Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications

  • Hok-Lai Wong
  • Margaret Ching-Lam Yeung
  • Vivian Wing-Wah YamEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 172)


This chapter highlights the importance of structure–property relationships in transition metal complexes for the construction of molecular- and supramolecular-based photofunctional materials and summarizes the recent advancements of this class of complexes with potential applications in the areas of energy, catalysis, materials, biology, and diagnostics.


Artificial photosynthesis Biological sensors Carbon dioxide reduction Dye-sensitized solar cells Hydrogen generation Imaging Light-harvesting Molecular machines Organic light-emitting diodes Oxygen generation Photochromism Photosensitizer Supramolecular chemistry Transition metal complexes 























Commission Internationale de L’Eclairage


Color rendering index












Dye-sensitized solar cells


Enantiomeric ratio


External quantum efficiency




Förster resonance energy transfer


2,2′-Bipyridine-6,6′-dicarboxylic acid


Highest occupied molecular orbital




Intraligand charge transfer


Internal quantum efficiency


Ligand field


Ligand-to-ligand charge transfer


Lowest unoccupied molecular orbital




Triplet metal-to-ligand charge transfer


Metal-to-ligand charge transfer


Triplet metal–metal-to-ligand charge transfer


Metal-organic frameworks


N-Heterocyclic carbenes




Nonlinear optical




Oxygen-evolving complex


Organic light-emitting diodes


Power conversion efficiency


Proton-coupled electron transfer


Photo-induced electron transfer




Phosphorescent organic light-emitting diodes


Polymer light-emitting diodes


Poly(methyl methacrylate)


Poly(phenylene ethynylene sulfonate)


Single-molecule magnets


Thermally activated delayed fluorescence




Turnover numbers




White organic light-emitting diodes


White polymer light-emitting diodes



We acknowledge support from The University of Hong Kong under the URC Strategic Research Theme on New Materials. Financial supports from the University Grants Committee Areas of Excellence Scheme (AoE/P-03/08) and General Research Fund (GRF) (HKU 7060/12P, HKU 7051/13P, HKU 17305614, and HKU 17302414) from the Research Grants Council of Hong Kong Special Administrative Region, China, and The University of Hong Kong are gratefully acknowledged.


