Reactivity and Applications of α-Metalated Ylides

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 177)

Abstract

α-Metalated ylides, the so-called yldiides, represent a unique class of carbon-centered donor ligands. With two lone pairs of electrons at the central ylidic carbon atom, they are closely related to important organometallic ligand systems, above all bisylides and methandiides, and thus have attracted considerable research interest both from experimental and theoretical points of view. Although the number of isolated and structurally characterized yldiides is still limited, reactivity studies have demonstrated their exciting chemistry. Nowadays applications range from their use as powerful, highly nucleophilic reagents in organic synthesis such as in cascade reactions to their use as strong σ- and π-donor ligands in main group element and transition metal chemistry. The unique reactivity and donor capacity of α-metalated ylides is thereby strongly connected with the availability of the two lone pairs at the ylidic carbon atom, which makes yldiides to a special class of ylidic compounds. This review summarizes the chemistry of yldiides, particularly highlighting recent developments in their isolation and applications, also emphasizing structural and electronic properties of these compounds.

Keywords

Carbanions Catalysis Coordination chemistry Electronic structure Ylide chemistry 

References

  1. 1.
    Michaelis A, Gimborn HV (1894) Chem Ber 27:272–277Google Scholar
  2. 2.
    Cristau H-J (1994) Chem Rev 94:1299–1313Google Scholar
  3. 3.
    Wittig G, Rieber M (1949) Justus Liebigs Ann Chem 562:177–187Google Scholar
  4. 4.
    Schröder FG, Sundermeyer J (2015) Organometallics 34:1017–1020Google Scholar
  5. 5.
    Cramer RE, Bruck MA, Gilje JW (1986) Organometallics 5:1496–1499Google Scholar
  6. 6.
    Less RJ, Naseri V, Wright DS (2009) Organometallics 28:3594–3596Google Scholar
  7. 7.
    Cristau HJ, Ribeil Y (1988) J Organomet Chem 352:C51–C53Google Scholar
  8. 8.
    Cristau HJ, Ribeil Y, Chiche L, Plénat F (1988) J Organomet Chem 352:C47–C50Google Scholar
  9. 9.
    McKenna EG, Walker BJ (1988) Tetrahedron Lett 29:485–488Google Scholar
  10. 10.
    McKenna EG, Walker BJ (1989) J Chem Soc Chem Commun 568–569. doi:  https://doi.org/10.1039/C39890000568
  11. 11.
    Taillefer M, Cristau HJ, Fruchier A, Vicente V (2001) J Organomet Chem 624:307–315Google Scholar
  12. 12.
    Usón R, Laguna A, Laguna M, Jiménez J, Jones PG (1991) Angew Chem 103:190–191Google Scholar
  13. 13.
    Schmidbaur H, Hartmann C, Reber G, Müller G (1987) Angew Chem 99:1189–1191Google Scholar
  14. 14.
    Basil JD, Murray HH, Fackler JP, Tocher J, Mazany AM, Trzcinska-Bancroft B, Knachel H, Dudis D, Delord TJ, Marler D (1985) J Am Chem Soc 107:6908–6915Google Scholar
  15. 15.
    Mohr F, Sanz S, Tiekink ERT, Laguna M (2006) Organometallics 25:3084–3087Google Scholar
  16. 16.
    Méndez LA, Jiménez J, Cerrada E, Mohr F, Laguna M (2005) J Am Chem Soc 127:852–853PubMedGoogle Scholar
  17. 17.
    Navarro R, Urriolabeitia EP (1999) Dalton Trans 4111–4122Google Scholar
  18. 18.
    Urriolabeitia EP (2008) Dalton Trans 5673–5686Google Scholar
  19. 19.
    Scharf LT, Gessner VG (2017) Inorg Chem 56:8599–8607PubMedPubMedCentralGoogle Scholar
  20. 20.
    Corey EJ, Kang J (1982) J Am Chem Soc 104:4724–4725Google Scholar
  21. 21.
    Baumgarnter T, Schinkels B, Gudat D, Nieger M, Niecke E (1997) J Am Chem Soc 119:12410–12411Google Scholar
  22. 22.
    Dyker CA, Bertrand G (2009) Nat Chem 1:265–266PubMedGoogle Scholar
  23. 23.
    Schmidbaur H, Schier A (2012) Angew Chem Int Ed 52:176–186Google Scholar
  24. 24.
    Zhao L, Hermann M, Holzmann N, Frenking G (2017) Coord Chem Rev 344:163–204Google Scholar
  25. 25.
    Harder S (2011) Coord Chem Rev 255:1252–1267Google Scholar
  26. 26.
