Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 174))

Abstract

An intriguing inorganic analog of ferrocene, pentaphosphaferrocene [CpRFe(η5-P5)] (R=Me, Et, CH2Ph, PhC4H9), has the ability to coordinate Cu(I) moieties resulting in giant superspheres of 2.1–4.6 nm in diameter. Smaller hollow supramolecules follow icosahedral C80 or C140 fullerene topology being constructed of adjacent pentagonal cyclo-P5 moieties and hexagonal Cu2P4 or P2Cu3Br rings. The same building units can also assemble to spherical and ellipsoid inorganic cores with different fullerene-related topologies. Larger supramolecules based on extended copper halide frameworks possess multilayered structures and form non-fullerene topologies. The size and solubility of the superspheres can be controlled through the variation of the steric demand of the cyclopentadienyl ligands at the pentaphosphaferrocene. The interconversion of supramolecules can be enabled in solution by changing the solvent mixtures. The quasi-spherical voids inside the supramolecules encapsulate various organic, inorganic, and organometallic guest molecules. Furthermore, the metallocene guests are involved in π-stacking with aromatic cyclo-P5 systems of the supramolecular host. The crystals of the obtained supramolecules consist of similar co-crystallized forms, in which different isomerism and porosity can occur. The mutual arrangement of the supramolecules in the crystals is essentially controlled by halogen–Cp* σ–π and Cp*–Cp* π–π stacking interactions. This allows to regard these interactions as the supramolecular synthons. Besides the expected structural motifs typical for close sphere packings, such superspheres form also unusual and low-dense packing motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The inner diameters of the cavities were calculated as geometrically opposing atomic distances, minus the van der Waals radii of the respective atoms (e.g., P, 1.80 Å; Cu, 1.40 Å). The term “diameter” is defined here as the diameter of the largest spherical form that is geometrically allowed inside the cavity by the given atoms. The outer diameter is taken as twice the largest distance from the theoretical center of the molecule to the farthest atom, plus twice the van der Waals radius for the respective atom (e.g., H, 1.2 Å).

  2. 2.

    Hereinafter bold-typed symbols correspond to the notation used in RCSR database, http://rcsr.net [144, 145]

  3. 3.

    In these notations, common packings as face-centered cubic (f.c.c.) are also known as fcu net, hexagonal close packing (h.c.p.) as hcp, and body-centered cubic as bcu-x type.

  4. 4.

    With additional four edges taken into account, the cco net transforms to bcu-x (b.c.c.).

  5. 5.

    Calculated from the crystallographic data for an idealized net stored in RCSR database, http://rcsr.net/nets/ild

  6. 6.

    Arrangement of oxygen atoms in the ReO3 or cubic perovskite structures

References

  1. Kopilevich S, Gil A, Garcia-Rates M, Bonet-Avalos J, Bo C, Müller A, Weinstock IA (2012) J Am Chem Soc 134:13082–13088

    Article  CAS  Google Scholar 

  2. Schaeffer C, Todea AM, Boegge H, Cadot E, Gouzerh P, Kopilevich S, Weinstock IA, Mueller A (2011) Angew Chem Int Ed 50:12326–12329

    Article  CAS  Google Scholar 

  3. Long DL, Tsunashima R, Cronin L (2010) Angew Chem Int Ed 49:1736–1758

    Article  CAS  Google Scholar 

  4. Berzelius JJ (1826) Poggendorffs Ann Phys Chem 6:369–392

    Article  Google Scholar 

  5. Pope MT, Mueller A (1991) Angew Chem 103:56–70

    Article  CAS  Google Scholar 

  6. Mueller A, Botar B, Das SK, Boegge H, Schmidtmann M, Merca A (2004) Polyhedron 23:2381–2385

    Article  CAS  Google Scholar 

  7. Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A (2002) Angew Chem Int Ed 41:1162–1167

    Article  Google Scholar 

  8. Mehring M (2016) Large metal oxide clusters. Struct Bond. doi:10.1007/430_2016_4

    Google Scholar 

  9. Anson C, Eichhöfer A, Issac I, Fenske D, Fuhr O, Sevillano P, Persau C, Stalke D, Zhang J (2008) Angew Chem Int Ed 47:1326–1331