  1. 1.
    Yersin H (2004) Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties. Top Curr Chem 241:1–26CrossRefGoogle Scholar
  2. 2.
    Fan C, Yang C (2014) Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chem Soc Rev 43:6439–6469CrossRefGoogle Scholar
  3. 3.
    Hofbeck T, Yersin H (2010) The triplet state of fac-Ir(ppy)3. Inorg Chem 49:9290–9299CrossRefGoogle Scholar
  4. 4.
    Djurovich PI, Thompson ME (2008) Cyclometallated organoiridium complexes as emitters in electrophosphorescent devices. In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials. Wiley, WeinheimGoogle Scholar
  5. 5.
    Chi Y, Chou PT (2010) Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chem Soc Rev 39:638–655CrossRefGoogle Scholar
  6. 6.
    Zhou G, Wong WY, Yang X (2011) New design tactics in OLEDs using functionalized 2-phenypyridine-type cyclometalates of iridium(III) and platinum(II). Chem Asian J 6:1706–1727CrossRefGoogle Scholar
  7. 7.
    Ho CL, Wong WY (2013) Small-molecular blue phosphorescent dyes for organic light-emitting devices. New J Chem 37:1665–1683CrossRefGoogle Scholar
  8. 8.
    Rausch AF, Homeier HHH, Yersin H (2010) Organometallic Pt(II) and Ir(III) triplet emitters for OLED applications and the role of spin-orbit coupling: a study based on high-resolution optical spectroscopy. Top Organomet Chem 29:193–235Google Scholar
  9. 9.
    Yang X, Wang Z, Madakuni S, Li J, Jabbour GE (2008) Efficient blue- and white-emitting electrophosphorescent devices based on platinum(II) [1,3-difluoro-4,6-di(2-pyridinyl)benzene] chloride. Adv Mater 20:2405–2409CrossRefGoogle Scholar
  10. 10.
    Fleetham T, Li G, Wen L, Li J (2014) Efficient “pure” blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth. Adv Mater 26:7116–7121CrossRefGoogle Scholar
  11. 11.
    Liao KY, Hsu CW, Chi Y, Hsu MK, Wu SW, Chang CH, Liu SH, Lee GH, Chou PT, Hu Y, Robertson N (2015) Pt(II) metal complexes tailored with a newly designed spiro-arranged tetradentate ligand; harnessing of charge-transfer phosphorescence and fabrication of sky blue and white OLEDs. Inorg Chem 54:4029–4038CrossRefGoogle Scholar
  12. 12.
    D’Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv Mater 14:1032–1036CrossRefGoogle Scholar
  13. 13.
    Houlding VH, Miskowski VM (1991) The effect of linear chain structure on the electronic structure of Pt(II) diimine complexes. Coord Chem Rev 111:145–152CrossRefGoogle Scholar
  14. 14.
    Bailey JA, Hill MG, Marsh RE, Miskowski VM, Schaefer WP, Gray HB (1995) Electronic spectroscopy of chloro(terpyridine)platinum(II). Inorg Chem 34:4591–4599CrossRefGoogle Scholar
  15. 15.
    Jennette KW, Gill JT, Sadownick JA, Lippard SJ (1976) Metallointercalation reagents. Synthesis, characterization, and structural properties of thiolato(2,2′,2″-terpyridine)platinum(II) complexes. J Am Chem Soc 98:6159–6168CrossRefGoogle Scholar
  16. 16.
    Büchner R, Field JS, Haines RJ, Cunningham CT, McMillin DR (1997) Luminescence properties of salts of the [Pt(trpy)Cl]+ and [Pt(trpy)(MeCN)]2+ chromophores: crystal structure of [Pt(trpy)(MeCN)](SbF6)2. Inorg Chem 36:3952–3956CrossRefGoogle Scholar
  17. 17.
    Adamovich V, Brooks J, Tamayo A, Alexander AM, Djurovich PI, D’Andrade BW, Adachi C, Forrest SR, Thompson ME (2002) High efficiency single dopant white electrophosphorescent light emitting diodes. New J Chem 26:1171–1178CrossRefGoogle Scholar
  18. 18.
    Zhou G, Wang Q, Ho CL, Wong WY, Ma D, Wang L (2009) Duplicating “sunlight” from simple WOLEDs for lighting applications. Chem Commun 3574–3576Google Scholar
  19. 19.
    Murphy L, Brulatti P, Fattori V, Cocchi M, Williams JAG (2012) Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs. Chem Commun 48:5817–5819CrossRefGoogle Scholar
  20. 20.
    Kui SCF, Chow PK, Tong GSM, Lai SL, Cheng G, Kwok CC, Low KH, Ko MY, Che CM (2013) Robust phosphorescent platinum(II) complexes containing tetradentate O^N^C^N ligands: excimeric excited state and application in organic white-light-emitting diodes. Chem Eur J 19:69–73CrossRefGoogle Scholar
  21. 21.
    Cheng G, Chow PK, Kui SCF, Kwok CC, Che CM (2013) High-efficiency polymer light-emitting devices with robust phosphorescent platinum(II) emitters containing tetradentate dianionic O^N^C^N ligands. Adv Mater 25:6765–6770CrossRefGoogle Scholar
  22. 22.
    Fleetham T, Ecton J, Wang Z, Bakken N, Li J (2013) Single-doped white organic light-emitting device with an external quantum efficiency over 20%. Adv Mater 25:2573–2576CrossRefGoogle Scholar
  23. 23.
    Wong KMC, Zhu X, Hung LL, Zhu N, Yam VWW, Kwok HS (2005) A novel class of phosphorescent gold(III) alkynyl-based organic light-emitting devices with tunable colour. Chem Commun 2906–2908Google Scholar
  24. 24.
    Au VKM, Wong KMC, Tsang DPK, Chan MY, Zhu N, Yam VWW (2010) High-efficiency green organic light-emitting devices utilizing phosphorescent bis-cyclometalated alkynylgold(III) complexes. J Am Chem Soc 132:14273–14278CrossRefGoogle Scholar
  25. 25.
    Tang MC, Tsang DPK, Chan MMY, Wong KMC, Yam VWW (2013) Dendritic luminescent gold(III) complexes for highly efficient solution-processable organic light-emitting devices. Angew Chem Int Ed 52:446–449CrossRefGoogle Scholar
  26. 26.
    Cheng G, Chan KT, To WP, Che CM (2014) Color tunable organic light-emitting devices with external quantum efficiency over 20% based on strongly luminescent gold(III) complexes having long-lived emissive excited states. Adv Mater 26:2540–2546CrossRefGoogle Scholar
  27. 27.
    Chow PK, Ma C, To WP, Tong GSM, Lai SL, Kui SCF, Kwok WM, Che CM (2013) Strongly phosphorescent palladium(II) complexes of tetradentate ligands with mixed oxygen, carbon, and nitrogen donor atoms: photophysics, photochemistry, and applications. Angew Chem Int Ed 52:11775–11779CrossRefGoogle Scholar
  28. 28.
    Zhu ZQ, Fleetham T, Turner E, Li J (2015) Harvesting all electrogenerated excitons through metal assisted delayed fluorescent materials. Adv Mater 27:2533–2537CrossRefGoogle Scholar
  29. 29.
    Yersin H, Rausch AF, Czerwieniec R, Hofbeck T, Fischer T (2011) The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord Chem Rev 255:2622–2652CrossRefGoogle Scholar
  30. 30.
    Czerwieniec R, Yu J, Yersin H (2011) Blue-light emission of Cu(I) complexes and singlet harvesting. Inorg Chem 50:8293–8301CrossRefGoogle Scholar
  31. 31.
    Deaton JC, Switalski SC, Kondakov DY, Young RH, Pawlik TD, Giesen DJ, Harkins SB, Miller AJM, Mickenberg SF, Peters JC (2010) E-Type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J Am Chem Soc 132:9499–9508CrossRefGoogle Scholar
  32. 32.
    Hashimoto M, Igawa S, Yashima M, Kawata I, Hoshino M, Osawa M (2011) Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J Am Chem Soc 133:10348–10351CrossRefGoogle Scholar
  33. 33.
    Sakai Y, Sagara Y, Nomura H, Nakamura N, Suzuki Y, Miyazaki H, Adachi C (2015) Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes. Chem Commun 51:3181–3184CrossRefGoogle Scholar
  34. 34.
    Hofbeck T, Monkowius U, Yersin H (2015) Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J Am Chem Soc 137:399–404CrossRefGoogle Scholar
  35. 35.
    Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 77:347–414CrossRefGoogle Scholar
  36. 36.
    Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Porphyrins as light harvesters in the dye-sensitised TiO2 solar. Coord Chem Rev 248:1363–1379CrossRefGoogle Scholar
  37. 37.
    Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure–property relationships to design rules. Angew Chem Int Ed 48:2474–2499CrossRefGoogle Scholar
  38. 38.
    Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798CrossRefGoogle Scholar
  39. 39.
    O’Regan BC, Durrant JR (2009) Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res 42:1799–1808CrossRefGoogle Scholar
  40. 40.
    Imahori H, Umeyama T, Ito S (2009) Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc Chem Res 42:1809–1818CrossRefGoogle Scholar
  41. 41.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  42. 42.
    Li C, Liu M, Pschirer NG, Baumgarten M, Müllen K (2010) Polyphenylene-based materials for organic photovoltaics. Chem Rev 110:6817–6855CrossRefGoogle Scholar
  43. 43.
    Clifford JN, Martínez-Ferrero E, Viterisi A, Palomares E (2011) Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem Soc Rev 40:1635–1646CrossRefGoogle Scholar
  44. 44.
    Yin JF, Velayudham M, Bhattacharya D, Lin HC, Lu KL (2012) Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells – a goal toward a “bright” future. Coord Chem Rev 256:3008–3035CrossRefGoogle Scholar
  45. 45.
    Bignozzi CA, Argazzi R, Boaretto R, Busatto E, Carli S, Ronconi F, Caramori S (2013) The role of transition metal complexes in dye sensitized solar devices. Coord Chem Rev 257:1472–1492CrossRefGoogle Scholar
  46. 46.
    Kapilashrami M, Zhang Y, Liu YS, Hagfeldt A, Guo J (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662–9707CrossRefGoogle Scholar
  47. 47.
    Urbani M, Grätzel M, Nazeeruddin MK, Torres T (2014) Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev 114:12330–12396CrossRefGoogle Scholar
  48. 48.
    Lee CP, Lin RYY, Lin LY, Li CT, Chu TC, Sun SS, Lin JT, Ho KC (2015) Recent progress in organic sensitizers for dye-sensitized solar cells. RSC Adv 5:23810–23825CrossRefGoogle Scholar
  49. 49.
    O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  50. 50.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes. J Am Chem Soc 115:6382–6390CrossRefGoogle Scholar
  51. 51.
    Kuang D, Klein C, Ito S, Moser JE, Humphry-Baker R, Evans N, Duriaux F, Grätzel C, Zakeeruddin SM, Grätzel M (2007) High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte. Adv Mater 19:1133–1137CrossRefGoogle Scholar
  52. 52.
    Haque SA, Handa S, Peter K, Palomares E, Thelakkat M, Durrant JR (2005) Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure–function relationship. Angew Chem Int Ed 44:5740–5744CrossRefGoogle Scholar
  53. 53.
    Jang SR, Lee C, Choi H, Ko JJ, Lee J, Vittal R, Kim KJ (2006) Oligophenylenevinylene-functionalized Ru(II)-bipyridine sensitizers for efficient dye-sensitized nanocrystalline TiO2 solar cells. Chem Mater 18:5604–5608CrossRefGoogle Scholar
  54. 54.
    Johansson PG, Kopecky A, Galoppini E, Meyer GJ (2013) Distance dependent electron transfer at TiO2 interfaces sensitized with phenylene ethynylene bridged RuII−isothiocyanate compounds. J Am Chem Soc 135:8331–8341CrossRefGoogle Scholar
  55. 55.
    Chen CY, Wu SJ, Li JY, Wu CG, Chen JG, Ho KC (2007) A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells. Adv Mater 19:3888–3891CrossRefGoogle Scholar
  56. 56.
    Chen CY, Lu HC, Wu CG, Chen JG, Ho KC (2007) New ruthenium complexes containing oligoalkylthiophene-substituted 1,10-phenanthroline for nanocrystalline dye-sensitized solar cells. Adv Funct Mater 17:29–36CrossRefGoogle Scholar
  57. 57.
    Chen CY, Chen JG, Wu SJ, Li JY, Wu CG, Ho KC (2008) Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells. Angew Chem Int Ed 47:7342–7345CrossRefGoogle Scholar
  58. 58.
    Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphy-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130:10720–10728CrossRefGoogle Scholar
  59. 59.
    Kim JJ, Choi H, Kim C, Kang MS, Kang HS, Ko J (2009) Novel amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno(3,2-b)thiophene-substituted 2,2′-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells. Chem Mater 21:5719–5726CrossRefGoogle Scholar
  60. 60.
    Yin JF, Chen JG, Lu ZZ, Ho KC, Lin HC, Lu KL (2010) Toward optimization of oligothiophene antennas: new ruthenium sensitizers with excellent performance for dye-sensitized solar cells. Chem Mater 22:4392–4399CrossRefGoogle Scholar
  61. 61.
    Mishra A, Pootrakulchote N, Wang M, Moon SJ, Zakeeruddin SM, Grätzel M, Bäuerle P (2011) A thiophene-based anchoring ligand and its heteroleptic Ru(II)-complex for efficient thin-film dye-sensitized solar cells. Adv Funct Mater 21:963–970CrossRefGoogle Scholar
  62. 62.
    García-Iglesias M, Pellejà L, Yun JH, González-Rodríguez D, Nazeeruddin MK, Grätzel M, Clifford JN, Palomares E, Vázquez P, Torres T (2012) Effect of bulky groups in ruthenium heteroleptic sensitizers on dye sensitized solar cell performance. Chem Sci 3:1177–1184CrossRefGoogle Scholar
  63. 63.
    Chang WC, Chen HS, Li TY, Hsu NM, Tingare YS, Li CY, Liu YC, Su C, Li WR (2010) Highly efficient N-heterocyclic carbene/pyridine-based ruthenium sensitizers: complexes for dye-sensitized solar cells. Angew Chem Int Ed 49:8161–8164CrossRefGoogle Scholar
  64. 64.
    Stengel I, Pootrakulchote N, Dykeman RR, Mishra A, Zakeeruddin SM, Dyson PJ, Grätzel M, Bäuerle P (2012) Click-functionalized Ru(II) complexes for dye-sensitized solar cells. Adv Energy Mater 2:1004–1012CrossRefGoogle Scholar
  65. 65.
    Yen YS, Chen YC, Hsu YC, Chou HH, Lin JT, Yin DJ (2011) Heteroleptic ruthenium sensitizers that contain an ancillary bipyridine ligand tethered with hydrocarbon chains for efficient dye-sensitized solar cells. Chem Eur J 17:6781–6788CrossRefGoogle Scholar
  66. 66.
    Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624CrossRefGoogle Scholar
  67. 67.
    Numata Y, Singh SP, Islam A, Lwamura M, Imai A, Nozaki K, Han L (2013) Enhanced light-harvesting capability of a panchromatic Ru(II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cell. Adv Funct Mater 23:1817–1823CrossRefGoogle Scholar