    Marek I (2000) Chem Rev 100:2887–2900PubMedGoogle Scholar
  27. 27.
    Green MLH (1995) J Organomet Chem 500:127–148Google Scholar
  28. 28.
    Jones ND, Cavell RG (2005) J Organomet Chem 690:5485–5496Google Scholar
  29. 29.
    Cantat T, Mézailles N, Auffrant A, Le Floch P (2008) Dalton Trans 1957–1972Google Scholar
  30. 30.
    Liddle ST, Mills DP, Wooles AJ (2011) Chem Soc Rev 40:2164–2176PubMedGoogle Scholar
  31. 31.
    Gessner VH, Becker J, Feichtner K-S (2015) Eur J Inorg Chem 1841–1859Google Scholar
  32. 32.
    Petz W (2015) Coord Chem Rev 291:1–27Google Scholar
  33. 33.
    Alcarazo M (2011) Dalton Trans 40:1839–1845PubMedPubMedCentralGoogle Scholar
  34. 34.
    Alcarazo M (2017) Synthesis, structure, and reactivity of carbodiphosphoranes, carbodicarbenes, and related species. Struct Bond.  https://doi.org/10.1007/430_2017_19 (this volume)
  35. 35.
    Liu S, Chen W-C, Ong T-G (2017) Synthesis and structure of carbodicarbenes and their application in catalysis. Struct Bond.  https://doi.org/10.1007/430_2017_20 (this volume)
  36. 36.
    Bestmann HJ, Besold R, Sandmeier D (1975) Tetrahedron Lett 16:2293–2294Google Scholar
  37. 37.
    Bestmann HJ, Sandmeier D (1975) Angew Chem 87:630Google Scholar
  38. 38.
    Corey EJ, Kang J, Kyler K (1985) Tetrahedron Lett 26:555–558Google Scholar
  39. 39.
    Schaub B, Jenny T, Schlosser M (1984) Tetrahedron Lett 25:4097–4100Google Scholar
  40. 40.
    Schaub B, Schlosser M (1985) Tetrahedron Lett 26:1623–1626Google Scholar
  41. 41.
    Bestmann HJ, Schmidt M (1987) Angew Chem Int Ed Eng 26:79–81Google Scholar
  42. 42.
    Goumri-Magnet S, Gornitzka H, Baceiredo A, Bertrand G (1999) Angew Chem Int Ed 38:678–680Google Scholar
  43. 43.
    Scherpf T, Wirth R, Molitor S, Feichtner K-S, Gessner VH (2015) Angew Chem Int Ed 54:8542–8546Google Scholar
  44. 44.
    Hardy GE, Zink JI, Kaska WC, Baldwin JC (1978) J Am Chem Soc 100:8001–8002Google Scholar
  45. 45.
    Garduno-Alvia A, Lenk R, Escudié Y, González ML, Bousquet L, Saffon-Merceron N, Toledano CA, Bagan X, Branchadell V, Maerten E, Baceiredo A (2017) Eur J Inorg Chem 3494–3497Google Scholar
  46. 46.
    McDowell RS, Streitwieser A Jr (1984) J Am Chem Soc 106:4047–4048Google Scholar
  47. 47.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53:370–374Google Scholar
  48. 48.
    Frenking G (2014) Angew Chem Int Ed 53:6040–6046Google Scholar
  49. 49.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53:6047–6048Google Scholar
  50. 50.
    Lischka H (1977) J Am Chem Soc 99:353–360Google Scholar
  51. 51.
    Tonner R, Öxler F, Neumüller B, Petz W, Frenking G (2006) Angew Chem Int Ed 45:8038–8042Google Scholar
  52. 52.
    Tonner R, Frenking G (2008) Chem Eur J 14:3260–3272Google Scholar
  53. 53.
    Tonner R, Frenking G (2008) Chem Eur J 14:3273–3289Google Scholar
  54. 54.
    Tonner R, Frenking G (2009) Pure Appl Chem 81:597–614Google Scholar
  55. 55.
    Dewar M (1951) Bull Soc Chim Fr 18:C79Google Scholar
  56. 56.
    Chatt J, Duncanson LA (1953) J Chem Soc 2939–2947Google Scholar
  57. 57.
    Alcarazo M, Lehman CW, Anoop A, Thiel W, Fürstner A (2009) Nat Chem 1:295–301Google Scholar
  58. 58.
    Tonner R, Frenking G (2007) Angew Chem Int Ed 46:8695–8698Google Scholar
  59. 59.
    Klein S, Tonner R, Frenking G (2010) Chem Eur J 16:10160–10170Google Scholar
  60. 60.