    Article  CAS  Google Scholar 

  10. Corrigan JF (2016) Large metal chalcogenide clusters. Struct Bond. doi:10.1007/430_2016_5

    Google Scholar 

  11. Fuhr O, Dehnen S, Fenske D (2013) Chem Soc Rev 42:1871–1906

    Article  CAS  Google Scholar 

  12. Corrigan JF, Fuhr O, Fenske D (2009) Adv Mater 21:1867–1871

    Article  CAS  Google Scholar 

  13. Liu Y, Khalili-Najafabadi B, Azizpoor-Fard M, Corrigan JF (2015) Angew Chem 127:4914–4917

    Article  Google Scholar 

  14. Schnöckel H, Schnepf A, Whetten RL, Schenk C, Henke P (2011) Z Anorg Allg Chem 637:15–23

    Article  CAS  Google Scholar 

  15. Schnöckel H, Schnepf A (2011) Aluminium and Gallium Clusters. Wiley, Hoboken, p 402

    Google Scholar 

  16. Vollet J, Hartig JR, Schnöckel H (2004) Angew Chem Int Ed 43:3186–3189

    Article  CAS  Google Scholar 

  17. Schnepf A, Jee B, Schnöckel H, Weckert E, Meents A, Luebbert D, Herrling E, Pilawa B (2003) Inorg Chem 42:7731–7733

    Article  CAS  Google Scholar 

  18. Schnepf A, Schnöckel H (2001) Angew Chem Int Ed 40:712–715

    CAS  Google Scholar 

  19. Fässler TF (2011) Struct Bond 140:91–131

    Article  CAS  Google Scholar 

  20. Lin Y, Massa W, Dehnen S (2012) J Am Chem Soc 134:4497–4500

    Article  CAS  Google Scholar 

  21. Lips F, Dehnen S (2009) Angew Chem Int Ed 48:6435–6438

    Article  CAS  Google Scholar 

  22. Dehnen S (2015) Binary and ternary intermetalloid clusters. Struct Bond. doi:10.1007/430_2015_5002

    Google Scholar 

  23. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430–433

    Article  CAS  Google Scholar 

  24. Dass A, Theivendran S, Nimmala PR, Kumara C, Jupally VR, Fortunelli A, Sementa L, Barcaro G, Zuo X, Noll BC (2015) J Am Chem Soc 137:4610–4613

    Article  CAS  Google Scholar 

  25. Mednikov EG, Jewell MC, Dahl LF (2007) J Am Chem Soc 129:11619–11630

    Article  CAS  Google Scholar 

  26. Tran NT, Powell DR, Dahl LF (2000) Angew Chem 112:4287–4291

    Article  Google Scholar 

  27. Vargaftik MN, Moiseev II, Kochubey DI, Zamaraev KI (1991) Faraday Discuss 92:13–29

    Article  CAS  Google Scholar 

  28. Constable EC (1994) Chem Ind 2:56–59

    Google Scholar 

  29. Lehn JM (1995) Supramolecular Chemistry. Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  30. Lehn JM, Rigault A, Siegel J, Harrowfield J, Chevrier B, Moras D (1987) Proc Natl Acad Sci USA 84:2565–2569

    Article  CAS  Google Scholar 

  31. Zarra S, Wood DM, Roberts DA, Nitschke JR (2015) Chem Soc Rev 44:419–432

    Article  CAS  Google Scholar 

  32. Meng W, League AB, Ronson TK, Clegg JK, Isley WC, Semrouni D, Gagliardi L, Cramer CJ, Nitschke JR (2014) J Am Chem Soc 136:3972–3980