  68. 68.
    Chen BS, Chen K, Hong YH, Liu WH, Li TS, Lai CH, Chou PT, Chi Y, Lee GH (2009) Neutral, panchromatic Ru(II) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chem Commun 5844–5846Google Scholar
  69. 69.
    Chou CC, Wu KL, Chi Y, Hu WP, Yu SJ, Lee GH, Lin CL, Chou PT (2011) Ruthenium(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Angew Chem Int Ed 50:2054–2058CrossRefGoogle Scholar
  70. 70.
    Bomben PG, Robson KCD, Koivisto BD, Berlinguette CP (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450CrossRefGoogle Scholar
  71. 71.
    Robson KCD, Bomben PG, Berlinguette CP (2012) Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles. Dalton Trans 41:7814–7829CrossRefGoogle Scholar
  72. 72.
    Bessho T, Yoneda E, Yum JH, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934CrossRefGoogle Scholar
  73. 73.
    Bomben PG, Gordon TJ, Schott E, Berlinguette CP (2011) A trisheteroleptic cyclometalated RuII sensitizer that enables high power output in a dye-sensitized solar cell. Angew Chem Int Ed 50:10682–10685CrossRefGoogle Scholar
  74. 74.
    Pogozhev DV, Bezdek MJ, Schauer PA, Berlinguette CP (2013) Ruthenium(II) complexes bearing a naphthalimide fragment: a modular dye platform for the dye-sensitized solar cell. Inorg Chem 52:3001–3006CrossRefGoogle Scholar
  75. 75.
    Ji Z, Natu G, Wu Y (2013) Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells. ACS Appl Mater Interfaces 5:8641–8648CrossRefGoogle Scholar
  76. 76.
    Wadman SH, Kroon JM, Bakker K, Lutz M, Spek AL, van Klink GPM, van Koten G (2007) Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chem Commun 1907–1909Google Scholar
  77. 77.
    Robson KCD, Koivisto BD, Yella A, Sporinova B, Nazeeruddin MK, Baumgartner T, Grätzel M, Berlinguette CL (2011) Design and development of functionalized cyclometalated ruthenium chromophores for light-harvesting applications. Inorg Chem 50:5494–5508CrossRefGoogle Scholar
  78. 78.
    Nazeeruddin MK, Humphry-Baker R, Officer DL, Campbell WM, Burrell AK, Grätzel M (2004) Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20:6514–6517CrossRefGoogle Scholar
  79. 79.
    Ishida M, Park SW, Hwang D, Koo YB, Sessler JL, Kim DY, Kim D (2011) Donor-substituted β-functionalized porphyrin dyes on hierarchically structured mesoporous TiO2 spheres. Highly efficient dye-sensitized solar cells. J Phys Chem C 115:19343–19354CrossRefGoogle Scholar
  80. 80.
    Davis NKS, Pawlicki M, Anderson HL (2008) Expanding the porphyrin π-system by fusion with anthracene. Org Lett 10:3945–3947CrossRefGoogle Scholar
  81. 81.
    Mozer AJ, Griffith MJ, Tsekouras G, Wagner P, Wallace GG, Mori S, Sunahara K, Miyashita M, Earles JC, Gordon KC, Du L, Katoh R, Furube A, Officer DL (2009) Zn–Zn porphyrin dimer-sensitized solar cells: toward 3-D light harvesting. J Am Chem Soc 131:15621–15623CrossRefGoogle Scholar
  82. 82.
    Mai CL, Huang WK, Lu HP, Lee CW, Chiu CL, Liang YR, Diau EWG, Yeh CY (2010) Synthesis and characterization of diporphyrin sensitizers for dye-sensitized solar cells. Chem Commun 46:809–811CrossRefGoogle Scholar
  83. 83.
    Davis KS, Thompson AL, Anderson HL (2010) Bis-anthracene fused porphyrins: synthesis, crystal structure, and near-IR absorption. Org Lett 12:2124–2127CrossRefGoogle Scholar
  84. 84.
    Davis NKS, Thompson AL, Anderson HL (2011) A porphyrin fused to four anthracenes. J Am Chem Soc 133:30–31CrossRefGoogle Scholar
  85. 85.
    Jiao C, Zu N, Huang KW, Wang P, Wu J (2011) Perylene anhydride fused porphyrins as near-infrared sensitizers for dye-sensitized solar cells. Org Lett 13:3652–3655CrossRefGoogle Scholar
  86. 86.
    Liu Y, Lin H, Dy JT, Tamaki K, Nakazaki J, Nakayama D, Uchida S, Kubo T, Segawa H (2011) N-Fused carbazole–zinc porphyrin–free-base porphyrin triad for efficient near-IR dye-sensitized solar cells. Chem Commun 47:4010–4012CrossRefGoogle Scholar
  87. 87.
    Lewtak JP, Gryko DT (2012) Synthesis of π-extended porphyrins via intramolecular oxidative coupling. Chem Commun 48:10069–10086CrossRefGoogle Scholar
  88. 88.
    Yella A, Lee HW, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634CrossRefGoogle Scholar
  89. 89.
    Nusbaumer H, Moser JE, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2001) CoII(dbbip)2 2+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J Phys Chem B 105:10461–10464CrossRefGoogle Scholar
  90. 90.
    Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA (2002) Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc 124:11215–11222CrossRefGoogle Scholar
  91. 91.
    Liu Y, Jennings JR, Huang Y, Wang Q, Zakeeruddin SM, Grätzel M (2011) Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study. J Phys Chem C 115:18847–18855CrossRefGoogle Scholar
  92. 92.
    Hamann TW (2012) The end of iodide? Cobalt complex redox shuttles in DSSCs. Dalton Trans 41:3111–3115CrossRefGoogle Scholar
  93. 93.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247CrossRefGoogle Scholar
  94. 94.
    Yella A, Mai CL, Zakeeruddin SM, Chang SN, Hsish CH, Yeh CY, Grätzel M (2014) Molecular engineering of push–pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. Angew Chem Int Ed 53:2973–2977CrossRefGoogle Scholar
  95. 95.
    Wang Y, Chen B, Wu W, Li X, Zhu W, Tian H, Xie Y (2014) Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization. Angew Chem Int Ed 53:10779–10783CrossRefGoogle Scholar
  96. 96.
    Balzani V, Moggi L, Manfrin MF, Bolletta F, Gleria M (1975) Solar energy conversion by water photodissociation. Science 189:852–856CrossRefGoogle Scholar
  97. 97.
    Bolton JR (1978) Solar fuels. Science 202:705–710CrossRefGoogle Scholar
  98. 98.
    Grätzel M (1981) Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc Chem Res 14:376–384CrossRefGoogle Scholar
  99. 99.
    Lewis NS, Nocera D (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735CrossRefGoogle Scholar
  100. 100.
    Meyer TJ, Huynh MHV, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed 46:5284–5304CrossRefGoogle Scholar
  101. 101.
    Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AOT, Iha NYM, Templeton JL, Meyer TJ (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42:1954–1965CrossRefGoogle Scholar
  102. 102.
    Puntoriero F, Sartorel A, Orlandi M, La Ganga G, Serroni S, Bonchio M, Scandola F, Campagna S (2011) Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coord Chem Rev 255:2594–2601CrossRefGoogle Scholar
  103. 103.
    Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776CrossRefGoogle Scholar
  104. 104.
    Concepcion JJ, House RL, Papanikolas JM, Meyer TJ (2012) Chemical approaches to artificial photosynthesis. Proc Natl Acad Sci U S A 109:15560–15564CrossRefGoogle Scholar
  105. 105.
    Cox N, Pantazis DA, Neese F, Lubitz W (2013) Biological water oxidation. Acc Chem Res 46:1588–1596CrossRefGoogle Scholar
  106. 106.
    Han Z, Eisenberg R (2014) Fuel from water: the photochemical generation of hydrogen from water. Acc Chem Res 47:2537–2544CrossRefGoogle Scholar
  107. 107.
    Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol 11:457–475CrossRefGoogle Scholar
  108. 108.
    Warren JJ, Tronic TA, Mayer JM (2010) Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 110:6961–7001CrossRefGoogle Scholar
  109. 109.
    Mayer JM (2011) Understanding hydrogen atom transfer: from bond strengths to Marcus theory. Acc Chem Res 44:36–46CrossRefGoogle Scholar
  110. 110.
    Costentin C, Robert M, Saveant JM (2010) Concerted proton-electron transfers: electrochemical and related approaches. Acc Chem Res 43:1019–1029CrossRefGoogle Scholar
  111. 111.
    Saveant JM (2012) Electrochemical approach to proton-coupled electron transfers: recent advances. Energy Environ Sci 5:7718–7731CrossRefGoogle Scholar
  112. 112.
    Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. Angew Chem Int Ed 50:7238–7266CrossRefGoogle Scholar
  113. 113.
    Tran PD, Artero V, Fontecave M (2010) Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy Environ Sci 3:727–747CrossRefGoogle Scholar
  114. 114.
    Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Artero V (2011) Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Photochem Photobiol 87:946–964CrossRefGoogle Scholar
  115. 115.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  116. 116.
    McKone JR, Lewis NS, Gray HB (2014) Will solar-driven water-splitting devices see the light of day? Chem Mater 26:407–414CrossRefGoogle Scholar
  117. 117.
    Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis NS, Weber AZ (2012) Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ Sci 5:9922–9935CrossRefGoogle Scholar
  118. 118.
    Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801CrossRefGoogle Scholar
  119. 119.
    Mi Q, Zhanaidarova A, Brunschwig BS, Gray HB, Lewis NS (2012) A quantitative assessment of the competition between water and anion oxidation at WO3 photoanodes in acidic aqueous electrolytes. Energy Environ Sci 5:5694–5700CrossRefGoogle Scholar
  120. 120.
    Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134:2186–2192CrossRefGoogle Scholar
  121. 121.
    Park Y, McDonald KJ, Choi KS (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337CrossRefGoogle Scholar
  122. 122.
    Heller A (1986) Optically transparent metallic catalysts on semiconductors. Pure Appl Chem 58:1189–1192CrossRefGoogle Scholar
  123. 123.
    McKone JR, Pieterick AP, Gray HB, Lewis NS (2013) Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J Am Chem Soc 135:223–231CrossRefGoogle Scholar
  124. 124.
    Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRefGoogle Scholar
  125. 125.
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270CrossRefGoogle Scholar
  126. 126.
    Shao Z, Halle SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRefGoogle Scholar
  127. 127.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385CrossRefGoogle Scholar
  128. 128.
    Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075CrossRefGoogle Scholar
  129. 129.
    Geletii YV, Botar B, Kögerler P, Hillesheim DA, Musaev DG, Hill CL (2008) An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew Chem Int Ed 47:3896–3899CrossRefGoogle Scholar
  130. 130.
    Sartorel A, Carraro M, Scorrano G, De Zorzi R, Geremia S, McDaniel ND, Bernhard S, Bonchio M (2008) Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8−: a totally inorganic oxygen-evolving catalyst. J Am Chem Soc 130:5006–5007CrossRefGoogle Scholar
  131. 131.
    Dincă M, Surendranath Y, Nocera DG (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci U S A 107:10337–10341CrossRefGoogle Scholar
  132. 132.
    Yin Q, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328:342–345CrossRefGoogle Scholar
  133. 133.
    Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Walter MG, McKone JR, Brunschwig BS, Atwater HA, Lewis NS (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J Am Chem Soc 133:1216–1219CrossRefGoogle Scholar
  134. 134.
    Kong D, Wang H, Cha JJ, Pasta M, Koski KJ, Yao J, Cui Y (2013) Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett 12:1341–1347CrossRefGoogle Scholar
  135. 135.
    Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261CrossRefGoogle Scholar
  136. 136.
    Mullins CS, Pecoraro VL (2007) Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coord Chem Rev 252:416–443CrossRefGoogle Scholar
  137. 137.
    Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4–cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943CrossRefGoogle Scholar
  138. 138.
    Kanady JS, Tsui EY, Day MW, Agapie T (2011) A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333:733–736CrossRefGoogle Scholar
  139. 139.
    Tsui EY, Agapie T (2013) Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals. Proc Natl Acad Sci U S A 110:10084–10088CrossRefGoogle Scholar
  140. 140.
    Kanady JS, Lin PH, Carsch KM, Nielsen RJ, Takase MK, Goddard WA III, Agapie T (2014) Toward models for the full oxygen-evolving complex of photosystem II by ligand coordination to lower the symmetry of the Mn3CaO4 cubane: demonstration that electronic effects facilitate binding of a fifth metal. J Am Chem Soc 136:14373–14376CrossRefGoogle Scholar
  141. 141.
    Zhang C, Chen C, Dong H, Shen JR, Dau H, Zhao J (2015) A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348:690–693CrossRefGoogle Scholar
  142. 142.
    Youngblood WJ, Lee SHA, Kobayashi Y, Hernandez-Pagan EA, Hoertz PG, Moore TA, Moore AL, Gust D, Mallouk TE (2009) Photoassisted overall water splitting in visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927CrossRefGoogle Scholar
  143. 143.
    Brimblecombw R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894CrossRefGoogle Scholar
  144. 144.
    Al-Oweini R, Sarotrel A, Bassil BS, Natali M, Berardi S, Scandola F, Kortz U, Bonchio M (2014) Photocatalytic water oxidation by a mixed-valent MnIII 3MnIVO3 manganese oxo core that mimics the natural oxygen-evolving center. Angew Chem Int Ed 53:11182–11185CrossRefGoogle Scholar
  145. 145.
    Santoni MP, La Ganga G, Nardo VM, Natali M, Puntoriero F, Scandola F, Campagna S (2014) The use of a vanadium species as a catalyst in photoinduced water oxidation. J Am Chem Soc 136:8189–8192CrossRefGoogle Scholar
