Skip to main content

The Chemical Bond: Lewis and Kossel’s Landmark Contribution

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 169))

Abstract

The seminal papers of Lewis and Kossel in 1916 are put into a historical perspective. Mendeleev’s periodic table, Thompson’s discovery of the electron, Ramsay and Raleigh’s discovery of the noble gases, Rutherford’s model of the atom and Bohr’s description of the stationary orbitals for the electrons in atoms all paid an important role in providing the background for Lewis and Kossel’s proposal that the chemical bond originated either from the transfer of electrons or the sharing of electron pairs. These insights depended on the attainment of inert gas configurations by the atoms either directly by electron transfer or electron-pair sharing. The model incorporated an evolutionary gene which has enabled it to survive and grow by incorporating subsequent developments in quantum physics. The simplicity of the model has resulted in the development of a notation, which is universally used by chemists and has evolved to plot the course of chemical reactions and predict their regioselectivities. Its initial limitations are discussed, and the way in which they have been overcome by an orbitally based model is recounted. The model has been repeatedly enriched by quantum mechanically based theoretical studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ccp:

Cubic close packed

DFT:

Density functional theory

EAN:

Effective atomic number rule

Et:

Ethyl

hcp:

Hexagonal close packed

HOMO:

Highest occupied molecular orbital

LCAO:

Linear combination of atomic orbitals

LUMO:

Lowest unoccupied molecular orbital

Me:

Methyl

MO:

Molecular orbital

Ph:

Phenyl

VB:

Valence bond

VSEPR:

Valence shell electron-pair repulsion theory

XRD:

X-ray diffraction

References

  1. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  2. Lewis GN (1916) Steric hindrance and the existence of odd molecules. Proc Natl Acad Sci U S A 2:588–592

    Google Scholar 

  3. Lewis GN (1923) Valence and the structures of atoms and molecules. The Chemical Catalog, New York

    Google Scholar 

  4. Kossel W (1916) Formation of molecules and its dependence on atomic structure. Ann Phys 49:229–362

    Article  CAS  Google Scholar 

  5. Scerri ER (2007) The periodic table. Oxford University Press, Oxford

    Google Scholar 

  6. Ihde AI (1970) The development of modern chemistry. Harper Row, New York

    Google Scholar 

  7. Newlands JAR (1863–1866) Chem News 7:70; 10:59,94,240; 12:83;94; 13:113;130

    Google Scholar 

  8. Taylor W (1949) JAR Newlands: a pioneer in atomic numbers. J Chem Educ 26:491–495

    Article  CAS  Google Scholar 

  9. Meyer JL (1870) Die natur der chemischen Elemente als Function ihrer Atomgewichte. Ann Supplementband, VII:354–365

    Google Scholar 

  10. Scerri ER (1998) The evolution of the periodic system. Sci Am 9:78–83

    Article  Google Scholar 

  11. Mendeleev D (1869–1871) Osnovy Khimii (Foundations of chemistry) (in Russian). St. Petersburg: Tipogr. tovarishchestva “Obshchestvannaja Polza,” 5 parts in 2 volumes, 1st Edn. English transl (Principles of chemistry). Longmans, London: 1891, 1897, 1905

    Google Scholar 

  12. Mendeleev D (1869) On the relationship of the properties of the elements to their atomic weights. Zhurnal 1:60–77 (in Russian). doi: 10.1002/prac.18691060141 (Abstracted in Z Chem, 1869, 12:405–406)

  13. Mendeleev D (1889) The periodic law of the chemical elements (Faraday lecture, June 4th, 1889.). J Chem Soc 55:634–656. doi:10.1039/CT8895500634

    Article  CAS  Google Scholar 

  14. Mendeleev D (1895) Report on argon (Report of the Russian Chemical Society, Meeting, March 14th 1895) Nature 51:543–543

    Google Scholar 

  15. Russell CA (1971) The history of valency. Leicester University Press, Leicester

    Google Scholar 

  16. Ramsey W, Raleigh L (1895) Argon a new constituent of the atmosphere. Chem News 71:51–63

    Google Scholar 

  17. Berzelius JJ (1832) Traite de Chemie. Jahresberichte 11:210

    Google Scholar 

  18. Partington JR (1964) History of chemistry, vol 4. Macmillan, London, pp 142–177

    Book  Google Scholar 

  19. Frankland E (1866) Lecture notes for chemical students, embracing mineral and organic chemistry. London

    Google Scholar 

  20. Kekulé FA (1850) Ueber die Constitution und die Metamorpheser der Chemischen Verbindingen und über die Chemische Natur der Kohlenstoffs. Annalen 106:129–159