    Takagi N, Tonner R, Frenking G (2012) Chem Eur J 18:1772–1780PubMedGoogle Scholar
  61. 61.
    Scharf LT, Andrada DM, Frenking G, Gessner VH (2017) Chem Eur J 23:4432–4434Google Scholar
  62. 62.
    Kolodiazhnyi OI (1999) Phosphorus ylides; chemistry and application in organic synthesis. Wiley-VCH, WeinheimGoogle Scholar
  63. 63.
    Maryanoff BE, Reitz AB (1989) Chem Rev 89:863–927Google Scholar
  64. 64.
    Byrne PA, Gilheany DG (2013) Chem Soc Rev 42:6670–6696PubMedGoogle Scholar
  65. 65.
    Bestmann HJ, Schmidt M (1987) Tetrahedron Lett 28:2111–2114Google Scholar
  66. 66.
    Igau A, Grützmacher H, Baceiredo A, Bertrand G (1988) J Am Chem Soc 110:6463–6466Google Scholar
  67. 67.
    Arduengo AJ, Harlow LM, Kine M (1991) J Am Chem Soc 113:361–363Google Scholar
  68. 68.
    Vignolle J, Cattoën X, Bourissou D (2009) Chem Rev 109:3333–3384PubMedGoogle Scholar
  69. 69.
    Soleilhavoup M, Bertrand G (2014) Acc Chem Res 48:256–266PubMedGoogle Scholar
  70. 70.
    Melaimi M, Soleilhavoup M, Bertrand G (2010) Angew Chem Int Ed 49:8810–8849Google Scholar
  71. 71.
    Rovis T, Nolan SP (2013) Synlett 24:1188–1189Google Scholar
  72. 72.
    Arduengo AJ, Bertrand G (2009) Chem Rev 109:3209–3210PubMedGoogle Scholar
  73. 73.
    Schuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445–3478PubMedGoogle Scholar
  74. 74.
    Dötz KH, Stendel J (2009) Chem Rev 109:3227–3274PubMedGoogle Scholar
  75. 75.
    Wang Y, Robinson GH (2011) Inorg Chem 50:12326–12337PubMedGoogle Scholar
  76. 76.
    Bugaut X, Glorius F (2012) Chem Soc Rev 41:3511–3522PubMedGoogle Scholar
  77. 77.
    Ender D, Niemeier O, Henseler A (2007) Chem Rev 107:5606–5655Google Scholar
  78. 78.
    Frey GD, Lavalla V, Donnadieu B, Schoeller WW, Bertrand G (2007) Science 316:439–441Google Scholar
  79. 79.
    Back O, Kuchenbeiser G, Donnadieu B, Bertrand G (2009) Angew Chem Int Ed 48:5530–5533Google Scholar
  80. 80.
    Schmidt D, Bertel JHJ, Pietsch S, Radius U (2012) Angew Chem Int Ed 51:8881–8885Google Scholar
  81. 81.
    Lavigne F, Maerten E, Alcaraz G, Branchadell V, Saffon-Merceron N, Baceiredo A (2012) Angew Chem Int Ed 51:2489–2492Google Scholar
  82. 82.
    Facchin G, Campostrini R, Michelin RA (1985) J Organomet Chem 294:C21–C25Google Scholar
  83. 83.
    Michelin RA, Facchin G, Braga D, Sabatino P (1986) Organometallics 5:2265–2274Google Scholar
  84. 84.
    Michelin RA, Mozzon M, Facchin G, Braga D, Sabatino P (1988) J Chem Soc Dalton Trans 1803–1811Google Scholar
  85. 85.
    Facchin G, Mozzon M, Michelin RA, Ribeiro MTA, Pombeiro AJL (1992) J Chem Soc Dalton Trans 2827–2835Google Scholar
  86. 86.
    Pombeiro AJL (2005) J Organomet Chem 690:6021–6040Google Scholar
  87. 87.
    Nakafuji S, Kobayashi J, Kawashima T (2008) Angew Chem Int Ed 47:1141–1144Google Scholar
  88. 88.
    Kobayashi J, Nakafuji S, Yatabe A, Kawashima T (2008) Chem Commun 6233–6235Google Scholar
  89. 89.
    Fürstner A, Alcarazo M, Radkowski K, Lehmann CW (2008) Angew Chem Int Ed 47:8302–8306Google Scholar
  90. 90.
    Nelson DJ, Nolan SP (2013) Chem Soc Rev 42:6723–6753PubMedGoogle Scholar
  91. 91.
    Wolf S, Plenio J (2009) J Organomet Chem 694:1487–1492Google Scholar
  92. 92.