  146. 146.
    Tanaka S, Annaka M, Sakai K (2012) Visible light-induced water oxidation catalyzed by molybdenum-based polyoxometalates with mono- and dicobalt(III) cores as oxygen-evolving centers. Chem Commun 48:1653–1655CrossRefGoogle Scholar
  147. 147.
    Gersten SW, Sammuels GJ, Meyer TJ (1982) Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J Am Chem Soc 104:4029–4030CrossRefGoogle Scholar
  148. 148.
    Liu F, Concepcion JJ, Hurss JW, Cardolaccia T, Templeton JL, Meyer TJ (2008) Mechanism of water oxidation from the blue dimer to photosystem II. Inorg Chem 47:1727–1752CrossRefGoogle Scholar
  149. 149.
    Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) Mediator-assisted water oxidation by the ruthenium “blue dimer” cis,cis-[(bpy)2(H2O)RuORu(OH2)(bpy)2]4+. Proc Natl Acad Sci U S A 105:17632–17635Google Scholar
  150. 150.
    Yang X, Baik MH (2006) cis,cis-[(bpy)2RuVO]2O4+ Catalyzes water oxidation formally via in situ generation of radicaloid RuIV–O•. J Am Chem Soc 128:7476–7485Google Scholar
  151. 151.
    Masaoka S, Sakai K (2009) Clear evidence showing the robustness of a highly active oxygen-evolving mononuclear ruthenium complex with an aqua ligand. Chem Lett 38:182–183CrossRefGoogle Scholar
  152. 152.
    Nakazono T, Parent AR, Sakai K (2013) Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem Commun 49:6325–6327CrossRefGoogle Scholar
  153. 153.
    Li L, Duan L, Xu Y, Gorlov M, Hagfeldt A, Sun L (2010) A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem Commun 46:7307–7309CrossRefGoogle Scholar
  154. 154.
    Duan L, Araujo CM, Ahlquist MSG, Sun L (2012) Highly efficient and robust molecular ruthenium catalysts for water oxidation. Proc Natl Acad Sci U S A 109:15584–15588CrossRefGoogle Scholar
  155. 155.
    Li F, Jiang Y, Zhang B, Huang F, Gao Y, Sun L (2012) Towards a solar fuel device: light-driven water oxidation catalyzed by a supramolecular assembly. Angew Chem Int Ed 51:2417–2420CrossRefGoogle Scholar
  156. 156.
    Ashford DL, Sherman BD, Binstead RA, Templeton JL, Meyer TJ (2015) Electro-assembly of a chromophore-catalyst bilayer for water oxidation and photocatalytic water splitting. Angew Chem Int Ed 54:4778–4781CrossRefGoogle Scholar
  157. 157.
    Li H, Li F, Zhang B, Zhou X, Yu F, Sun L (2015) Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency. J Am Chem Soc 137:4332–4335CrossRefGoogle Scholar
  158. 158.
    McDaniel ND, Coughlin FJ, Tinker LL, Bernhard S (2008) Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J Am Chem Soc 130:210–217CrossRefGoogle Scholar
  159. 159.
    Hull JF, Balcells D, Blakemore JD, Incarvito CD, Eisenstein O, Brudvig GW, Crabtree RH (2009) Highly active and robust Cp* iridium complexes for catalytic water oxidation. J Am Chem Soc 131:8730–8731CrossRefGoogle Scholar
  160. 160.
    Blakemore JD, Schley ND, Balcells D, Hull JF, Olack GW, Incarvito CD, Eisenstein O, Brudvig GW, Crabtree RH (2010) Half-sandwich iridium complexes for homogeneous water-oxidation catalysis. J Am Chem Soc 132:16017–16029CrossRefGoogle Scholar
  161. 161.
    Schley ND, Blakemore JD, Subbaiyan NK, Incarvito CD, D’Souza F, Crabtree RH, Brudvig GW (2011) Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J Am Chem Soc 133:10473–10481CrossRefGoogle Scholar
  162. 162.
    Wang C, Wang JL, Lin W (2012) Elucidating molecular iridium water oxidation catalysts using metal−organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J Am Chem Soc 134:19895–19908CrossRefGoogle Scholar
  163. 163.
    Lalrempuia R, McHaniel ND, Müller-Bunz H, Bernhard S, Albrecht M (2010) Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. Angew Chem Int Ed 49:9765–9768CrossRefGoogle Scholar
  164. 164.
    Moore GF, Blakemore JD, Milot RL, Hull JF, Song H, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW (2011) A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst. Energy Environ Sci 4:2389–2392CrossRefGoogle Scholar
  165. 165.
    Lewis EA, Tolman WB (2004) Reactivity of dioxygen-copper systems. Chem Rev 104:1047–1076CrossRefGoogle Scholar
  166. 166.
    Iton S, Fukuzuki S (2007) Monooxygenase activity of type 3 copper proteins. Acc Chem Res 40:592–600CrossRefGoogle Scholar
  167. 167.
    Que L Jr, Tolman WB (2008) Biologically inspired oxidation catalysis. Nature 455:333–340CrossRefGoogle Scholar
  168. 168.
    Gagnon N, Tolman WB (2015) [CuO]+ and [CuOH]2+ complexes: intermediates in oxidation catalysis? Acc Chem Res 48:2126–2131CrossRefGoogle Scholar
  169. 169.
    Halfen JA, Mahapatra S, Wilkinson EC, Kaderli SM, Young VG Jr, Que L Jr, Zuberbühler AD, Tolman WB (1996) Reversible cleavage and formation of the dioxygen O−O bond within a dicopper complex. Science 271:1397–1400CrossRefGoogle Scholar
  170. 170.
    Donoghue PJ, Tehranchi J, Cramer CJ, Sarangi R, Solomon EI, Tolman WB (2011) Rapid C−H bond activation by a monocopper(III)−hydroxide complex. J Am Chem Soc 133:17602–17605CrossRefGoogle Scholar
  171. 171.
    Dhar D, Tolman WB (2015) Hydrogen atom abstraction from hydrocarbons by a copper(III)−hydroxide complex. J Am Chem Soc 137:1322–1329CrossRefGoogle Scholar
  172. 172.
    Conde A, Vilella L, Balcells D, Díaz-Requejo MM, Lledós A, Pérez PJ (2013) Introducing copper as catalyst for oxidative alkane dehydrogenation. J Am Chem Soc 135:3887–3896CrossRefGoogle Scholar
  173. 173.
    Dietl N, van der Linde C, Schlangen M, Beyer MK, Schqarz H (2011) Diatomic [CuO]+ and its role in the spin-selective hydrogen- and oxygen-atom transfers in the thermal activation of methane. Angew Chem Int Ed 50:4966–4969CrossRefGoogle Scholar
  174. 174.
    Connolly P, Espenson JH (1986) Cobalt-catalyzed evolution of molecular hydrogen. Inorg Chem 25:2684–2688CrossRefGoogle Scholar
  175. 175.
    Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. Acc Chem Res 42:1995–2004CrossRefGoogle Scholar
  176. 176.
    Hu X, Cossairt BM, Brunschwig BS, Lewis NS, Peters JC (2005) Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes. Chem Commun 4723–4725Google Scholar
  177. 177.
    Berben LA, Peters JC (2010) Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces. Chem Commun 46:398–400CrossRefGoogle Scholar
  178. 178.
    Hu X, Brunschwig BS, Peters JC (2007) Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. J Am Chem Soc 129:8988–8998CrossRefGoogle Scholar
  179. 179.
    Dempsey JL, Winkler JR, Gray HB (2010) Mechanism of H2 evolution from a photogenerated hydridocobaloxime. J Am Chem Soc 132:16774–16776CrossRefGoogle Scholar
  180. 180.
    Stubbert BD, Peters JC, Gray HB (2011) Rapid water reduction to H2 catalyzed by a cobalt bis(iminopyridine) complex. J Am Chem Soc 133:18070–18073CrossRefGoogle Scholar
  181. 181.
    Valdez CN, Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2012) Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proc Natl Acad Sci U S A 109:15589–15593CrossRefGoogle Scholar
  182. 182.
    Hawecker J, Lehn JM, Ziessel R (1983) Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes. Nouv J Chim 7:271–277Google Scholar
  183. 183.
    Fihri A, Artero V, Razavet M, Baffert C, Leibl W, Fontecave M (2008) Cobaloxime-based photocatalytic devices for hydrogen production. Angew Chem Int Ed 47:564–567CrossRefGoogle Scholar
  184. 184.
    McNamara WR, Han Z, Alperin PJ, Brennessel WW, Holland PL, Eisenberg R (2011) A cobalt-dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. J Am Chem Soc 133:15368–15371CrossRefGoogle Scholar
  185. 185.
    McNamara WR, Han Z, Yin CJ, Brennessel WW, Holland PL, Eisenberg R (2012) Cobalt-dithiolene complexes for the photocatalytic and electrocatalytic reduction of protons in aqueous solutions. Proc Natl Acad Sci U S A 109:15594–15599CrossRefGoogle Scholar
  186. 186.
    Sakai K, Ozawa H (2007) Homogeneous catalysis of platinum(II) complexes in photochemical hydrogen production from water. Coord Chem Rev 251:2753–2766CrossRefGoogle Scholar
  187. 187.
    Ozawa H, Haga M, Sakai K (2006) A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen. J Am Chem Soc 128:4926–4927CrossRefGoogle Scholar
  188. 188.
    Kobayashi M, Masaoka S, Sakai K (2012) Photoinduced hydrogen evolution from water by a simple platinum(II) terpyridine derivative: a Z-scheme photosynthesis. Angew Chem Int Ed 51:7431–7434CrossRefGoogle Scholar
  189. 189.
    Du P, Schneider J, Jarosz P, Eisenberg R (2006) Photocatalytic generation of hydrogen from water using a platinum(II) terpyridyl acetylide chromophore. J Am Chem Soc 128:7726–7727CrossRefGoogle Scholar
  190. 190.
    Du P, Knowles K, Eisenberg R (2008) A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J Am Chem Soc 130:12576–12577CrossRefGoogle Scholar
  191. 191.
    Du P, Schneiderr J, Luo G, Brennessel WW, Eisenberg R (2009) Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg Chem 48:4952–4962CrossRefGoogle Scholar
  192. 192.
    Wang X, Goeb S, Ji Z, Pogulaichenko NA, Castellano FN (2011) Homogeneous photocatalytic hydrogen production using π-conjugated platinum(II) arylacetylide sensitizers. Inorg Chem 50:705–707CrossRefGoogle Scholar
  193. 193.
    Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA Jr, Malliaras GG, Bernhard S (2005) Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem Mater 17:5712–5719CrossRefGoogle Scholar
  194. 194.
    Goldsmith JI, Hudson WR, Lowry MS, Anderson TH, Bernhard S (2005) Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J Am Chem Soc 127:7502–7510CrossRefGoogle Scholar
  195. 195.
    Whang DR, Sakai K, Park SY (2013) Highly efficient photocatalytic water reduction with robust iridium(III) photosensitizers containing arylsilyl substituents. Angew Chem Int Ed 52:11612–11615CrossRefGoogle Scholar
  196. 196.
    Wilson AD, Newell RH, McNevin MJ, Muckerman JT, DuBois MR, DuBios DL (2006) Hydrogen oxidation and production using nickel-based molecular catalysts with positioned proton relays. J Am Chem Soc 128:358–366CrossRefGoogle Scholar
  197. 197.
    Wilson AD, Shoemaker RK, Miedaner A, Muckerman JT, DuBois DL, DuBois MR (2007) Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Proc Natl Acad Sci U S A 104:6951–6956CrossRefGoogle Scholar
  198. 198.
    Kilgore UJ, Roberts JAS, Pool DH, Appel AM, Stewart MP, DuBois MR, Dougherty WG, Kassel WS, Bullock RM, DuBois DL (2011) [Ni(PPh 2NC6H4X 2)2]2+ complexes as electrocatalysts for H2 production: effect of substituents, acids, and water on catalytic rates. J Am Chem Soc 133:5861–5872CrossRefGoogle Scholar
  199. 199.
    Helm ML, Stewart MP, Bullock RM, DuBois MR, DuBois DL (2011) A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333:863–866CrossRefGoogle Scholar
  200. 200.
    Matsuika S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S (1993) Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of CO2. J Am Chem Soc 115:601–609CrossRefGoogle Scholar
  201. 201.
    Ogata T, Yanagida S, Brunschwig BS, Fujita E (1995) Mechanistic and kinetic studies of cobalt macrocycles in a photochemical CO2 reduction system: evidence of Co-CO2 adducts as intermediates. J Am Chem Soc 117:6708–6716CrossRefGoogle Scholar
  202. 202.
    Fujita E (1999) Photochemical carbon dioxide reduction with metal complexes. Coord Chem Rev 185–186:373–384CrossRefGoogle Scholar
  203. 203.
    Simón-Manso E, Kubiak CP (2005) Dinuclear nickel complexes as catalysts for electrochemical reduction of carbon dioxide. Organometallics 24:96–102CrossRefGoogle Scholar
  204. 204.
    Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994CrossRefGoogle Scholar
  205. 205.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38:89–99CrossRefGoogle Scholar
  206. 206.
    DuBois MR, DuBois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42:1974–1982CrossRefGoogle Scholar
  207. 207.
    Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254:346–354CrossRefGoogle Scholar
  208. 208.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRefGoogle Scholar
  209. 209.
    Jeoung JH, Dobbek H (2007) Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 318:1461–1464CrossRefGoogle Scholar
  210. 210.
    Meshitsuka S, Ichikawa M, Tamaru K (1974) Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide. J Chem Soc Chem Commun 158–159Google Scholar
  211. 211.
    Fisher BJ, Eisenberg R (1980) Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. J Am Chem Soc 102:7361–7363CrossRefGoogle Scholar
  212. 212.
    Beley M, Collin JP, Ruppert R, Sauvage JP (1986) Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J Am Chem Soc 108:7461–7467CrossRefGoogle Scholar
  213. 213.
    Bhugun I, Lexa D, Savéant JM (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: synergistic effect of weak Broensted acids. J Am Chem Soc 118:1769–1776CrossRefGoogle Scholar
  214. 214.
    Hawecker J, Lehn JM, Ziessel R (1984) Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine). J Chem Soc Chem Commun 328–330Google Scholar
  215. 215.
    Ishida H, Tanaka K, Tanaka T (1987) Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO. Organometallics 6:181–186CrossRefGoogle Scholar
  216. 216.
    Bolinger CM, Story N, Sullivan BP, Meyer TJ (1988) Electrocatalytic reduction of carbon dioxide by 2,2′-bipyridine complexes of rhodium and iridium. Inorg Chem 27:4582–4587CrossRefGoogle Scholar
  217. 217.
    Slater S, Wagenknecht JH (1984) Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl. J Am Chem Soc 106:5367–5368CrossRefGoogle Scholar