    Article  CAS  Google Scholar 

  33. Young NJ, Hay BP (2013) Chem Commun 49:1354–1379

    Article  CAS  Google Scholar 

  34. Cook TR, Zheng YR, Stang PJ (2013) Chem Rev 113:734–777

    Article  CAS  Google Scholar 

  35. Mugridge JS, Bergman RG, Raymond KN (2012) J Am Chem Soc 134:2057–2066

    Article  CAS  Google Scholar 

  36. Saalfrank RW, Scheurer A (2012) Top Curr Chem 319:125–170

    Article  CAS  Google Scholar 

  37. Laughrey Z, Gibb BC, Laughrey Z, Gibb BC (2011) Chem Soc Rev 40:363–386

    Article  CAS  Google Scholar 

  38. Dalgarno SJ, Power NP, Atwood JL (2008) Coord Chem Rev 252:825–841

    Article  CAS  Google Scholar 

  39. Chen L, Chen Q, Wu M, Jiang F, Hong M (2015) Acc Chem Res 48:201–210

    Article  CAS  Google Scholar 

  40. Cullen W, Turega S, Hunter CA, Ward MD (2015) Chem Sci 6:625–631

    Article  CAS  Google Scholar 

  41. Ajami D, Rebek J (2013) Acc Chem Res 46:990–999

    Article  CAS  Google Scholar 

  42. Jin P, Dalgarno SJ, Atwood JL (2010) Coord Chem Rev 254:1760–1768

    Article  CAS  Google Scholar 

  43. Mal P, Breiner B, Rissanen K, Nitschke JR (2009) Science 324:1697–1701

    Article  CAS  Google Scholar 

  44. Pluth MD, Bergman RG, Raymond KN (2007) Science 316:85–88

    Article  CAS  Google Scholar 

  45. Sato S, Iida J, Suzuki K, Kawano M, Ozeki T, Fujita M (2006) Science 313:1273–1276

    Article  CAS  Google Scholar 

  46. Steinfeld G, Lozan V, Krüger HJ, Kersting B (2009) Angew Chem Int Ed 48:1954–1957

    Article  CAS  Google Scholar 

  47. Brown CJ, Toste FD, Bergman RG, Raymond KN (2015) Chem Rev 115:3012–3035

    Article  CAS  Google Scholar 

  48. Hastings CJ, Pluth MD, Bergman RG, Raymond KN (2010) J Am Chem Soc 132:6938–6945

    Article  CAS  Google Scholar 

  49. Pluth MD, Bergman RG, Raymond KN (2007) Angew Chem Int Ed 46:8587–8589

    Article  CAS  Google Scholar 

  50. Yoshizawa M, Tamura M, Fujita M (2006) Science 312:251–254

    Article  CAS  Google Scholar 

  51. Fujita M, Tominaga M, Hori A, Therrien B (2005) Acc Chem Res 38:369–378

    Article  CAS  Google Scholar 

  52. Inokuma Y, Kawano M, Fujita M (2011) Nat Chem 3:349–358

    Article  CAS  Google Scholar 

  53. Klosterman JK, Iwamura M, Tahara T, Fujita M (2009) J Am Chem Soc 131:9478–9479

    Article  CAS  Google Scholar 

  54. Sato S, Ishido Y, Fujita M (2009) J Am Chem Soc 131:6064–6065

    Article  CAS  Google Scholar 

  55. Sun QF, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M (2010) Science 328:1144–1147

    Article  CAS  Google Scholar 

  56. Sun WY, Yoshizawa M, Kusukawa T, Fujita M (2002) Curr Opin Chem Biol 6:757–764

    Article  CAS  Google Scholar 

  57. Yoshizawa M, Klosterman JK, Fujita M (2009) Angew Chem Int Ed 48:3418–3438

    Article  CAS  Google Scholar 

  58. Inokuma Y, Yoshioka S, Ariyoshi J, Arai T, Hitora Y, Takada K, Matsunaga S, Rissanen K, Fujita M (2013) Nature 495:461–466

    Article  CAS  Google Scholar 

  59. Li S, Huang J, Zhou F, Cook TR, Yan X, Ye Y, Zhu B, Zheng B, Stang PJ (2014) J Am Chem Soc 136:5908–5911

    Article  CAS  Google Scholar 

  60. Vajpayee V, Song YH, Cook TR, Kim H, Lee Y, Stang PJ, Chi KW (2011) J Am Chem Soc 133:19646–19649

    Article  CAS  Google Scholar 

  61. Kaphan DM, Lewin MD, Bergman RG, Raymond KN, Toste FD (2015) Science 350:1235–1238

    Article  CAS  Google Scholar 

  62. Zhao CF, Sun QF, Hart-Cooper WM, Di Pasquale AG, Toste FD, Bergman RG, Raymond KN (2013) J Am Chem Soc 135:18802–18805

    Article  CAS  Google Scholar 

  63. Wang ZJ, Clary KN, Bergman RG, Raymond KN, Toste FD (2013) Nat Chem 5:100–103

    Article  CAS  Google Scholar 

  64. Pluth MD, Raymond KN (2007) Chem Soc Rev 36:161–171

    Article  CAS  Google Scholar 

  65. Williams AF (2011) Coord Chem Rev 255:2104–2110

    Article  CAS  Google Scholar 

  66. Nakanishi T (2010) Chem Commun 46:3425–3436

    Article  CAS  Google Scholar 

  67. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, Cambridge

    Google Scholar 

  68. Fowler PW, Manolopoulos DE (1995) An atlas of fullerenes. Clarendon, Oxford

    Google Scholar 

  69. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  70. Oms O, Jarrosson T, Tong LH, Vaccaro A, Bernardinelli G, Williams AF (2009) Chem Eur J 15:5012–5022

