Advertisement

Gel-Electrophoretic Chromatography of Polyoxometalate Clusters in Aqueous Solution

  • Ryo Tsunashima
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 176)

Abstract

In this chapter, how the electrophoresis works in polyoxometalate chemistry was summarized in detail. Since POM clusters are too small for showing traditional molecular sieving effect required for separation by electrophoresis, they show differences in electrophoretic mobility. The mobility is well understood by a correlation between the cluster mobility and structurally determined surface charge density. By observing these mobility differences in mixed POM solutions, each component can be separated. The electrophoretic chromatography for POMs is now discussed for a genuine analytical technique for investigation of cluster species in solution.

Keywords

Gel electrophoresis Polyoxometalate 

Notes

Acknowledgments

This work was supported by Opto-Energy Research Center of Yamaguchi University, Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the cooperative research program of the Network Joint Research Centre for Materials and Devices of Japan.

References

  1. 1.
    Müller A, Peters F, Pope MT, Gatteschi D (1998) Chem Rev 98(1):239–272CrossRefGoogle Scholar
  2. 2.
    Hill CL (1998) Chem Rev 98(1):1–2CrossRefGoogle Scholar
  3. 3.
    Hasenknopf BF (2005) Front Biosci 10:275CrossRefGoogle Scholar
  4. 4.
    Liu T (2010) Langmuir 26(12):9202–9213CrossRefGoogle Scholar
  5. 5.
    Long D-L, Burkholder E, Cronin L (2007) Chem Soc Rev 36(1):105–121CrossRefGoogle Scholar
  6. 6.
    Kortz U, Müller A, Slageren J, Schnack J, Dalal NS, Dressel M (2009) Coord Chem Rev 253(19–20):2315–2327CrossRefGoogle Scholar
  7. 7.
    Long D-L, Tsunashima R, Cronin L (2010) Angew Chem Int Ed Engl 49(10):1736–1758CrossRefGoogle Scholar
  8. 8.
    Miras HN, Cooper GJT, Long D-L, Bögge H, Müller A, Streb C, Cronin L (2010) Science 327(5961):72–74CrossRefGoogle Scholar
  9. 9.
    Ziv A, Grego A, Kopilevich S, Zeiri L, Miro P, Bo C, Müller A, Weinstock IA (2009) J Am Chem Soc 131(18):6380–6382CrossRefGoogle Scholar
  10. 10.
    Noro S-I, Tsunashima R, Kamiya Y, Uemura K, Kita H, Cronin L, Akutagawa T, Nakamura T (2009) Angew Chem Int Ed Engl 48(46):8703–8706CrossRefGoogle Scholar
  11. 11.
    Long D-L, Kögerler P, Cronin L (2004) Angew Chem Int Ed Engl 43(14):1817–1820CrossRefGoogle Scholar
  12. 12.
    Müller A, Krickemeyer E, Meyer J, Bögge H, Peters F, Plass W, Diemann E, Dillinger S, Nonnenbruch F, Randerath M, Menke C (1995) Angew Chem Int Ed Engl 34(19):2122–2124CrossRefGoogle Scholar
  13. 13.
    Long D-L, Cronin L (2006) Chem Eur J 12(14):3698–3706CrossRefGoogle Scholar
  14. 14.
    Viovy J-L (2000) Rev Mod Phys 72(3):813–872CrossRefGoogle Scholar
  15. 15.
    Hettiarachchi K, Ha Y, Tran T, Cheung A (1995) J Pharm Biomed Anal 13(4–5):515–523CrossRefGoogle Scholar
  16. 16.
    Ito T, Yamase T (2009) Eur J Inorg Chem 5205Google Scholar
  17. 17.
    Rusu M (2000) J Radioanal Nucl Chem 245(2):353–356CrossRefGoogle Scholar
  18. 18.
    Himeno S, Kitano E, Chasen N (2007) Electrophoresis 28(10):1525–1529CrossRefGoogle Scholar
  19. 19.
    Peng J, Ma H-Y, Han Z-G, Dong B-X, Li W-Z, Lu J, Wang E-B (2003) Dalton Trans 3850Google Scholar
  20. 20.
    Ruuttunen K, Vuorinen T (2004) Carbohydr Polym 58(4):443–448CrossRefGoogle Scholar
  21. 21.
    Lyon DK, Miller WK, Novet T, Domaille PJ, Eric Evitt E, Johnson DC, Finke RGJ (1991) J Am Chem Soc 113(19):7209–7221CrossRefGoogle Scholar
  22. 22.
    Claude R-D, Michel F, Raymonde F, Rene T (1983) Inorg Chem 22:207CrossRefGoogle Scholar
  23. 23.
    Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F (1998) Angew Chem Int Ed Engl 37:3360Google Scholar
  24. 24.
    Müller A, Das SK, Fedin VP, Krickemeyer E, Beugholt C, Bögge H, Schmidtmann M, Hauptfleisch BJ (1999) Z Anorg Allg Chem 625(7):1187–1192CrossRefGoogle Scholar
  25. 25.
    Uchida S, Mizuno N (2004) J Am Chem Soc 126(6):1602–1603CrossRefGoogle Scholar
  26. 26.
    Chrambach A, Dunn MJ, Radola BJ (1992) Advances in electrophoresis, vol 5. VCH, Weinheim, p 4Google Scholar
  27. 27.
    Rodbard D, Chrambach A (1970) Proc Natl Acad Sci U S A 65(4):970–977CrossRefGoogle Scholar
  28. 28.
    Müller A, Meyer J, Krickemeyer E, Diemann E (1996) Angew Chem Int Ed Engl 35(11):1206–1208CrossRefGoogle Scholar
  29. 29.
    Song Y-F, Tsunashima R (2012) Chem Soc Rev 41(22):7384–7402CrossRefGoogle Scholar
  30. 30.
    Müller A, Roy S (2003) Coord Chem Rev 245(1–2):153–166CrossRefGoogle Scholar
  31. 31.
    Müller A, Serain C (2000) Acc Chem Res 33(1):2–10CrossRefGoogle Scholar
  32. 32.
    Baker LCW, Glick DC (1998) Chem Rev 98(1):3–50CrossRefGoogle Scholar
  33. 33.
    Müller A, Merca A, Al-Karawi AJM, Garai S, Bögge H, Hou G, Wu L, Haupt ETK, Rehder D, Haso F, Liu T (2012) Chem Eur J 18(51):16310–16318CrossRefGoogle Scholar
  34. 34.
    Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Beugholt C, Das SK, Peters F (1999) Chem Eur J 5(5):1496–1502CrossRefGoogle Scholar
  35. 35.
    Shishido S, Ozeki T (2008) J Am Chem Soc 130(32):10588–10595CrossRefGoogle Scholar
  36. 36.
    Manos MJ, Woollins JD, Slawin AMZ, Kabanos TA (2002) Angew Chem Int Ed Engl 41(15):2801–2805CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Graduate School of Science and Technology for InnovationYamaguchi UniversityYamaguchiJapan

Personalised recommendations