  218. 218.
    Fujita E, Szalda DJ, Creutz C, Sutin N (1988) Carbon dioxide activation: thermodynamics of carbon dioxide binding and the involvement of two cobalt centers in the reduction of carbon dioxide by a cobalt(I) macrocycle. J Am Chem Soc 110:4870–4871CrossRefGoogle Scholar
  219. 219.
    DuBois DL, Miedaner A, Haltiwanger RC (1991) Electrochemical reduction of carbon dioxide catalyzed by [Pd(triphosphine)(solvent)](BF4)2 complexes: synthetic and mechanistic studies. J Am Chem Soc 113:8753–8764CrossRefGoogle Scholar
  220. 220.
    DeLaet DL, Del Rosario R, Fanwick PE, Kubiak CP (1987) Carbon dioxide chemistry and electrochemistry of a binuclear cradle complex of nickel(0), Ni2(μ-CNMe)(CNMe)2(PPh2CH2PPh2)2. J Am Chem Soc 109:754–758CrossRefGoogle Scholar
  221. 221.
    Morgenstern DA, Ferrence GM, Washington J, Henderson JI, Rosenhein L, Heise JD, Fanwick PE, Kubiak CP (1996) A class of halide-supported trinuclear nickel clusters [Ni3(μ 3-L)(μ 3-X)(μ 2-dppm)3]n+ (L = I, Br, CO, CNR; X = I, Br; n = 0, 1; dppm = Ph2PCH2PPh2): novel physical properties and the Fermi resonance of symmetric μ 3-η 1 bound isocyanide ligands. J Am Chem Soc 118:2198–2207CrossRefGoogle Scholar
  222. 222.
    Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106:4772–4778CrossRefGoogle Scholar
  223. 223.
    Schneider J, Jia H, Kobiro K, Cabelli DE, Muckerman JT, Fujita E (2012) Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy Environ Sci 5:9502–9510CrossRefGoogle Scholar
  224. 224.
    Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc 130:2023–2031CrossRefGoogle Scholar
  225. 225.
    Benson EE, Kubiak CP (2012) Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(bpy)(CO)3Cl. Chem Commun 48:7374–7376CrossRefGoogle Scholar
  226. 226.
    Smieja JM, Benson EE, Kumar B, Grice KA, Seu CS, Miller AJM, Mayer JM, Kubiak CP (2012) Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO. Proc Natl Acad Sci U S A 109:15646–15650CrossRefGoogle Scholar
  227. 227.
    Benson EE, Sampson MD, Grice KA, Smieja JM, Froehlich JD, Friebel D, Keith JA, Carter EA, Nilsson A, Kubiak CP (2013) The electronic states of rhenium bipyridyl electrocatalysts for CO2 reduction as revealed by X-ray absorption spectroscopy and computational quantum chemistry. Angew Chem Int Ed 52:4841–4844CrossRefGoogle Scholar
  228. 228.
    Keith JA, Grice KA, Kubiak CP, Carter EA (2013) Elucidation of the selectivity of proton-dependent electrocatalytic CO2 reduction by fac-Re(bpy)(CO)3Cl. J Am Chem Soc 135:15823–15829CrossRefGoogle Scholar
  229. 229.
    Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) [Mn(bipyridyl)(CO)3Br]: an abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew Chem Int Ed 50:9903–9906CrossRefGoogle Scholar
  230. 230.
    Sampson MD, Nguyen AD, Grice KA, Moore CE, Rheingold AL, Kubiak CP (2014) Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: eliminating dimerization and altering catalysis. J Am Chem Soc 136:5460–5471CrossRefGoogle Scholar
  231. 231.
    Tamaki Y, Morimoto T, Koike K, Ishitani O (2012) Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proc Natl Acad Sci 109:15673–15678CrossRefGoogle Scholar
  232. 232.
    Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599CrossRefGoogle Scholar
  233. 233.
    Tanaka R, Yamashita M, Nozaki K (2009) Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J Am Chem Soc 131:14168–14169CrossRefGoogle Scholar
  234. 234.
    Hull JF, Himeda Y, Wang WH, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E (2012) Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 4:383–388CrossRefGoogle Scholar
  235. 235.
    Wang WH, Hull JF, Muckerman JT, Fujita E, Himeda Y (2012) Second-coordination-sphere and electronic effects enhance iridium(III)-catalyzed homogeneous hydrogenation of carbon dioxide in water near ambient temperature and pressure. Energy Environ Sci 5:7923–7926CrossRefGoogle Scholar
  236. 236.
    Yam VWW, Tang RPL, Wong KMC, Cheung KK (2001) Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes. Organometallics 20:4476–4482CrossRefGoogle Scholar
  237. 237.
    Yang QZ, Wu LZ, Wu ZX, Zhang LP, Tung CH (2002) Long-lived emission from platinum(II) terpyridyl acetylide complexes. Inorg Chem 41:5653–5655CrossRefGoogle Scholar
  238. 238.
    Moore GE (1975) Progress in digital integrated electronics. In: 1975 international electron devices meeting IEEE text speech. pp 11–13Google Scholar
  239. 239.
    Orgiu E, Samorì P (2014) 25th Anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv Mater 26:1827–1845CrossRefGoogle Scholar
  240. 240.
    Hartley GS (1937) The cis-form of azobenzene. Nature 140:281CrossRefGoogle Scholar
  241. 241.
    Griffiths J (1972) II. Photochemistry of azobenzene and its derivatives. Chem Soc Rev 1:481–493CrossRefGoogle Scholar
  242. 242.
    Nishihara H (2005) Combination of redox- and photochemistry of azo-conjugated metal complexes. Coord Chem Rev 249:1468–1475CrossRefGoogle Scholar
  243. 243.
    Bandara HMD, Burdette SC (2012) Photoisomerization in different classes of azobenzene. Chem Soc Rev 41:1809–1825CrossRefGoogle Scholar
  244. 244.
    Fihey A, Perrier A, Browne WR, Jacquemin D (2015) Multiphotochromic molecular systems. Chem Soc Rev 44:3719–3759CrossRefGoogle Scholar
  245. 245.
    Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777–1788CrossRefGoogle Scholar
  246. 246.
    Hasegawa Y, Nakagawa T, Kawai T (2010) Recent progress of luminescent metal complexes with photochromic units. Coord Chem Rev 254:2643–2651CrossRefGoogle Scholar
  247. 247.
    Ko CC, Yam VWW (2010) Transition metal complexes with photochromic ligands – photosensitization and photoswitchable properties. J Mater Chem 20:2063–2070CrossRefGoogle Scholar
  248. 248.
    Dugave C, Demange L (2003) Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 103:2475–2532CrossRefGoogle Scholar
  249. 249.
    Polo AS, Itokazu MK, Frin KM, Patrocínio AOT, Iha NYM (2006) Light driven trans-to-cis isomerization of stilbene-like ligands in fac-[Re(CO)3(NN)(trans-L)]+ and luminescence of their photoproducts. Coord Chem Rev 250:1669–1680CrossRefGoogle Scholar
  250. 250.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685–1716CrossRefGoogle Scholar
  251. 251.
    Myles AJ, Branda NR (2002) 1,2-Dithienylethene photochromes and non-destructive erasable memory. Adv Funct Mater 12:167–173CrossRefGoogle Scholar
  252. 252.
    Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114:12174–12277CrossRefGoogle Scholar
  253. 253.
    Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741–1754CrossRefGoogle Scholar
  254. 254.
    Guerchais V, Ordronneau L, Le Bozec H (2010) Recent developments in the field of metal complexes containing photochromic ligands: modulation of linear and nonlinear optical properties. Coord Chem Rev 254:2533–2545CrossRefGoogle Scholar
  255. 255.
    Zhang J, Zou Q, Tian H (2013) Photochromic materials: more than meets the eye. Adv Mater 25:378–399CrossRefGoogle Scholar
  256. 256.
    Yokoyama Y (2000) Fulgides for memories and switches. Chem Rev 100:1717–1740CrossRefGoogle Scholar
  257. 257.
    Whitten DG, Zamegar PP (1971) Photochemistry of ruthenium complexes. Ligand isomerization via orbitally different excited states. J Am Chem Soc 93:3776–3777CrossRefGoogle Scholar
  258. 258.
    Zamegar PP, Bock CR, Whitten DG (1973) Photoreactions of transition metal complexes. Ligand reactivity as a probe for excited-state characterization. J Am Chem Soc 95:4367–4372CrossRefGoogle Scholar
  259. 259.
    Wrighton M, Morse DL (1974) Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes. J Am Chem Soc 96:998–1003CrossRefGoogle Scholar
  260. 260.
    Wrighton MS, Morse DL, Pdungsap L (1975) Intraligand lowest excited states in tricarbonylhalobis(styrylpyridine)rhenium(I) complexes. J Am Chem Soc 97:2073–2079CrossRefGoogle Scholar
  261. 261.
    Yam VWW, Lau VCY, Cheung KK (1995) Synthesis, photophysics and photochemistry of novel luminescent rhenium(I) photoswitchable materials. J Chem Soc Chem Commun 259–261Google Scholar
  262. 262.
    Yam VWW, Ko CC, Wu LX, Wong KMC, Cheung KK (2000) Syntheses, crystal structure, and photochromic properties of rhenium(I) complexes containing the spironaphthoxazine moiety. Organometallics 19:1820–1822CrossRefGoogle Scholar
  263. 263.
    Ko CC, Wu LX, Wong KMC, Zhu N, Yam VWW (2004) Synthesis, characterization and photochromic studies of spirooxazine-containing 2,2′-bipyridine ligands and their rhenium(I) tricarbonyl complexes. Chem Eur J 10:766–776CrossRefGoogle Scholar
  264. 264.
    Yam VWW, Ko CC, Zhu N (2004) Photochromic and luminescence switching properties of a versatile diarylethene-containing 1,10-phenanthroline ligand and its rhenium(I) complex. J Am Chem Soc 126:12734–12735CrossRefGoogle Scholar
  265. 265.
    Jukes RTF, Adamo V, Hartl F, Belser P, De Cola L (2004) Photochromic dithienylethene derivatives containing Ru(II) or Os(II) metal units. Sensitized photocyclization from triplet state. Inorg Chem 43:2779–2792CrossRefGoogle Scholar
  266. 266.
    Ko CC, Kwok WM, Yam VWW, Phillips DL (2006) Triplet MLCT photosensitization of the ring-closing reaction of diarylethenes by design and synthesis of a photochromic rhenium(I) complex of a diarylethene-containing 1,10-phenanthroline ligand. Chem Eur J 12:5840–5848CrossRefGoogle Scholar
  267. 267.
    Sakamoto R, Kume S, Sugimoto M, Nishihara H (2009) Transcis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability. Chem Eur J 15:1429–1439CrossRefGoogle Scholar
  268. 268.
    Hasegawa Y, Takahashi K, Kume S, Nishihara H (2011) Complete solid state photoisomerization of bis(dipyrazolylstyrylpyridine)iron(II) to change magnetic properties. Chem Commun 47:6846–6848CrossRefGoogle Scholar
  269. 269.
    Lin JL, Chen CW, Sun SS, Lees AJ (2011) Photoswitching tetranuclear rhenium(I) tricarbonyl diimine complexes with a stilbene-like bridging ligand. Chem Commun 47:6030–6032CrossRefGoogle Scholar
  270. 270.
    Baik C, Wand S (2011) Inhibiting olefin cis, trans-photoisomerization and enhancing electron-accepting ability of a diboryl compound by metal chelation. Chem Commun 47:9432–9434CrossRefGoogle Scholar
  271. 271.
    Amar A, Savel P, Akdas-Kilig H, Katan C, Meghezzi H, Boucekkine A, Malval JP, Fillaut JL (2015) Photoisomerisation in aminoazobenzene-substituted ruthenium(II) tris(bipyridine) complexes: influence of the conjugation pathway. Chem Eur J 21:8262–8270CrossRefGoogle Scholar
  272. 272.
    Park JS, Lifschitz AM, Young RM, Mendez-Arroyo JM, Wasielewski MR, Stern CL, Mirkin CA (2013) Modulation of electronics and thermal stabilities of photochromic phosphino–aminoazobenzene derivatives in weak-link approach coordination complexes. J Am Chem Soc 135:16988–16996CrossRefGoogle Scholar
  273. 273.
    Irie M, Masaaki M (1988) Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 53:803–808CrossRefGoogle Scholar
  274. 274.
    Kellogg RM, Groen MB, Wynberg H (1967) Photochemically induced cyclization of some furyl- and thienylethenes. J Org Chem 32:3093–3100CrossRefGoogle Scholar
  275. 275.
    Irie M, Sakemura K, Okinaka M, Uchida K (1995) Photochromism of dithienylethenes with electron-donating substituents. J Org Chem 60:8305–8309CrossRefGoogle Scholar
  276. 276.
    Matsuda K, Irie M (2000) A diarylethene with two nitronyl nitroxides: photoswitching of intramolecular magnetic interaction. J Am Chem Soc 122:7195–7201CrossRefGoogle Scholar
  277. 277.
    Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–1772CrossRefGoogle Scholar
  278. 278.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420:759–760CrossRefGoogle Scholar
  279. 279.
    Higashiguchi K, Matsuda K, Irie M (2003) Photochromic reaction of a fused dithienylethene: multicolor photochromism. Angew Chem Int Ed 42:3537–3540CrossRefGoogle Scholar
  280. 280.
    Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778–781CrossRefGoogle Scholar
  281. 281.
    Lucas LN, van Esch J, Kellogg RM, Feringa BL (1998) A new class of photochromic 1,2-diarylethenes; synthesis and switching properties of bis(3-thienyl)cyclopentenes. Chem Commun 21:2313–2314CrossRefGoogle Scholar
  282. 282.
    De Jong JJD, Lucas LN, Kellogg RM, van Esch JH, Feringa BL (2004) Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304:278–281CrossRefGoogle Scholar
  283. 283.
    Areephong J, Kudernac T, De Jong JJD, Carroll GT, Pantorott D, Hjelm J, Browne WR, Feringa BL (2008) On/off photoswitching of the electropolymerizability of terthiophenes. J Am Chem Soc 130:12850–12851CrossRefGoogle Scholar
  284. 284.
    Uchida K, Sukata SI, Matsuzawa Y, Akazawa M, De Jong JJD, Katsonis N, Kojima Y, Nakamura S, Areephong J, Meetsma A, Feringa BL (2008) Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem Commun 326–328Google Scholar
  285. 285.
    van Dijken DJ, Beierle JM, Stuart MCA, Szymański W, Browne WR, Feringa BL (2014) Autoamplification of molecular chirality through the induction of supramolecular chirality. Angew Chem Int Ed 53:5073–5077Google Scholar
  286. 286.
    Tsivgoulis GM, Lehn JM (1995) Photonic molecular devices: reversibly photoswitchable fluorophores for nondestructive readout for optical memory. Angew Chem Int Ed Engl 34:1119–1122CrossRefGoogle Scholar