    Xu C, Wang Z-Q, Li Z, Wang W-Z, Hao X-Q, Fu W-J, Gong J-F, Ji B-M, Song M-P (2012) Organometallics 31:798–801Google Scholar
  93. 93.
    Asay M, Inoue S, Driess M (2011) Angew Chem Int Ed 50:9589–9592Google Scholar
  94. 94.
    Asay M, Jones C, Driess M (2011) Chem Rev 111:354–396PubMedGoogle Scholar
  95. 95.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318PubMedGoogle Scholar
  96. 96.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Chem Rev 105:3842–3888PubMedGoogle Scholar
  97. 97.
    Schleyer PR, Jiao H, Hommes NJRE, Malkin VG, Malkina O (1997) J Am Chem Soc 119:12669–12670Google Scholar
  98. 98.
    Alvarado-Beltran I, Baceiredo A, Saffon-Merceron N, Branchadell V, Kato T (2016) Angew Chem Int Ed 55:16141–16144Google Scholar
  99. 99.
    Tolman CA (1977) Chem Rev 77:313–348Google Scholar
  100. 100.
    Crabtree RH (2005) The organometallic chemistry of the transition metals. Wiley, HobokenGoogle Scholar
  101. 101.
    Guha AK, Gogoi U, Phukan AK (2013) Int J Quantum Chem 113:2471–2477Google Scholar
  102. 102.
    Esterhuysen C, Frenking G (2011) Chem Eur J 17:9944–9956Google Scholar
  103. 103.
    Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Angew Chem Int Ed 47:3210–3215Google Scholar
  104. 104.
    Alcarazo M, Suárez RM, Goddard R, Fürstner A (2010) Chem Eur J 16:9746–9749PubMedGoogle Scholar
  105. 105.
    Karni M, Apeloig Y (2012) Organometallics 31:2403–2415Google Scholar
  106. 106.
    Borthakur B, Silvi B, Dewhurst RD, Phukan AK (2016) J Comput Chem 37:1484–1490Google Scholar
  107. 107.
    Borthakur B, Phukan AK (2015) Chem Eur J 21:11603–11609PubMedPubMedCentralGoogle Scholar
  108. 108.
    Bharadwaz P, Chetia P, Phukan AK (2017) Chem Eur J 23:9926–9936PubMedPubMedCentralGoogle Scholar
  109. 109.
    Haerizade BN, Kassaee MZ, Zandi H, Koohi M, Ahmadi AA (2014) J Phys Org Chem 27:902–908Google Scholar
  110. 110.
    Melaimi M, Jazzar R, Soleilhavoup M, Bertrand G (2017) Angew Chem Int Ed 56:10046–10068Google Scholar
  111. 111.
    Bestmann HJ, Röder T, Bremer M, Löw D (1991) Chem Ber 124:199–202Google Scholar
  112. 112.
    Köster E, Rickborn B (1967) J Am Chem Soc 89:2782–2784Google Scholar
  113. 113.
    Piers WE, Bourke SC, Conroy KD (2005) Angew Chem Int Ed 44:5016–5036Google Scholar
  114. 114.
    Scherpf T, Feichtner K-S, Gessner VH (2017) Angew Chem Int Ed 56:3275–3279Google Scholar
  115. 115.
    Heckmann G, Plass W, Fluck E (1991) Z Anorg Allg Chem 596:139–148Google Scholar
  116. 116.
    Schmidbaur H, Tronich W (1968) Chem Ber 101:3545–3555Google Scholar
  117. 117.
    Schmidbaur H (1975) Acc Chem Res 8:62–70Google Scholar
  118. 118.
    Schmidbaur H, Malisch W (1970) Angew Chem Int Ed Eng 9:70–71Google Scholar
  119. 119.
    Schmidbaur H, Malisch W (1971) Chem Ber 104:150–159Google Scholar
  120. 120.
    Schmidpeter A, Jochem G (1992) Tetrahedron Lett 33:471–474Google Scholar
  121. 121.
    Schmidpeter A, Nöth H, Jochem G, Schrödel H-P, Karaghiosoff K (1995) Chem Ber 128:379–393Google Scholar
  122. 122.
    Schmidpeter A, Jochem G, Robl C, Nöth H (1997) J Organomet Chem 529:87–102Google Scholar
  123. 123.
    Schrödel H-P, Schmidpeter A, Nöth H (1996) Heteroat Chem 7:355–358Google Scholar
  124. 124.
    Jochem G, Breitsameter F, Schier A, Schmidpeter A (1996) Heteroat Chem 7:239–247Google Scholar
  125. 125.