    Google Scholar 

  21. Couper AS (1859) Ueber die Constitution und Basicital der Salicylsaure. Annalen 110:46–50

    Google Scholar 

  22. Butlerov AM (1859) Bemerkungen über AS Couper’s neue chemische Theorie. Annalen 110:51–66

    Google Scholar 

  23. Kolbe H (1860) Bermorkungen über A.S. Couper’s neu chemische theorie. Annalen 115:157–206

    Google Scholar 

  24. Frankland E (1850) On the isolation of organic radicals. J Chem Soc 2:263

    Google Scholar 

  25. Kekulé FA (1850) Annalen 104:129–30

    Google Scholar 

  26. Kekulé FA (1861) Lehrbuch der organische chemie. Erlagen

    Google Scholar 

  27. Crum Brown A (1865) On the theory of isomeric compounds. J Chem Soc 18:230–245

    Article  Google Scholar 

  28. McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell Scientific, Oxford

    Google Scholar 

  29. Abegg R, Bodlander G (1899) Die Valenz und das Periodische System; Versuch einer Theorie der Molekular Verbindingen. Z Anorg Chem 20:453–496

    Article  Google Scholar 

  30. Abegg R (1904) Z Anorg Chem 39:335–380

    Article  Google Scholar 

  31. Drude P (1904) Optische Eigenschaften und Electronentheorie. Ann Phys 14:677–725

    Article  Google Scholar 

  32. Thomson JJ (1897) Discovery of the electron. Philos Mag 44:293–303

    Article  Google Scholar 

  33. Thomson JJ (1907) The corpuscular theory of matter. Archibald and Constable, London

    Google Scholar 

  34. Rutherford E (1911) The scattering of particles by matter and the structure of the atom. Philos Mag 21:669–689

    Article  CAS  Google Scholar 

  35. Moseley HGJ (1913) The high frequency spectra of the elements. Philos Mag 26:1024–1044

    Article  Google Scholar 

  36. Moseley HGJ (1914) Philos Mag 27:703–723

    Article  CAS  Google Scholar 

  37. Bohr N (1913) The constitution of atoms and molecules. Philos Mag 26:1–25

    Article  CAS  Google Scholar 

  38. Bohr N (1922) Atomic structure and the chemical and physical properties of the elements. Z Phys 9:1–67

    Article  CAS  Google Scholar 

  39. Sommerfeld A (1916) The Drude dispersion theory from the standpoint of Bohr’s model, and the constitution of hydrogen, oxygen, and nitrogen. Ann Phys 51:1

    Article  CAS  Google Scholar 

  40. Sommerfeld A (1916) Ann Phys 53:497–550

    Google Scholar 

  41. Sommerfeld A (1918) Phys Z 17:497–550

    Google Scholar 

  42. Langmuir I (1919) The arrangement of electrons in atoms and molecules. J Am Chem Soc 41:868–934

    Article  CAS  Google Scholar 

  43. Langmuir I (1919) Isomorphism, isosterism and covalence. J Am Chem Soc 41:1543–1559

    Article  CAS  Google Scholar 

  44. Langmuir I (1919) The structure of atoms and octet theory of valence. Proc Natl Acad Sci U S A 5:252–259

    Article  CAS  Google Scholar 

  45. Langmuir I (1921) Types of valence. Science 54:59–67

    Article  CAS  Google Scholar 

  46. Dirac PAM (1925) The fundamental equations of quantum mechanics. Proc Roy Soc 109:642–653

    Article  Google Scholar 

  47. Dirac PAM (1926) Proc Roy Soc 110:561–572

    Article  CAS  Google Scholar 

  48. Pauli W (1927) Ueber Garsentartung der Paramagnetismum. Z Phys 31:765–785

    Article  Google Scholar 

  49. Lennard-Jones JK (1952) The spatial correlation of electrons in molecules. J Chem Phys 20:1024–1030

    Article  CAS  Google Scholar 

  50. Linnett JW (1961) A modification of the Lewis-Langmuir octet rule. J Am Chem Soc 83:2643–2653

    Article  CAS  Google Scholar 

  51. Van’t Hoff JH (1874) A Suggestion looking to the extension into space of the structural formulae at present used in chemistry. And a note upon the relation between the optical activity and the chemical constitution of organic compounds. Arch Neerl Sci Exactes Nat 9:445–454

    Google Scholar 

  52. leBel JA (1874) On the relations which exist between the atomic formulas of organic compounds and the rotatory power of their solutions. Bull Soc Chem Fr 22:337–367

    Google Scholar 

  53. Sidgwick NV (1923) Co-ordination compounds and the Bohr atom. J Chem Soc 123:725–730

    Article  CAS  Google Scholar 

  54. Sidgwick NV (1927) The electronic theory of valency. Clarendon, Oxford

    Google Scholar 

  55. Pauling L (1938) The nature of the chemical bond, 1st edn. Cornell University Press, Ithaca

    Google Scholar 

  56. Pauling L, Huggins ML (1934) Covalent radii of atoms and interatomic distances in crystals containing electron-pair bond. Z Krist 87:205–238

    CAS  Google Scholar 

  57. Pauling L (1938) The nature of inter-atomic forces in metals. Phys Rev 54:899

    Article  CAS  Google Scholar 

  58. Pauling L (1947) Atomic radii and intra-atomic distances in metals. J Am Chem Soc 69:542–553

    Article  CAS  Google Scholar 

  59. Pauling L (1932) The nature of the chemical bond III, the transition from one bond extreme to another. J Am Chem Soc 54:988–1003