    Article  CAS  Google Scholar 

  71. Tong LH, Guenee L, Williams AF (2011) Inorg Chem 50:2450–2452

    Article  CAS  Google Scholar 

  72. Less RJ, Wilson TC, Guan B, McPartlin M, Steiner A, Wood PT, Wright DS (2013) Eur J Inorg Chem:1161–1169

    Google Scholar 

  73. Bacsa J, Less RJ, Skelton HE, Soracevic Z, Steiner A, Wilson TC, Wood PT, Wright DS (2011) Angew Chem Int Ed 50:8279–8282

    Article  CAS  Google Scholar 

  74. Webster OW (1966) J Am Chem Soc 88:4055–4060

    Article  CAS  Google Scholar 

  75. Müller A, Krickemeyer E, Bögge H, Schmidtmann M, Peters F (1998) Angew Chem Int Ed 37:3359–3363

    Article  Google Scholar 

  76. Schaffer C, Todea AM, Gouzerh P, Muller A (2012) Chem Commun 48:350–352

    Article  Google Scholar 

  77. Todea AM, Merca A, Bögge H, van Slageren J, Dressel M, Engelhardt L, Luban M, Glaser T, Henry M, Müller A (2007) Angew Chem Int Ed 46:6106–6110

    Article  CAS  Google Scholar 

  78. Muller A, Todea AM, Bogge H, van Slageren J, Dressel M, Stammler A, Rusu M (2006) Chem Commun 3066–3068

    Google Scholar 

  79. Detzel M, Mohr T, Scherer OJ, Wolmershäuser G (1994) Angew Chem 106:1142–1144

    Article  CAS  Google Scholar 

  80. Scherer OJ, Brück T (1987) Angew Chem 99:59

    Google Scholar 

  81. Scherer OJ, Brück T, Wolmershäuser G (1988) Chem Ber 121:935–938

    Article  CAS  Google Scholar 

  82. Dielmann F, Merkle R, Heinl S, Scheer M (2009) Z Naturforsh B 64:3–10

    CAS  Google Scholar 

  83. Heinl S, Balazs G, Scheer M (2014) Phosphorus Sulfur Silicon Relat Elem 189:924–932

    Article  CAS  Google Scholar 

  84. Peng R, Li M, Li D (2010) Coord Chem Rev 254:1–18

    Article  CAS  Google Scholar 

  85. Arnby CH, Jagner S, Dance I (2004) CrystEngComm 6:257–275

    Article  CAS  Google Scholar 

  86. Hartl H, Fuchs J (1986) Angew Chem Int Ed 25:569–570

    Article  Google Scholar 

  87. Dielmann F, Schindler A, Scheuermayer S, Bai J, Merkle R, Zabel M, Virovets AV, Peresypkina EV, Brunklaus G, Eckert H, Scheer M (2012) Chem Eur J 18:1168–1179

    Article  CAS  Google Scholar 

  88. Bai J, Virovets AV, Scheer M (2002) Angew Chem Int Ed 41:1737–1740

    Article  CAS  Google Scholar 

  89. Dielmann F, Fleischmann M, Heindl C, Peresypkina EV, Virovets AV, Gschwind RM, Scheer M (2015) Chem Eur J 21:6208–6214

    Article  CAS  Google Scholar 

  90. Schindler A, Heindl C, Balazs G, Groeger C, Virovets AV, Peresypkina EV, Scheer M (2012) Chem Eur J 18:829–835

    Article  CAS  Google Scholar 

  91. Scheer M, Schindler A, Gröger C, Virovets AV, Peresypkina EV (2009) Angew Chem Int Ed 48:5046–5049

    Article  CAS  Google Scholar 

  92. Peresypkina EV, Heindl C, Schindler A, Bodensteiner M, Virovets AV, Scheer M (2014) Z Kristallogr – Cryst Mater 229:735–740