  287. 287.
    Gilat SL, Kawai SH, Lehn JM (1995) Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species. Chem Eur J 1:275–284CrossRefGoogle Scholar
  288. 288.
    Kawai SH, Gilat SL, Ponsinet R, Lehn JM (1995) A dual-mode molecular switching device: bisphenolic diarylethenes with integrated photochromic and electrochromic properties. Chem Eur J 1:285–293CrossRefGoogle Scholar
  289. 289.
    Norsten TB, Branda NR (2001) Photoregulation of fluorescence in a porphyrinic dithienylethene photochrome. J Am Chem Soc 123:1784–1785CrossRefGoogle Scholar
  290. 290.
    Peters A, Branda NR (2003) Electrochromism in photochromic dithienylcyclopentenes. J Am Chem Soc 125:3404–3405CrossRefGoogle Scholar
  291. 291.
    Lemieux V, Branda NR (2005) Reactivity-gated photochromism of 1,2-dithienylethenes for potential use in dosimetry applications. Org Lett 7:2969–2972CrossRefGoogle Scholar
  292. 292.
    Boyer JC, Carling CJ, Gates BD, Branda NR (2010) Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J Am Chem Soc 132:15766–15772CrossRefGoogle Scholar
  293. 293.
    Ko CC, Lam WH, Yam VWW (2008) Photochromic oligothienoacene derivatives with photo-switchable luminescene properties and computational studies. Chem Commun 5203–5205Google Scholar
  294. 294.
    Wong HL, Ko CC, Lam WH, Zhu N, Yam VWW (2009) Design and synthesis of a new class of photochromic diarylethene-containing dithieno[3,2-b:2′,3′- d]pyrroles and their switchable luminescence properties. Chem Eur J 15:10005–10009CrossRefGoogle Scholar
  295. 295.
    Poon CT, Lam WH, Wong HL, Yam VWW (2010) A versatile photochromic dithienylethene-containing β-diketonate ligand: near-infrared photochromic behavior and photoswitchable luminescence properties upon incorporation of a boron(III) center. J Am Chem Soc 132:13992–13993CrossRefGoogle Scholar
  296. 296.
    Duan G, Zhu N, Yam VWW (2010) Syntheses and photochromic studies of dithienylethene-containing imidazolium derivatives and their reactivity towards nucleophiles. Chem Eur J 16:13199–13209CrossRefGoogle Scholar
  297. 297.
    Poon CT, Lam WH, Yam VWW (2011) Gated photochromism in triarylborane-containing dithienylethenes: a new approach to a “lock−unlock” system. J Am Chem Soc 133:19622–19625CrossRefGoogle Scholar
  298. 298.
    Wong HL, Wong WT, Yam VWW (2012) Photochromic thienylpyridine bis(alkynyl)borane complexes: toward readily tunable fluorescence dyes and photoswitchable materials. Org Lett 14:1862–1865CrossRefGoogle Scholar
  299. 299.
    Chan JCH, Lam WH, Wong HL, Wong WT, Yam VWW (2013) Tunable photochromism in air-stable, robust dithienylethene-containing phospholes through modifications at the phosphorus center. Angew Chem Int Ed 52:11504–11508CrossRefGoogle Scholar
  300. 300.
    Poon CT, Lam WH, Yam VWW (2013) Synthesis, photochromic, and computational studies of dithienylethene-containing β-diketonate derivatives and their near-infrared photochromic behavior upon coordination of a boron(III) center. Chem Eur J 19:3467–3476CrossRefGoogle Scholar
  301. 301.
    Chan JCH, Lam WH, Yam VWW (2014) A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials. J Am Chem Soc 136:16994–16997CrossRefGoogle Scholar
  302. 302.
    Chan JCH, Wong HL, Wong WT, Yam VWW (2015) Tunable photochromism in the robust dithienylethene-containing phospholes: design, synthesis, characterization, electrochemistry, photophysics, and photochromic studies. Chem Eur J 21:6936–6948CrossRefGoogle Scholar
  303. 303.
    Poon CT, Lam WH, Wong HL, Yam VWW (2015) Photochromic dithienylethene-containing triarylborane derivatives: facile approach to modulate photochromic properties with multi-addressable functions. Chem Eur J 21:2182–2192CrossRefGoogle Scholar
  304. 304.
    Tian H, Qin B, Yao R, Zhao X, Yang S (2003) A single photochromic molecular switch with four optical outputs probing four inputs. Adv Mater 15:2104–2107CrossRefGoogle Scholar
  305. 305.
    Jiang G, Wang S, Yuan W, Jiang L, Song Y, Tian H, Zhu D (2006) Highly fluorescent contrast for rewritable optical storage based on photochromic bisthienylethene-bridged naphthalimide dimer. Chem Mater 18:235–237CrossRefGoogle Scholar
  306. 306.
    Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W (2014) Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields. Angew Chem Int Ed 53:4603–4607CrossRefGoogle Scholar
  307. 307.
    Li W, Li X, Xie Y, Wu Y, Li M, Wu XY, Zhu WH, Tian H (2015) Enantiospecific photoresponse of sterically hindered diarylethenes for chiroptical switches and photomemories. Sci Rep 5:9186CrossRefGoogle Scholar
  308. 308.
    Kawai S, Nakashima T, Atsumi K, Sakai T, Harigai M, Imamoto Y, Kamikubo H, Kataoka M, Kawai T (2007) Novel photochromic molecules based on 4,5-dithienyl thiazole with fast thermal bleaching rate. Chem Mater 19:3479–3483CrossRefGoogle Scholar
  309. 309.
    Nakashima T, Goto M, Kawai S, Kawai T (2008) Photomodulation of ionic interaction and reactivity: reversible photoconversion between imidazolium and imidazolinium. J Am Chem Soc 130:14570–14575CrossRefGoogle Scholar
  310. 310.
    Fukumoto S, Nakashima T, Kawai T (2011) Photon-quantitative reaction of a dithiazolylarylene in solution. Angew Chem Int Ed 50:1565–1568CrossRefGoogle Scholar
  311. 311.
    Frigoli M, Mehl GH (2005) Multiple addressing in a hybrid biphotochromic system. Angew Chem Int Ed 44:5048–5052CrossRefGoogle Scholar
  312. 312.
    Corredor CC, Huang ZL, Belfield KD (2006) Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene. Adv Mater 18:2910–2914CrossRefGoogle Scholar
  313. 313.
    Göstl R, Hecht S (2014) Controlling covalent connection and disconnection with light. Angew Chem Int Ed 53:8784–8787CrossRefGoogle Scholar
  314. 314.
    Yagai S, Iwai K, Yamauchi M, Karatsu T, Kitamura A, Uemura S, Morimoto M, Wang H, Würthner F (2014) Photocontrol over self-assembled nanostructures of π–π stacked dyes supported by the parallel conformer of diarylethene. Angew Chem Int Ed 53:2602–2606CrossRefGoogle Scholar
  315. 315.
    Li C, Yan H, Zhao LX, Zhang GF, Hu Z, Huang ZL, Zhu MQ (2014) A trident dithienylethene-perylenemonoimide dyad with super fluorescence switching speed and ratio. Nat Commun 5:5709CrossRefGoogle Scholar
  316. 316.
    Gemayel ME, Börjesson K, Herder M, Duong DT, Hutchison JA, Ruzié C, Schweicher G, Salleo A, Geerts Y, Hecht S, Orgiu E, Samori P (2015) Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices. Nat Commun 6:6330CrossRefGoogle Scholar
  317. 317.
    Fernández-Acebes A, Lehn JM (1998) Optical switching and fluorescence modulation in photochromic metal complexes. Adv Mater 10:1519–1522CrossRefGoogle Scholar
  318. 318.
    Fernandez-Acebes A, Lehn JM (1999) Optical switching and fluorescence modulation properties of photochromic metal complexes derived from dithienylethene ligands. Chem Eur J 5:3285–3292CrossRefGoogle Scholar
  319. 319.
    Takayama K, Matsuda K, Irie M (2003) Photoswitching of the magnetic interaction between a copper(II) ion and a nitroxide radical by using a photochromic spin coupler. Chem Eur J 9:5605–5609CrossRefGoogle Scholar
  320. 320.
    Matsuda K, Shinkai Y, Irie M (2004) Photochromism of metal complexes composed of diarylethene ligands and ZnCl2. Inorg Chem 43:3774–3776CrossRefGoogle Scholar
  321. 321.
    Matsuda K, Takayama K, Irie M (2004) Photochromism of metal complexes composed of diarylethene ligands and Zn(II), Mn(II), and Cu(II) hexafluoroacetylacetonates. Inorg Chem 43:482–489CrossRefGoogle Scholar
  322. 322.
    Lee JKW, Ko CC, Wong KMC, Zhu N, Yam VWW (2007) A photochromic platinum(II) bis-(alkynyl) complex containing a versatile 5,6-dithienyl-1,10-phenanthroline. Organometallics 26:12–15CrossRefGoogle Scholar
  323. 323.
    Lee PHM, Ko CC, Zhu N, Yam VWW (2007) Metal coordination-assisted near-infrared photochromic behavior: a large perturbation on absorption wavelength properties of N,N-donor ligands containing diarylethene derivatives by coordination to the rhenium(I) metal center. J Am Chem Soc 129:6058–6059CrossRefGoogle Scholar
  324. 324.
    Ngan TW, Ko CC, Zhu N, Yam VWW (2007) Syntheses, luminescence switching, and electrochemical studies of photochromic dithienyl-1,10-phenanthroline zinc(II) bis(thiolate) complexes. Inorg Chem 46:1144–1152CrossRefGoogle Scholar
  325. 325.
    Yam VWW, Lee JKW, Ko CC, Zhu N (2009) Photochromic diarylethene-containing ionic liquids and N-heterocyclic carbene. J Am Chem Soc 131:912–913CrossRefGoogle Scholar
  326. 326.
    Duan G, Yam VWW (2010) Syntheses and photophysical properties of N-pyridylimidazol-2-ylidene tetracyanoruthenates(II) and photochromic studies of their dithienylethene-containing derivatives. Chem Eur J 16:12642–12649CrossRefGoogle Scholar
  327. 327.
    Wong HL, Tao CH, Zhu N, Yam VWW (2011) Photochromic alkynes as versatile building blocks for metal alkynyl systems: design, synthesis, and photochromic studies of diarylethene-containing platinum(II) phosphine alkynyl complexes. Inorg Chem 50:471–481CrossRefGoogle Scholar
  328. 328.
    Duan G, Wong WT, Yam VWW (2011) Synthesis and photochromic studies of η 6-mesitylene ruthenium(II) complexes bearing N-heterocyclic carbene ligands with the dithienylethene moiety. New J Chem 35:2267–2278CrossRefGoogle Scholar
  329. 329.
    Chan JCH, Lam WH, Wong HL, Zhu N, Wong WT, Yam VWW (2011) Diarylethene-containing cyclometalated platinum(II) complexes: tunable photochromism via metal coordination and rational ligand design. J Am Chem Soc 133:12690–12705CrossRefGoogle Scholar
  330. 330.
    Wong HL, Zhu N, Yam VWW (2014) Photochromic alkynylplatinum(II) diimine complexes containing a versatile dithienylethene-functionalized 2-(2′-pyridyl)imidazole ligand. J Organomet Chem 751:430–437CrossRefGoogle Scholar
  331. 331.
    Murguly E, Norsten TB, Branda NR (2001) Nondestructive data processing based on chiroptical 1,2-dithienylethene photochromes. Angew Chem Int Ed 40:1752–1755CrossRefGoogle Scholar
  332. 332.
    Norsten TB, Branda NR (2001) Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv Mater 13:347–349CrossRefGoogle Scholar
  333. 333.
    Zhao H, Al-Atar U, Pace TCS, Bohne C, Branda NR (2008) High-contrast fluorescence switching using a photoresponsive dithienylethene coordination compound. J Photochem Photobiol A 200:74–82CrossRefGoogle Scholar
  334. 334.
    Tian H, Chen B, Tu H, Müllen K (2002) Novel bisthienylethene-based photochromic tetraazaporphyrin with photoregulating luminescence. Adv Mater 14:918–923CrossRefGoogle Scholar
  335. 335.
    Luo Q, Chen B, Wang M, Tian H (2003) Mono-bisthienylethene ring-fused versus multi-bisthienylethene ring-fused photochromic hybrids. Adv Funct Mater 13:233–239CrossRefGoogle Scholar
  336. 336.
    Chen S, Chen LJ, Yang HB, Tian H, Zhu W (2012) Light-triggered reversible supramolecular transformations of multi-bisthienylethene hexagons. J Am Chem Soc 134:13596–13599CrossRefGoogle Scholar
  337. 337.
    Munakata M, Wu LP, Kuroda-Sowa T, Maekawa M, Suenaga Y, Furuichi K (1996) Reversible photochromism of a crystalline dithienylethene copper(I) polymer. J Am Chem Soc 118:3305–3306CrossRefGoogle Scholar
  338. 338.
    Kim HJ, Jang JH, Choi H, Lee T, Ko J, Yoon M, Kim HJ (2008) Photoregulated fluorescence switching in axially coordinated tin(IV) porphyrinic dithienylethene. Inorg Chem 47:2411–2415CrossRefGoogle Scholar
  339. 339.
    Indelli MT, Carli S, Ghirotti M, Chiorboli C, Ravaglia M, Garavelli M, Scandola F (2008) Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl)-maleimide units. J Am Chem Soc 130:7286–7299CrossRefGoogle Scholar
  340. 340.
    Tan W, Zhang Q, Zhang J, Tian H (2009) Near-infrared photochromic diarylethene iridium(III) complex. Org Lett 11:161–164CrossRefGoogle Scholar
  341. 341.
    Monaco S, Semeraro M, Tan W, Tian H, Ceroni P, Credi A (2012) Multifunctional switching of a photo- and electro-chemiluminescent iridium–dithienylethene complex. Chem Commun 48:8652–8654CrossRefGoogle Scholar
  342. 342.
    Nakagawa T, Hasegawa Y, Kawai T (2009) Nondestructive luminescence intensity readout of a photochromic lanthanide(III) complex. Chem Commun 5630–5632Google Scholar
  343. 343.
    Roberts MN, Carling CJ, Nagle JK, Branda NR, Wolf MO (2009) Successful bifunctional photoswitching and electronic communication of two platinum(II) acetylide bridged dithienylethenes. J Am Chem Soc 131:16644–16645CrossRefGoogle Scholar
  344. 344.
    Roberts MN, Nagle JK, Finden JG, Branda NR, Wolf MO (2009) Linker-dependent metal-sensitized photoswitching of dithienylethenes. Inorg Chem 48:19–21CrossRefGoogle Scholar
  345. 345.
    Roberts MN, Nagle JK, Majewski MB, Finden JG, Branda NR, Wolf MO (2011) Charge transfer and intraligand excited state interactions in platinum-sensitized dithienylethenes. Inorg Chem 50:4956–4966CrossRefGoogle Scholar
  346. 346.
    Lin Y, Yin J, Yuan J, Hu M, Li Z, Yu GA, Liu SH (2010) Synthesis, characterization, and properties of binuclear gold(I) phosphine alkynyl complexes. Organometallics 29:2808–2814CrossRefGoogle Scholar
  347. 347.
    Harvey EC, Areephong J, Cafolla AA, Long C, Brown WR, Feringa BL, Pryce MT (2014) Incorporating cobalt carbonyl moieties onto ethynylthiophene-based dithienylcyclopentene switches. 1. Photochemistry. Organometallics 33:447–456CrossRefGoogle Scholar
  348. 348.
