossRefGoogle Scholar
  27. 27.
    Bassil BS, Ibrahim M, Al-Oweini R, Asano M, Wang Z, van Tol J, Dalal NS, Choi K-Y, Ngo Biboum R, Keita B, Nadjo L, Kortz U (2011) A planar {Mn19(OH)12}26+ unit incorporated in a 60-tungsto-6-silicate polyanion. Angew Chem Int Ed 50:5961–5964CrossRefGoogle Scholar
  28. 28.
    Mitchell SG, Molina PI, Khanra S, Miras HN, Prescimone A, Cooper GJT, Winter RS, Brechin EK, Long D-L, Cogdell RJ, Cronin L (2011) A mixed-valence manganese cubane trapped by inequivalent trilacunary polyoxometalate ligands. Angew Chem Int Ed Engl 50:9154–9157CrossRefGoogle Scholar
  29. 29.
    Brudvig GW (2008) Preface. Coord Chem Rev 252:231CrossRefGoogle Scholar
  30. 30.
    Jorris TL, Kozik M, Casan-Pastor N, Domaille PJ, Finke RG, Miller WK, Baker LCW (1987) Effects of paramagnetic and diamagnetic transition-metal monosubstitutions on tungsten-183 and phosphorus-31 NMR spectra for Keggin and Wells-Dawson heteropolytungstate derivatives. Correlations and corrections. Tungsten-183 NMR two-dimensional INADEQUATE studies of α-[(D2O)ZnO4Xn+W11O34](10-n)− wherein Xn+ = Si4+ and P5+. J Am Chem Soc 109:7402–7408CrossRefGoogle Scholar
  31. 31.
    Contant R, Thouvenot R (1991) Hétéropolyanions de type Dawson. 2. Synthèses de polyoxotungstoarsénates lacunaires dérivant de l’octadécatungstodiarsénate. Étude structurale par RMN du tungstène-183 des octadéca(molybdotungstovanado)diarsénates apparentés. Can J Chem 69:1498–1506CrossRefGoogle Scholar
  32. 32.
    Finke RG, Droege MW, Domaille PJ (1987) Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional tungsten-183 NMR, and properties of tungstometallophosphates P2W18M4(H2O)2O68 10− and P4W30M4(H2O)2O112 16− (M = cobalt, copper, zinc). Inorg Chem 26:3886–3896CrossRefGoogle Scholar
  33. 33.
    Fang X, Kögerler P, Furukawa Y, Speldrich M, Luban M (2011) Molecular growth of a core-shell polyoxometalate. Angew Chem Int Ed Engl 50:5212–5216CrossRefGoogle Scholar
  34. 34.
    Kögerler P, Cronin L (2005) Polyoxometalate nanostructures, superclusters, and colloids: from functional clusters to chemical aesthetics. Angew Chem Int Ed 44:844–846CrossRefGoogle Scholar
  35. 35.
    Mitchell SG, Streb C, Miras HN, Boyd T, Long D-L, Cronin L (2010) Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat Chem 2:308–312CrossRefGoogle Scholar
  36. 36.
    Müller A, Diemann E, Jostes R, Bögge H (1981) Transition metal thiometalates: properties and significance in complex and bioinorganic chemistry. Angew Chem Int Ed Engl 20:934–955CrossRefGoogle Scholar
  37. 37.
    Ripperger W (1974) Sulphide catalysts, their properties and applications. Von O. Weisser U. S. Landa. Friedr. Vieweg & Sohn, Braunschweig, und Pergamon Press, Oxford – New York 1973. 1. Aufl., 506 S., 105 Abb., 93 Tab. geb. DM 74. Chem Ing Tech 46:222CrossRefGoogle Scholar
  38. 38.
    Garner CD (1994) The chemical nature of the molybdenum centres in enzymes. Stud Inorg Chem 19:403–418CrossRefGoogle Scholar
  39. 39.
    Diemann E, Müller A (1973) Thio and seleno compounds of the transition metals with the do configuration. Coord Chem Rev 10:79–122CrossRefGoogle Scholar
  40. 40.
    Müller A, Rittner W, Neumann A, Königer-Ahlborn E, Bhattacharyya RG (1980) Polychalkogenoanionen der übergangsmetalle. III. W3S9 2− und W3OS8 2−, das erste polyoxothiometallation. Z Für Anorg Allg Chem 461:91–95CrossRefGoogle Scholar
  41. 41.