    Article  CAS  Google Scholar 

  93. Heinl S, Peresypkina E, Sutter J, Scheer M (2015) Angew Chem Int Ed 54:13431–13435

    Article  CAS  Google Scholar 

  94. Scheer M, Schindler A, Bai J, Johnson BP, Merkle R, Winter R, Virovets AV, Peresypkina EV, Blatov VA, Sierka M, Eckert H (2010) Chem Eur J 16:2092–2107

    Article  CAS  Google Scholar 

  95. Bai J, Virovets AV, Scheer M (2003) Science 300:781–783

    Article  CAS  Google Scholar 

  96. Scheer M, Bai J, Johnson BP, Merkle R, Virovets AV, Anson CE (2005) Eur J Inorg Chem 2005:4023–4026

    Article  CAS  Google Scholar 

  97. Welsch S, Groeger C, Sierka M, Scheer M (2011) Angew Chem Int Ed 50:1435–1438

    Article  CAS  Google Scholar 

  98. Scheer M, Schindler A, Merkle R, Johnson BP, Linseis M, Winter R, Anson CE, Virovets AV (2007) J Am Chem Soc 129:13386–13387

    Article  CAS  Google Scholar 

  99. Schwarzmaier C, Schindler A, Heindl C, Scheuermayer S, Peresypkina EV, Virovets AV, Neumeier M, Gschwind R, Scheer M (2013) Angew Chem Int Ed 52:10896–10899

    Article  CAS  Google Scholar 

  100. Dielmann F, Heindl C, Hastreiter F, Peresypkina EV, Virovets AV, Gschwind RM, Scheer M (2014) Angew Chem Int Ed 53:13605–13608

    Article  CAS  Google Scholar 

  101. Heindl C, Peresypkina EV, Virovets AV, Kremer W, Scheer M (2015) J Am Chem Soc 137:10938–10941

    Article  CAS  Google Scholar 

  102. Johnson BP, Dielmann F, Balázs G, Sierka M, Scheer M (2006) Angew Chem Int Ed 45:2473–2475

    Article  CAS  Google Scholar 

  103. Allen FH (2002) Acta Crystallogr B58:380–388

    Article  CAS  Google Scholar 

  104. Schwerdtfeger P, Wirz LN, Avery J (2015) Wiley Interdiscip Rev Comput Mol Sci 5:96–145

    Article  CAS  Google Scholar 

  105. Schultz HP (1965) J Org Chem 30:1361–1364

    Article  CAS  Google Scholar 

  106. Bhola BR, Bally T, Valente A, Cyranski MK, Dobrzycki L, Spain SM, Rempala P, Chin MR, King BT (2010) Angew Chem Int Ed 49:399–402

    Article  CAS  Google Scholar 

  107. Qian W, Chuang SC, Amador RB, Jarrosson T, Sander M, Pieniazek S, Khan SI, Rubin Y (2003) J Am Chem Soc 125:2066–2067

    Article  CAS  Google Scholar 

  108. Furche F, Ahlrichs R (2001) J Chem Phys 114:10362–10367

    Article  CAS  Google Scholar 

  109. Wang CR, Sugai T, Kai T, Tomiyama T, Shinohara H (2000) Chem Commun 557–558

    Google Scholar 

  110. Hennrich FH, Michel RH, Fischer A, Richard-Schneider S, Gilb S, Kappes MM, Fuchs D, Bürk M, Kobayashi K, Nagase S (1996) Angew Chem Int Ed 35:1732–1734

    Article  CAS  Google Scholar 

  111. Popov AA, Yang S, Dunsch L (2013) Chem Rev 113:5989–6113

    Article  CAS  Google Scholar 

  112. Rodriguez-Fortea A, Balch AL, Poblet JM (2011) Chem Soc Rev 40:3551–3563

    Article  CAS  Google Scholar 

  113. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Nature 401:55–57

    Article  CAS  Google Scholar 

  114. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) J Am Chem Soc 130:11844–11845

    Article  CAS  Google Scholar 

  115. Yamada M, Someya C, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Liu MTH, Mizorogi ON, Nagase S (2008) J Am Chem Soc 130:1171–1176