    Zhong YW, Vilà N, Henderson JC, Flores-Torres S, Abruña HD (2007) Dinuclear transition-metal terpyridine complexes with a dithienylcyclopentene bridge directed toward molecular electronic applications. Inorg Chem 46:10470–10472CrossRefGoogle Scholar
  349. 349.
    Zhong YW, Vilà N, Henderson JC, Abruña HD (2009) Dithienylcyclopentenes-containing transition metal bisterpyridine complexes directed toward molecular electronic applications. Inorg Chem 48:991–999CrossRefGoogle Scholar
  350. 350.
    Zhong YW, Vilà N, Henderson JC, Abruña HD (2009) Transition-metal tris-bipyridines containing three dithienylcyclopentenes: synthesis, photochromic, and electrochromic properties. Inorg Chem 48:7080–7085CrossRefGoogle Scholar
  351. 351.
    Aubert V, Ordronneau L, Escadeillas M, Williams JAG, Boucekkine A, Coulaud E, Dragonetti C, Righetto S, Roberto D, Ugo R, Valore A, Singh A, Zyss J, Ledoux-Rak I, Le Bozec H, Guerchais V (2011) Linear and nonlinear optical properties of cationic bipyridyl iridium(III) complexes: tunable and photoswitchable? Inorg Chem 50:5027–5038CrossRefGoogle Scholar
  352. 352.
    Bao Z, Ng KY, Yam VWW, Ko CC, Zhu N, Wu L (2008) Syntheses, characterization, and photochromic studies of spirooxazine-containing 2,2′-bipyridine ligands and their zinc(II) thiolate complexes. Inorg Chem 47:8912–8920CrossRefGoogle Scholar
  353. 353.
    Li Y, Tam AYY, Wong KMC, Li W, Wu L, Yam VWW (2011) Synthesis, characterization, and the photochromic, luminescence, metallogelation and liquid-crystalline properties of multifunctional platinum(II) bipyridine complexes. Chem Eur J 17:8048–8059CrossRefGoogle Scholar
  354. 354.
    Paquette MM, Patrick BO, Frank NL (2011) Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal–organic complexes: molybdenum−tetracarbonyl spirooxazine complexes. J Am Chem Soc 133:10081–10093CrossRefGoogle Scholar
  355. 355.
    Rao YL, Amame H, Wang S (2012) Photochromic four-coordinate N,C-chelate boron compounds. Coord Chem Rev 256:759–770CrossRefGoogle Scholar
  356. 356.
    Wang N, Ko SB, Lu JS, Chen LD, Wang S (2013) Tuning the photoisomerization of a N^C-chelate organoboron compound with a metal acetylide unit. Chem Eur J 19:5314–5323CrossRefGoogle Scholar
  357. 357.
    Marchi E, Baroncini M, Bergamini G, van Heyst J, Vögtle F, Ceroni P (2012) Photoswitchable metal coordinating tweezers operated by light-harvesting dendrimers. J Am Chem Soc 134:15277–15280CrossRefGoogle Scholar
  358. 358.
    Yao LY, Yam VWW (2015) Photoinduced isomerization-driven structural transformation between decanuclear and octadecanuclear gold(I) sulfido clusters. J Am Chem Soc 137:3506–3509CrossRefGoogle Scholar
  359. 359.
    Kärnbratt J, Hammarson M, Li S, Anderson HL, Albinsson B, Andréasson J (2010) Photochromic supramolecular memory with nondestructive readout. Angew Chem Int Ed 49:1854–1857CrossRefGoogle Scholar
  360. 360.
    Nilsson JR, O’Sullivan MC, Li S, Anderson HL, Andréasson J (2015) A photoswitchable supramolecular complex with release-and-report capabilities. Chem Commun 51:847–850CrossRefGoogle Scholar
  361. 361.
    Namiki K, Sakamoto A, Murata M, Kume S, Nishihara H (2007) Reversible photochromism of a ferrocenylazobenzene monolayer controllable by a single green light source. Chem Commun 4650–4652Google Scholar
  362. 362.
    Tanaka Y, Inagaki A, Akita M (2007) A photoswitchable molecular wire with the dithienylethene (DTE) linker, (dppe)(μ 5-C5Me5)Fe–C≡C–DTE–C≡C–Fe(μ 5-C5Me5)(dppe). Chem Commun 1169–1171Google Scholar
  363. 363.
    Tanaka Y, Ishisaka T, Inagaki A, Koike T, Lapinte C, Akita M (2010) Photochromic organometallics with a dithienylethene (DTE) bridge, [Y−C≡C−DTE−C≡C−Y] (Y={MCp*(dppe)}): photoswitchable molecular wire (M=Fe) versus dual photo- and electrochromism (M=Ru). Chem Eur J 16:4762–4776CrossRefGoogle Scholar
  364. 364.
    Motoyama K, Koike T, Akita M (2008) Remarkable switching behavior of bimodally stimuli-responsive photochromic dithienylethenes with redox-active organometallic attachments. Chem Commun 5812–5814Google Scholar
  365. 365.
    Lee S, You Y, Ohkubo K, Fukuzumi S, Nam W (2012) Photoelectrocatalysis to improve cycloreversion quantum yields of photochromic dithienylethene compounds. Angew Chem Int Ed 51:13154–13158CrossRefGoogle Scholar
  366. 366.
    Lee S, You Y, Ohkubo K, Fukuzumi S, Nam W (2014) Highly efficient cycloreversion of photochromic dithienylethene compounds using visible light-driven photoredox catalysis. Chem Sci 5:1463–1474CrossRefGoogle Scholar
  367. 367.
    Paquette MM, Kopelman RA, Beitler E, Frank NL (2009) Incorporating optical bistability into a magnetically bistable system: a photochromic redox isomeric complex. Chem Commun 5424–5426Google Scholar
  368. 368.
    Witt A, Heinemann FW, Khusniyarov MM (2015) Bidirectional photoswitching of magnetic properties at room temperature: ligand-driven light-induced valence tautomerism. Chem Sci 6:4599–4609CrossRefGoogle Scholar
  369. 369.
    Morimoto M, Miyasaka H, Yamashita M, Irie M (2009) Coordination assemblies of [Mn4] single-molecule magnets linked by photochromic ligands: photochemical control of the magnetic properties. J Am Chem Soc 131:9823–9835CrossRefGoogle Scholar
  370. 370.
    Pinkowicz D, Ren M, Zheng LM, Sato S, Hasegawa M, Morimoto M, Irie M, Breedlove BK, Cosquer G, Katoh K, Yamashita M (2014) Control of the single-molecule magnet behavior of lanthanide-diarylethene photochromic assemblies by irradiation with light. Chem Eur J 20:12502–12513CrossRefGoogle Scholar
  371. 371.
    Cosquer G, Morimoto M, Irie M, Fetoh A, Breedlove BK, Yamashita M (2015) Photo-control of the magnetic properties of Dy(III) and Ho(III) homometal coordination polymers bridged by a diarylethene ligand. Dalton Trans 44:5996–6002CrossRefGoogle Scholar
  372. 372.
    Nihei M, Suzuki Y, Kimura N, Kera Y, Oshio H (2013) Bidirectional photomagnetic conversions in a spin-crossover complex with a diarylethene moiety. Chem Eur J 19:6946–6949CrossRefGoogle Scholar
  373. 373.
    Milek M, Heinemann FW, Khusniyarov MM (2013) Spin crossover meets diarylethenes: efficient photoswitching of magnetic properties in solution at room temperature. Inorg Chem 52:11585–11592CrossRefGoogle Scholar
  374. 374.
    Venkataramani S, Jana U, Dommaschk M, Sönnichsen FD, Tuczek F, Herges R (2011) Magnetic bistability of molecules in homogeneous solution at room temperature. Science 331:445–448CrossRefGoogle Scholar
  375. 375.
    Thies S, Sell H, Bornholdt C, Schütt C, Köhler F, Tuczek F, Herges R (2012) Light-driven coordination-induced spin-state switching: rational design of photodissociable ligands. Chem Eur J 18:16358–16368CrossRefGoogle Scholar
  376. 376.
    Aubert V, Guerchais V, Ishow E, Hoang-Thi K, Ledoux I, Nakatani K, Le Bozec H (2008) Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexes. Angew Chem Int Ed 47:577–580CrossRefGoogle Scholar
  377. 377.
    Nitadori H, Ordronneau L, Boixel J, Jacquemin D, Boucekkine A, Singh A, Akita M, Ledoux I, Guerchais V, Le Bozec H (2012) Photoswitching of the second-order nonlinearity of a tetrahedral octupolar multi DTE-based copper(I) complex. Chem Commun 48:10395–10397CrossRefGoogle Scholar
  378. 378.
    Ordronneau L, Aubert V, Guerchais V, Boucekkine A, Le Bozec H, Singh A, Ledoux I, Jacquemin D (2013) The first hexadithienylethene-substituted tris(bipyridine)metal complexes as quadratic NLO photoswitches: combined experimental and DFT studies. Chem Eur J 19:5845–5849CrossRefGoogle Scholar
  379. 379.
    Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D, Righetto S, De Angelis R (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 136:5367–5375CrossRefGoogle Scholar
  380. 380.
    Petitjean A, Khoury RG, Kyritsakas N, Lehn JM (2004) Dynamic devices. Shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J Am Chem Soc 126:6637–6647CrossRefGoogle Scholar
  381. 381.
    Lehn JM (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  382. 382.
    Greb L, Lehn JM (2014) Light-driven molecular motors: imine as four-step or two-step unidirectional rotors. J Am Chem Soc 136:13114–13117CrossRefGoogle Scholar
  383. 383.
    Sauvage JP (1998) Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc Chem Res 31:611–619CrossRefGoogle Scholar
  384. 384.
    Mobian P, Kern JM, Sauvage JP (2004) Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. Angew Chem Int Ed 43:2392–2395CrossRefGoogle Scholar
  385. 385.
    Champin B, Mobian P, Sauvage JP (2007) Transition metal complexes as molecular machine prototypes. Chem Soc Rev 36:358–366CrossRefGoogle Scholar
  386. 386.
    Durola F, Sauvage JP (2007) Fast electrochemically induced translation of the ring in a copper-complexed [2]rotaxane: the biisoquinoline effect. Angew Chem Int Ed 46:3537–3540CrossRefGoogle Scholar
  387. 387.
    Durot S, Reviriego F, Sauvage JP (2010) Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines. Dalton Trans 39:10557–10570CrossRefGoogle Scholar
  388. 388.
    Collin JP, Dietrich-Buchecker CD, Gaviña P, Jimenez-Molero MC, Sauvage JP (2001) Shuttles and muscles: linear molecular machines based on transition metals. Acc Chem Res 34:477–487CrossRefGoogle Scholar
  389. 389.
    Collin JP, Durola F, Lux J, Sauvage JP (2009) A rapidly shuttling copper-complexed [2]-rotaxane with three different chelating groups in its axis. Angew Chem Int Ed 48:8532–8535CrossRefGoogle Scholar
  390. 390.
    Joosten A, Trolez Y, Collin JP, Heitz V, Sauvage JP (2012) Copper(I)-assembled [3]rotaxane whose two rings act as flapping wings. J Am Chem Soc 134:1802–1809CrossRefGoogle Scholar
  391. 391.
    Saha S, Stoddart JF (2007) Photo-driven molecular devices. Chem Soc Rev 36:77–93CrossRefGoogle Scholar
  392. 392.
    Coskun A, Banaszak M, Astumian RD, Stoddart JF, Grzybowski BA (2012) Great expectations: can artificial molecular machines deliver on their promise? Chem Soc Rev 41:19–30CrossRefGoogle Scholar
  393. 393.
    Bruns CJ, Stoddart JF (2014) Rotaxane-based molecular muscles. Acc Chem Res 47:2186–2199CrossRefGoogle Scholar
  394. 394.
    Schmittel M, De S, Pramanik S (2012) Reversible on/off nanoswitch for organocatalysis: mimicking the locking and unlocking operation of CaMKII. Angew Chem Int Ed 51:3832–3836CrossRefGoogle Scholar
  395. 395.
    Pramanik S, De S, Schmittel M (2014) Bidirectional chemical communication between nanomechanical switches. Angew Chem Int Ed 53:4709–4713CrossRefGoogle Scholar
  396. 396.
    Ballardini R, Balzani V, Credi A, Gandolfi MT, Venturi M (2001) Artificial molecular-level machines: which energy to make them work? Acc Chem Res 34:445–455CrossRefGoogle Scholar
  397. 397.
    Balzani V, Credi A, Silvi S, Venturi M (2006) Artificial nanomachines based on interlocked molecular species: recent advances. Chem Soc Rev 35:1135–1149CrossRefGoogle Scholar
  398. 398.
    Balzani V, Bergamini G, Ceroni P (2008) From the photochemistry of coordination compounds to light-powered nanoscale devices and machines. Coord Chem Rev 252:2456–2469CrossRefGoogle Scholar
  399. 399.
    Koumura N, Zijistra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152–155CrossRefGoogle Scholar
  400. 400.
    Feringa BL (2001) In control of motion: from molecular switches to molecular motors. Acc Chem Res 34:504–513CrossRefGoogle Scholar
  401. 401.
    Fletcher SP, Dumur F, Pollard MM, Feringa BL (2005) A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310:80–82CrossRefGoogle Scholar
  402. 402.
    Vicario J, Katsonis N, Ramon BS, Bastiaansen CWM, Broer DJ, Feringa BL (2006) Nanomotor rotates microscale objects. Nature 440:163CrossRefGoogle Scholar
  403. 403.
    Bonnet S, Collin JP (2008) Ruthenium-based light-driven molecular machine prototypes: synthesis and properties. Chem Soc Rev 37:1207–1217CrossRefGoogle Scholar
  404. 404.
    Muraoka T, Kinbara K, Kobayashi Y, Aida T (2003) Light-driven open–close motion of chiral molecular scissors. J Am Chem Soc 125:5612–5613CrossRefGoogle Scholar
  405. 405.
    Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377–1400CrossRefGoogle Scholar
  406. 406.
    Muraoka T, Kinbara K, Aida T (2006) Mechanical twisting of a guest by a photoresponsive host. Nature 440:512–515CrossRefGoogle Scholar
  407. 407.
    Muraoka T, Kinbara K, Aida T (2006) A self-locking molecule operative with a photoresponsive key. J Am Chem Soc 128:11600–11605CrossRefGoogle Scholar
  408. 408.
    Durola F, Rebek J (2010) The ouroborand: a cavitand with a coordination-driven switching device. Angew Chem Int Ed 49:3189–3191CrossRefGoogle Scholar
  409. 409.
    Brouwer AM, Frochot C, Gatti FG, Leigh DA, Mottier L, Paolucci F, Roffia S, Wurpel GWH (2001) Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291:2124–2128CrossRefGoogle Scholar
  410. 410.
    Amendola V, Fabbrizzi L, Mangano C, Pallavicini P (2001) Molecular machines based on metal ion translocation. Acc Chem Res 34:488–493CrossRefGoogle Scholar
  411. 411.
    Hernández JV, Kay ER, Leigh DA (2004) A reversible synthetic rotary molecular motor. Science 306:1532–1537CrossRefGoogle Scholar
  412. 412.
    Serreli V, Lee CF, Kay ER, Leigh DA (2007) A molecular information ratchet. Nature 445:523–527CrossRefGoogle Scholar
  413. 413.
    Kume S, Nomoto K, Kusamoto T, Nishihara H (2009) Intramolecular electron arrangement with a rotative trigger. J Am Chem Soc 131:14198–14199CrossRefGoogle Scholar