    Schuhmann H, Reiher F-W (1984) J Organomet Chem 269:21–27Google Scholar
  126. 126.
    Rufanov KA, Müller BH, Spannenberg A, Rosenthal U (2005) New J Chem 30:29–31Google Scholar
  127. 127.
    Schmidbaur H, Gasser O (1976) Angew Chem Int Ed Eng 15:502–503Google Scholar
  128. 128.
    Smyslova EI, Perevalova EG, Dyadchenko VP, Grandberg KI, Slovokhotov YL, Struchkov YT (1981) J Organomet Chem 215:269–279Google Scholar
  129. 129.
    Gimeno MC, Laguna A, Laguna M, Sanmartin F, Jones PG (1993) Organometallics 12:3984–3991Google Scholar
  130. 130.
    Vicente J, Chicote M-T, Saura-Llamas I, Jones PG, Meyer-Bäse K, Erdbrügger CF (1988) Organometallics 7:997–1006Google Scholar
  131. 131.
    Vicente J, Chicote M-T, Lagunas M-C, Jones PG, Ahrens B (1997) Inorg Chem 36:4938–4944Google Scholar
  132. 132.
    Vicente J, Chicote M-T, Cayuelas JA, Fernandez-Baeza J, Jones PG, Sheldrick GM, Espinet P (1985) J Chem Soc Dalton Trans 1163–1168Google Scholar
  133. 133.
    Schmidbaur H, Schier A (2012) Chem Soc Rev 41:370–412PubMedGoogle Scholar
  134. 134.
    Vicente J, Singhal AR, Jones PG (2002) Organometallics 21:5887–5900Google Scholar
  135. 135.
    Schmidbaur H, Scherbaum F, Huber B, Müller G (1988) Angew Chem Int Ed Eng 27:419–421Google Scholar
  136. 136.
    Alcarazo M, Radkowski K, Mehler G, Goddard R, Fürstner A (2013) Chem Commun 49:3140–3142Google Scholar
  137. 137.
    Vicente J, Chicote MT (1999) Coord Chem Rev 193–195:1143–1161Google Scholar
  138. 138.
    Vicente J, Chicote MT, Lagumas M-C (1999) Helv Chim Acta 82:1202–1210Google Scholar
  139. 139.
    Vicente J, Chicote M-T, Guerrero R, Jones PG (1996) J Am Chem Soc 118:699–700Google Scholar
  140. 140.
    Sundermeyer J, Weber K, Nürnberg O (1992) J Chem Soc Chem Commun 1631–1633Google Scholar
  141. 141.
    Sundermeyer J, Putterlik J, Pritzkow H (1993) Chem Ber 126:289–296Google Scholar
  142. 142.
    Sundermeyer J, Weber K, Pritzkow H (1993) Angew Chem 105:751–753Google Scholar
  143. 143.
    Li X, Wang A, Wang L, Sun H, Harms K, Sundermeyer J (2007) Organometallics 27:1411–1413Google Scholar
  144. 144.
    Schrock RR, Hoveyda AH (2003) Angew Chem Int Ed 42:4592–4633Google Scholar
  145. 145.
    Li X, Schopf M, Stephan J, Harms K, Sundermeyer J (2002) Organometallics 21:2356–2358Google Scholar
  146. 146.
    Kreissl FR, Stueckler P (1976) J Organomet Chem 110:C9–C11Google Scholar
  147. 147.
    Valyaev DA, Lugan N, Lavigne G, Ustynyuk NA (2008) Organometallics 27:5180–5183Google Scholar
  148. 148.
    Kreissl FR, Stueckler P, Meineke EW (1977) Chem Ber 110:3040–3045Google Scholar
  149. 149.
    Filippou AC, Wössner D, Kociok-Köhn G, Hinz I (1997) J Organomet Chem 541:333–343Google Scholar
  150. 150.
    Zurawinski R, Lepetit C, Canac Y, Mikolajczyk M, Chauvin R (2009) Inorg Chem 48:2147–2155PubMedGoogle Scholar
  151. 151.
    Romero PE, Piers WE, McDonald R (2004) Angew Chem Int Ed 43:6161–6165Google Scholar
  152. 152.
    Romero PE, Piers WE (2005) J Am Chem Soc 127:5032–5033PubMedGoogle Scholar
  153. 153.
    Wenzel AG, Grubbs RH (2006) J Am Chem Soc 128:16048–16049PubMedPubMedCentralGoogle Scholar
  154. 154.
    Van der Eide EF, Romero PE, Piers WE (2008) J Am Chem Soc 130:4485–4491PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Anorganische Chemie IIFakultät für Chemie und BiochemieBochumGermany

Personalised recommendations