    Article  CAS  Google Scholar 

  116. Xu L, Cai W, Shao X (2006) J Phys Chem A 110:9247–9253

    Article  CAS  Google Scholar 

  117. Cai W, Xu L, Shao N, Shao X, Guo Q (2005) J Chem Phys 122:184318/184311–184318/184319

    Article  CAS  Google Scholar 

  118. Manna AK, Pati SK (2013) Chem Phys 426:23–30

    Article  CAS  Google Scholar 

  119. Adams GB, Sankey OF, Page JB, O’Keeffe M, Drabold DA (1992) Science 256:1792–1795

    Article  Google Scholar 

  120. Mantina M, Chamberlin AC, Valero R, Cramer CJ, Truhlar DG (2009) J Phys Chem A 113:5806–5812

    Article  CAS  Google Scholar 

  121. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  122. Butovskii MV, Balázs G, Bodensteiner M, Peresypkina E, Sutter J, Virovets A, Scheer M (2013) Angew Chem Int Ed 52:2972–2976

    Article  CAS  Google Scholar 

  123. Lu X, Chen Z (2005) Chem Rev 105:3643–3696

    Article  CAS  Google Scholar 

  124. Kietzmann H, Rochow R, Gantefor G, Eberhardt W, Vietze K, Seifert G, Fowler PW (1998) Phys Rev Lett 81:5378–5381

    Article  CAS  Google Scholar 

  125. Kroto HW (1987) Nature 329:529–531

    Article  CAS  Google Scholar 

  126. Wang WW, Dang JS, Zhao X (2012) Chem Phys Lett 536:77–81

    Article  CAS  Google Scholar 

  127. Wang W, Dang J, Zhao X (2011) Phys Chem Chem Phys 13:14629–14635

    Article  CAS  Google Scholar 

  128. Zhao X, Slanina Z, Ozawa M, Osawa E, Deota P, Tanabe K (2000) Fullerene Sci Technol 8:595–613

    Article  CAS  Google Scholar 

  129. Gao YD, Herndon WC (1993) J Am Chem Soc 115:8459–8460

    Article  CAS  Google Scholar 

  130. Timoshkin AY, Schaefer HF III (2005) Inorg Chem 44:843–845

    Article  CAS  Google Scholar 

  131. Timoshkin AY, Schaefer HF III (2004) J Am Chem Soc 126:12141–12154

    Article  CAS  Google Scholar 

  132. Timoshkin AY (2002) Inorg Chem Commun 5:274–277

    Article  Google Scholar 

  133. Strout DL (2004) Chem Phys Lett 383:95–98

    Article  CAS  Google Scholar 

  134. Desiraju G (1995) Angew Chem Int Ed 34:2311–2327

    Article  CAS  Google Scholar 

  135. Corey EJ (1967) Pure Appl Chem 14:19–37

    Article  CAS  Google Scholar 

  136. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  137. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  138. Peresypkina E, Virovets A, Scheer M (2016) Cryst Growth Des 16:2335–2341

    Article  CAS  Google Scholar 

  139. Wheeler SE, Bloom JWG (2014) J Phys Chem A 118:6133–6147

    Article  CAS  Google Scholar 

  140. Adams H, Cockroft SL, Guardigli C, Hunter CA, Lawson KR, Perkins J, Spey SE, Urch CJ, Ford R (2004) ChemBioChem 5:657–665

    Article  CAS  Google Scholar 

  141. de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J (2004) Angew Chem Int Ed 43:5815–5817

    Article  CAS  Google Scholar 

  142. Noman A, Rahman MM, Bishop R, Craig DC, Scudder ML (2004) Org Biomol Chem 2:175–182

    Article  Google Scholar 

  143. Janiak C (2000) Dalton Trans:3885–3896

    Google Scholar 

  144. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) Acc Chem Res 41:1782–1789, http://rcsr.net

    Article  CAS  Google Scholar 

  145. Blatov VA, Shevchenko AP, Proserpio DM (2014) Cryst Growth Des 14:3576–3586, http://topospro.com

    Article  CAS  Google Scholar 

  146. Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon, Oxford

    Google Scholar 

  147. Spek AL (2009) Acta Cryst D65:148–155

    Google Scholar 

Download references

Acknowledgments

The European Research Council (ERC) is acknowledged for the support in the SELFPHOS AdG339072 project. C.H. is grateful for a Ph.D. fellowship of the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Scheer .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Hansgeorg Schnöckel on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peresypkina, E., Heindl, C., Virovets, A., Scheer, M. (2016). Inorganic Superspheres. In: Dehnen, S. (eds) Clusters – Contemporary Insight in Structure and Bonding. Structure and Bonding, vol 174. Springer, Cham. https://doi.org/10.1007/430_2016_2

Download citation

Publish with us

Policies and ethics