  414. 414.
    Canary JW, Mortezaei S, Liang J (2010) Transition metal-based chiroptical switches for nanoscale electronics and sensors. Coord Chem Rev 254:2249–2266CrossRefGoogle Scholar
  415. 415.
    Nishikawa M, Nomoto K, Kume S, Nishihara H (2012) Reversible copper(II)/(I) electrochemical potential switching driven by visible light-induced coordinated ring rotation. J Am Chem Soc 134:10543–10553CrossRefGoogle Scholar
  416. 416.
    van Dongen SFM, Cantekin S, Elemans JAAW, Rowan AE, Nolte RJM (2014) Functional interlocked systems. Chem Soc Rev 43:99–122CrossRefGoogle Scholar
  417. 417.
    McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR (2015) Stimuli-responsive metal–ligand assemblies. Chem Rev 115:7729–7793CrossRefGoogle Scholar
  418. 418.
    Li H, Fahrenbach AC, Coskun A, Zhu Z, Barin G, Zhao YL, Botros YY, Sauvage JP, Stoddart JF (2011) A light-stimulated molecular switch driven by radical–radical interactions in water. Angew Chem Int Ed 50:6782–6788CrossRefGoogle Scholar
  419. 419.
    Samanta SK, Schmittel M (2013) Four-component supramolecular nanorotors. J Am Chem Soc 135:18794–18797CrossRefGoogle Scholar
  420. 420.
    Samanta SK, Bats JW, Schmittel M (2014) A five-component nanorotor with speed regulation. Chem Commun 50:2364–2366CrossRefGoogle Scholar
  421. 421.
    Vicario J, Walko M, Meetsma A, Feringa BL (2006) Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J Am Chem Soc 128:5127–5135CrossRefGoogle Scholar
  422. 422.
    Cnossen A, Hou L, Pollard MM, Wesenhagen V, Browne WR, Feringa BL (2012) Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J Am Chem Soc 134:17613–17619CrossRefGoogle Scholar
  423. 423.
    Wezenberg SJ, Cen KY, Feringa BL (2015) Visible-light-driven photoisomerization and increased rotation speed of a molecular motor acting as a ligand in a ruthenium(II) complex. Angew Chem Int Ed 54:11457–11461CrossRefGoogle Scholar
  424. 424.
    Zhao D, Neubauer TM, Feringa BL (2015) Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat Commun 6:6652CrossRefGoogle Scholar
  425. 425.
    Yamashita KI, Kawano M, Fujjita M (2007) Photoswitchable molecular lock. One-way catenation of a Pt(II)-linked coordination ring via the photolabilization of a Pt(II)–pyridine bond. J Am Chem Soc 129:1850–1851CrossRefGoogle Scholar
  426. 426.
    Dube H, Ajami D, Rebek J Jr (2010) Photochemical control of reversible encapsulation. Angew Chem Int Ed 49:3192–3195CrossRefGoogle Scholar
  427. 427.
    Heinz T, Rudkevich DM, Rebek J Jr (1998) Pairwise selection of guests in a cylindrical molecular capsule of nanometre dimensions. Nature 394:764–766CrossRefGoogle Scholar
  428. 428.
    Dube H, Rebek J Jr (2012) Selective guest exchange in encapsulation complexes using light of different wavelengths. Angew Chem Int Ed 51:3207–3210CrossRefGoogle Scholar
  429. 429.
    Han M, Michel R, He B, Chen YS, Stalke D, John M, Clever GH (2013) Light-triggered guest uptake and release by a photochromic coordination cage. Angew Chem Int Ed 52:1319–1323CrossRefGoogle Scholar
  430. 430.
    Lo KKW (2007) Luminescent transition metal complexes as biological labels and probes. Struct Bond 123:205–245CrossRefGoogle Scholar
  431. 431.
    Lo KKW, Choi AWT, Law WHT (2012) Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. Dalton Trans 41:6021–6047CrossRefGoogle Scholar
  432. 432.
    Yu C, Chan KHY, Wong KMC, Yam VWW (2006) Single-stranded nucleic acid-induced helical self-assembly of alkynylplatinum(II) terpyridyl complexes. Proc Natl Acad Sci U S A 103:19652–19657CrossRefGoogle Scholar
  433. 433.
    Yu C, Chan KHY, Wong KMC, Yam VWW (2009) Nucleic acid-induced self-assembly of a platinum(II) terpyridyl complex: detection of G-quadruplex formation and nuclease activity. Chem Commun 3756–3758Google Scholar
  434. 434.
    Chung CYS, Yam VWW (2013) Selective label-free detection of G-quadruplex structure of human telomere by emission spectral changes in visible-and-NIR region under physiological condition through the FRET of a two-component PPE-SO3 –Pt(II) complex ensemble with Pt⋅⋅⋅Pt, electrostatic and π–π interactions. Chem Sci 4:377–387CrossRefGoogle Scholar
  435. 435.
    Gill MR, Garcia-Lara J, Foster SJ, Smythe C, Battaglia G, Thomas JA (2009) A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nat Chem 1:662–667CrossRefGoogle Scholar
  436. 436.
    O’Connor NA, Stevens N, Samaroo D, Solomon MR, Martí AA, Dyer J, Vishwasrao H, Akins DL, Kandel ER, Turro NJ (2009) A covalently linked phenanthridine-ruthenium(II) complex as a RNA probe. Chem Commun 2640–2642Google Scholar
  437. 437.
    Murphy L, Congreve A, Pålsson LO, Williams JAG (2010) The time domain in co-stained cell imaging: time-resolved emission imaging microscopy using a protonatable luminescent iridium complex. Chem Commun 46:8743–8745CrossRefGoogle Scholar
  438. 438.
    Zhang R, Ye Z, Wang G, Zhang W, Yuan J (2010) Development of a ruthenium(II) complex based luminescent probe for imaging nitric oxide production in living cells. Chem Eur J 16:6884–6891CrossRefGoogle Scholar
  439. 439.
    Li C, Yu M, Sun Y, Wu Y, Huang C, Li F (2011) A nonemissive iridium(III) complex that specifically lights-up the nuclei of living cells. J Am Chem Soc 133:11231–11239CrossRefGoogle Scholar
  440. 440.
    Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chem Int Ed 51:4148–4151CrossRefGoogle Scholar
  441. 441.
    Jing J, Zhang JL (2013) Combining myeloperoxidase (MPO) with fluorogenic ZnSalen to detect lysosomal hydrogen peroxide in live cells. Chem Sci 4:2947–2952CrossRefGoogle Scholar
  442. 442.
    Zou T, Lum CT, Chui SSY, Che CM (2013) Gold(III) complexes containing N-heterocyclic carbene ligands: thiol “switch-on” fluorescent probes and anti-cancer agents. Angew Chem Int Ed 52:2930–2933CrossRefGoogle Scholar
  443. 443.
    Chung CYS, Li SPY, Louie MW, Lo KKW, Yam VWW (2013) Induced self-assembly and disassembly of water-soluble alkynylplatinum(II) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem Sci 4:2453–2462CrossRefGoogle Scholar
  444. 444.
    Tsai JLL, Zou T, Liu J, Chen T, Chan AOY, Yang C, Lok CN, Che CM (2015) Luminescent platinum(II) complexes with self-assembly and anti-cancer properties: hydrogel, pH dependent emission color and sustained-release properties under physiological conditions. Chem Sci 4:3823–3830CrossRefGoogle Scholar
  445. 445.
    Puckett CA, Barton JK (2007) Methods to explore cellular uptake of ruthenium complexes. J Am Chem Soc 129:46–47CrossRefGoogle Scholar
  446. 446.
    Puckett CA, Barton JK (2009) Fluorescein redirects a ruthenium-octaarginine conjugate to the nucleus. J Am Chem Soc 131:8738–8739CrossRefGoogle Scholar
  447. 447.
    Svensson FR, Matson M, Li M, Lincoln P (2010) Lipophilic ruthenium complexes with tuned cell membrane affinity and photoactivated uptake. Biophys Chem 149:102–106CrossRefGoogle Scholar
  448. 448.
    Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40:2508–2524CrossRefGoogle Scholar
  449. 449.
    Fernández-Moreira V, Thorp-Greenwood FL, Coogan MP (2010) Application of d6 transition metal complexes in fluorescence cell imaging. Chem Commun 46:186–202CrossRefGoogle Scholar
  450. 450.
    Thorp-Greenwood FL, Balasingham RG, Coogan MP (2012) Organometallic complexes of transition metals in luminescent cell imaging applications. J Organomet Chem 714:12–21CrossRefGoogle Scholar
  451. 451.
    Geldmacher Y, Oleszak M, Sheldrick WS (2012) Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg Chim Acta 393:84–102CrossRefGoogle Scholar
  452. 452.
    Stacey OJ, Pope SJA (2013) New avenues in the design and potential application of metal complexes for photodynamic therapy. RSC Adv 3:25550–25564CrossRefGoogle Scholar
  453. 453.
    Li SPY, Lau CTS, Louie MW, Lam YW, Cheng SH, Lo KKW (2013) Mitochondria-targeting cyclometalated iridium(III)–PEG complexes with tunable photodynamic activity. Biomaterials 34:7519–7532CrossRefGoogle Scholar
  454. 454.
    Moromizato S, Hisamatsu Y, Suzuki T, Matsuo Y, Abe R, Aoki S (2012) Design and synthesis of a luminescent cyclometalated iridium(III) complex having N, N-diethylamino group that stains acidic intracellular organelles and induces cell death by photoirradiation. Inorg Chem 51:12697–12706CrossRefGoogle Scholar
  455. 455.
    Kastl A, Wilbuer A, Merkel AL, Feng L, Fazio PD, Ocker M, Meggers E (2012) Dual anticancer activity in a single compound: visible-light-induced apoptosis by an antiangiogenic iridium complex. Chem Commun 48:1863–1865CrossRefGoogle Scholar
  456. 456.
    Man BYW, Chan HM, Leung CH, Chan DSH, Bai LP, Jiang ZH, Li HW, Ma DL (2011) Group 9 metal-based inhibitors of β-amyloid (1–40) fibrillation as potential therapeutic agents for Alzheimer’s disease. Chem Sci 2:917–921CrossRefGoogle Scholar
  457. 457.
    Schmidbaur H (1995) Ludwig Mond lecture. High-cart gold compounds. Chem Soc Rev 24:391–400CrossRefGoogle Scholar
  458. 458.
    Pyykkö P (1997) Strong closed-shell interactions in inorganic chemistry. Chem Rev 97:597–636CrossRefGoogle Scholar
  459. 459.
    Vogler A, Kunkely H (1988) Absorption and emission spectra of tetrameric gold(I) complexes. Chem Phys Lett 150:135–137CrossRefGoogle Scholar
  460. 460.
    Puddephatt RJ (2001) Coordination polymers: polymers, rings and oligomers containing gold(I) centres. Coord Chem Rev 216–217:313–332CrossRefGoogle Scholar
  461. 461.
    Yam VWW, Cheng ECC (2008) Highlights on the recent advances in gold chemistry – a photophysical perspective. Chem Soc Rev 37:1806–1813CrossRefGoogle Scholar
  462. 462.
    Yam VWW, Au VKM, Leung SYL (2015) Light-emitting self-assembled materials on d8 and d10 transition metal complexes. Chem Rev 115:7589–7728CrossRefGoogle Scholar
  463. 463.
    Balch AL (2007) Remarkable luminescence behaviors and structural variations of two-coordinate gold(I) complexes. Struct Bond 123:1–40CrossRefGoogle Scholar
  464. 464.
    Schmidbaur H, Schier A (2012) Aurophilic interactions as a subject of current research: an up-date. Chem Soc Rev 41:370–412CrossRefGoogle Scholar
  465. 465.
    He X, Lam WH, Zhu N, Yam VWW (2009) Design and synthesis of calixarene-based bis-alkynyl-bridged dinuclear AuI isonitrile complexes as luminescent ion probes by the modulation of Au⋅⋅⋅Au interactions. Chem Eur J 15:8842–8851CrossRefGoogle Scholar
  466. 466.
    Hau FKW, He X, Lam WH, Yam VWW (2011) Highly selective ion probe for Al3+ based on Au(I)⋅⋅⋅Au(I) interactions in a bis-alkynyl calix[4]arene Au(I) isocyanide scaffold. Chem Commun 47:8778–8780CrossRefGoogle Scholar
  467. 467.
    He X, Cheng ECC, Zhu N, Yam VWW (2009) Selective ion probe for Mg2+ based on Au(I)⋅⋅⋅Au(I) interactions in a tripodal alkynylgold(I) complex with oligoether pendants. Chem Commun 4016–4018Google Scholar
  468. 468.
    Zhou YP, Liu EB, Wang J, Chao HY (2013) Highly Ag+ selective tripodal gold(I) acetylide-based “off–on” luminescence chemosensors based on 3(ππ*) emission switching. Inorg Chem 52:8629–8637CrossRefGoogle Scholar
  469. 469.
    Lintang HO, Kinbara K, Tanaka K, Yamashita T, Aida T (2010) Self-repair of a one-dimensional molecular assembly in mesoporous silica by a nanoscopic template effect. Angew Chem Int Ed 49:4241–4245CrossRefGoogle Scholar
  470. 470.
    Lintang HO, Kinbara K, Yamashita T, Aida T (2012) Metal-ion permeation in congested nanochannels: the exposure effect of Ag+ ions on the phosphorescent properties of a gold(I)-pyrazolate complex that is confined in the nanoscopic channels of mesoporous silica. Chem Asian J 7:2068–2072CrossRefGoogle Scholar
  471. 471.
    Lee TKM, Zhu N, Yam VWW (2010) An unprecedented luminescent polynuclear gold(I) μ 3-sulfido cluster with a thiacrown-like architecture. J Am Chem Soc 132:17646–17648CrossRefGoogle Scholar
  472. 472.
    Jiang XF, Hau FKW, Sun QF, Yu SY, Yam VWW (2014) From {AuI⋅⋅⋅AuI}-coupled cages to the cage-built 2-D {AuI⋅⋅⋅AuI} arrays: AuI⋅⋅⋅AuI bonding interaction driven self-assembly and their AgI sensing and photo-switchable behavior. J Am Chem Soc 136:10921–10929CrossRefGoogle Scholar
  473. 473.
    Han S, Yoon YY, Jung OS, Lee YA (2011) Luminescence on–off switching via reversible interconversion between inter- and intramolecular aurophilic interactions. Chem Commun 47:10689–10691CrossRefGoogle Scholar
  474. 474.
    Koshevoy IO, Lin CL, Karttunen AJ, Haukka M, Shih CW, Chou PT, Tunik SP, Pakkanen TA (2011) Octanuclear gold(I) alkynyl-phosphine clusters showing thermochromic luminescence. Chem Commun 47:5533–5535CrossRefGoogle Scholar
  475. 475.
    Elbjeirami O, Omary MA (2007) Photochemistry of neutral isonitrile gold(I) complexes: modulation of photoreactivity by aurophilicity and π-acceptance ability. J Am Chem Soc 129:11384–11393CrossRefGoogle Scholar
  476. 476.
    Lei Z, Pei XL, Jiang ZG, Wang QM (2014) Cluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with gold(I) cluster. Angew Chem Int Ed 53:12771–12775CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hok-Lai Wong
    • 1
  • Margaret Ching-Lam Yeung
    • 1
  • Vivian Wing-Wah Yam
    • 1
    Email author
  1. 1.Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee, Hong Kong) and Department of Chemistry, The University of Hong KongHong KongChina

Personalised recommendations