    Müller A, Rittner W, Neumann A, Sharma RC (1981) Polychalkogenoanionen der übergangsmetalle. IV. Neuartige redoxkondensationsreaktionen von MoO2S2 2− in H2O und zur darstellung von di-μ-sulfido-komplexen von mov. Z Für Anorg Allg Chem 472:69–74CrossRefGoogle Scholar
  42. 42.
    Müller A, Bhattacharyya RG, Königerahlborn E, Sharma RC, Rittner W, Neumann A (1979) The formation of trinuclear W3S2−9-type species from WS2−4 by condensation redox processes. Inorg Chim Acta 37:L493CrossRefGoogle Scholar
  43. 43.
    Secheresse F, Lefebvre J, Daran JC, Jeannin Y (1982) Synthesis and structure of the first tungsten complex having the W2S4 2+ core: [P(C6H5)4]2W4S12. Inorg Chem 21:1311–1314CrossRefGoogle Scholar
  44. 44.
    Cadot E, Béreau V, Sécheresse F (1995) Synthesis and characterization of the polyoxothioanion α-[PW11NbSO39]4− derived from the Keggin structure. Inorg Chim Acta 239:39–42CrossRefGoogle Scholar
  45. 45.
    Müller A, Sarkar S, Bhattacharyya RG, Pohl S, Dartmann M (1978) Directed synthesis of [Mo3S13]2−, an isolated cluster containing sulfur atoms in three different states of bonding. Angew Chem Int Ed Engl 17:535–535CrossRefGoogle Scholar
  46. 46.
    Rittner W, Müller A, Neumann A, Bäther W, Sharma RC (1979) Generation of the triangulo-group MOV-η-S2 in the “condensation” of [MoVIO2S2]2 to [Mo2 vO2S2(S2)2]2. Angew Chem Int Ed Engl 18:530–531CrossRefGoogle Scholar
  47. 47.
    Cadot E, Salignac B, Marrot J, Dolbecq A, Sécheresse F (2000) [Mo10S10O10(OH)10(H2O)5]: a novel decameric molecular ring showing supramolecular properties. Chem Commun 2000:261–262CrossRefGoogle Scholar
  48. 48.
    Richens DT, Pittet P-A, Merbach AE, Humanes M, Lamprecht GJ, Ooi B-L, Sykes AG (1993) Mechanism of substitution on trinuclear incomplete cuboidal [M3X4(OH2)9]4+ ions: kinetic studies of water exchange and substitution by Cl on [Mo3S4(OH2)9]4+. J Chem Soc Dalton Trans 1993:2305–2311CrossRefGoogle Scholar
  49. 49.
    Hernandez-Molina R, Sokolov MN, Sykes AG (2001) Behavioral patterns of heterometallic cuboidal derivatives of [M3Q4(H2O)9]4+ (M = Mo, W; Q = S, Se). Acc Chem Res 34:223–230CrossRefGoogle Scholar
  50. 50.
    Cadot E, Sécheresse F (2002) Cyclic molecular materials based on [M2O2S2]2+ cores (M = Mo or W). Chem Commun 2002:2189–2197CrossRefGoogle Scholar
  51. 51.
    Cadot E, Salignac B, Halut S, Sécheresse F (1998) [Mo12S12O12(OH)12(H2O)6]: a cyclic molecular cluster based on the [Mo2S2O2]2+ building block. Angew Chem Int Ed 37:611–613CrossRefGoogle Scholar
  52. 52.
    Sécheresse F, Cadot E, Dolbecq A (2000) How solids can be obtained from the molecular [Mo2S2O2]2+ building block. J Solid State Chem 152:78–86CrossRefGoogle Scholar
  53. 53.
    Dolbecq A, Cadot E, Sécheresse F (1998) [Mo9S8O12(OH)8(H2O)2]2−: a novel polyoxothiomolybdate with a MoVI octahedron encapsulated in a reduced MoV cyclic octanuclear core. Chem Commun 1998:2293–2294CrossRefGoogle Scholar
  54. 54.
    Salignac B, Riedel S, Dolbecq A, Sécheresse F, Cadot E (2000) “Wheeling templates” in molecular oxothiomolybdate rings: syntheses, structures, and dynamics. J Am Chem Soc 122:10381–10389CrossRefGoogle Scholar
  55. 55.
    Lemonnier J-F, Floquet S, Marrot J, Cadot E (2009) Polyoxothiomolybdenum wheels as anionic receptors for recognition of sulfate and sulfonate anions. Eur J Inorg Chem 2009:5233–5239CrossRefGoogle Scholar
  56. 56.
    Lemonnier J-F, Floquet S, Marrot J, Kachmar A, Bénard M, Rohmer M-M, Haouas M, Taulelle F, Henry M, Cadot E (2007) Changing the oxothiomolybdate ring from an anionic to a cationic receptor. Inorg Chem 46:9516–9518CrossRefGoogle Scholar
  57. 57.
    Duval S, Floquet S, Simonnet-Jégat C, Marrot J, Biboum RN, Keita B, Nadjo L, Haouas M, Taulelle F, Cadot E (2010) Capture of the [Mo3S4]4+ cluster within a {Mo18} macrocycle yielding a supramolecular assembly stabilized by a dynamic H-bond network. J Am Chem Soc 132:2069–2077CrossRefGoogle Scholar
  58. 58.
    Cadot E, Marrot J, Sécheresse F (2001) [W16S16O16(OH)16(H2O)4(C5H6O4)2]4−: a flexible, pillared oxothiotungstate wheel. Angew Chem Int Ed 40:774–777CrossRefGoogle Scholar
  59. 59.
    Cadot E, Salignac B, Loiseau T, Dolbecq A, Sécheresse F (1999) Syntheses and 31P NMR studies of cyclic oxothiomolybdate(V) molecular rings: exchange properties and crystal structures of the monophosphate Decamer [(H2PO4)Mo10S10O10(OH)11(H2O)2]2− and the diphosphate dodecamer [(HPO4)2Mo12S12O12(OH)12(H2O)2]4−. Chem Eur J 5:3390–3398CrossRefGoogle Scholar
  60. 60.
    Bannani F, Floquet S, Leclerc-Laronze N, Haouas M, Taulelle F, Marrot J, Kögerler P, Cadot E (2012) Cubic box versus spheroidal capsule built from defect and intact pentagonal units. J Am Chem Soc 134:19342–19345CrossRefGoogle Scholar
  61. 61.
    Schäffer C, Todea AM, Bögge H, Cadot E, Gouzerh P, Kopilevich S, Weinstock IA, Müller A (2011) Softening of pore and interior properties of a metal-oxide-based capsule: substituting 60 oxide by 60 sulfide ligands. Angew Chem Int Ed 50:12326–12329CrossRefGoogle Scholar
  62. 62.
    Zang H-Y, Miras HN, Yan J, Long D-L, Cronin L (2012) Assembly and autochirogenesis of a chiral inorganic polythioanion möbius strip via symmetry breaking. J Am Chem Soc 134:11376–11379CrossRefGoogle Scholar
  63. 63.
    Zang H-Y, Miras HN, Long D-L, Rausch B, Cronin L (2013) Template-directed assembly of polyoxothiometalate scaffolds into nanomolecular architectures. Angew Chem Int Ed 52:6903–6906CrossRefGoogle Scholar
  64. 64.
    Müller A, Das SK, Kögerler P, Bögge H, Schmidtmann M, Trautwein AX, Schünemann V, Krickemeyer E, Preetz W (2000) A new type of supramolecular compound: molybdenum-oxide-based composites consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network. Angew Chem Int Ed 39:3413–3417CrossRefGoogle Scholar
  65. 65.
    Müller A, Shah SQN, Bögge H, Schmidtmann M (1999) Molecular growth from a Mo176 to a Mo248 cluster. Nature 397:48–50CrossRefGoogle Scholar
  66. 66.
    Miras HN, Cooper GJT, Long D-L, Bögge H, Müller A, Streb C, Cronin L (2010) Unveiling the transient template in the self-assembly of a molecular oxide nanowheel. Science 327:72–74CrossRefGoogle Scholar
  67. 67.
    Zang H-Y, Chen J-J, Long D-L, Cronin L, Miras HN (2013) Assembly of thiometalate-based {Mo16} and {Mo36} composite clusters combining [Mo2S2O2]2+ cations and selenite anions. Adv Mater 25:6245–6249CrossRefGoogle Scholar
  68. 68.
    Zang H-Y, Chen J-J, Long D-L, Cronin L, Miras HN (2016) Assembly of inorganic [Mo2S2O2]2+ panels connected by selenite anions to nanoscale chalcogenide–polyoxometalate clusters. Chem Sci 7:3798–3804CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of ChemistryThe University of GlasgowGlasgowUK

Personalised recommendations