    Article  CAS  Google Scholar 

  60. Pauling L (1940) The nature of the chemical bond, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  61. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  62. Pauling L (1932) The nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  63. Ingold CK (1922) The structure of the benzene nucleus. Part 1. Intra-nuclear tautomerism. J Chem Soc Trans 121:1133–1143

    Article  CAS  Google Scholar 

  64. Ingold CK (1925) The nature of the alternating effect in carbon chains. Part I. The directive influence of the nitroso-group. J Chem Soc 127:513–518

    Article  CAS  Google Scholar 

  65. Holmes EL, Ingold CK (1925) The nature of the alternating effect in carbon chains. Part III. A comparative study of the directive efficiencies of oxygen nitrogen atoms in aromatic substitution. J Chem Soc 127:1800–1821

    Article  CAS  Google Scholar 

  66. Kermach WO, Robinson R (1922) Explanation of the property of induced polarity of atoms and an interpretation of the theory of partial valency on an electronic basis. J Chem Soc Trans 121:427–440

    Article  Google Scholar 

  67. Lapworth A (1922) Theoretical derivation of the principle of induced alternate polarities. J Chem Soc Trans 121:416–427

    Article  CAS  Google Scholar 

  68. Robinson Sir Robert (1976) The memoirs of a minor prophet – 70 years of organic chemistry. Elsevier, Oxford

    Google Scholar 

  69. Todd L, Cornforth JW (1976) Sir Robert Robinson. Biographical Memoirs of the Royal Society 22:415–527

    Google Scholar 

  70. Pauling L, Wheland GW (1933) Nature of the chemical bond V. The quantum mechanical calculation of the resonance energies in benzene and naphthalene and the hydrocarbon free radicals. J Chem Phys 1:362–374

    Article  CAS  Google Scholar 

  71. Wheland GW (1942) A quantum mechanical investigation of the orientation of substituents in aromatic molecules. J Am Chem Soc 64:900–908

    Article  CAS  Google Scholar 

  72. Pauling L, Wheland GW (1935) The quantum mechanical discussion of the orientation of substituents in organic molecules. J Am Chem Soc 57:2086–2095

    Article  Google Scholar 

  73. Sutton LE (1940) Electron diffraction by gases and vapours and electric dipole moments. Ann Rep Chem Soc 37:36–80

    Google Scholar 

  74. Sidgwick NV, Sutton LE, Thomas W (1933) Dipole moments and the structures of organic azides and aliphatic diazo compounds. J Chem Soc 406–412

    Google Scholar 

  75. Sidgwick NV, Sutton LE, Hammick DL, New RCA (1930) Structures of the isocyanides and other compounds of bivalent compounds. J Chem Soc 1876–1887

    Google Scholar 

  76. Haaland A (2008) Molecules and models. Oxford University Press, Oxford

    Book  Google Scholar 

  77. Power PP (1998) Homonuclear multiple bonding in heavier main group elements. J Chem Soc Dalton Trans 2939

    Google Scholar 

  78. Weidenbruch M (1999) Some recent advances in the chemistry of silicon and its homologues in low co-ordination states. J Organomet Chem 646:39–52

    Article  Google Scholar 

  79. Bury CR (1921) Langmuir’s theory of the arrangement of electrons in molecules. J Am Chem Soc 43:1602–1609

    Article  CAS  Google Scholar 

  80. Blanchard AA, Gulliland WL (1926) The constitution of nickel carbonyl and the nature of secondary valency. J Am Chem Soc 48:872–882

    Article  CAS  Google Scholar 

  81. Sidgwick NV (1923) The nature of non-polar link. Trans Faraday Soc 19:469–475

    Article  Google Scholar 

  82. Reiff F (1931) Konstitution und Eigenschaften der Co(NO)(CO)3. Z Anorg Chem 202:375–381

    Article  CAS  Google Scholar 

  83. Sidgwick NV, Bailey RM (1934) Structures of metallic carbonyls and nitrosyls. Proc Roy Soc A144:521–537

    Article  Google Scholar 

  84. Mitchell PR, Parish RV (1969) The eighteen-electron rule. J Chem Educ 46:811–814

    Article  CAS  Google Scholar 

  85. Jensen WB (2005) The origin of the 18 electron rule. J Chem Educ 82:28–29

    Article  CAS  Google Scholar 

  86. Green JC, Green MLH, Parkin G (2012) The occurrence and representation of three-centre two-electron bonds in covalent inorganic compounds. J Chem Soc Chem Commun 48:11481–11503

    Article  CAS  Google Scholar 

  87. Green MLH (1995) A new approach to the classification of covalent compounds of the elements. J Organomet Chem 500:127–148

    Article  CAS  Google Scholar 

  88. Sidgwick NV, Powell HW (1940) Stereochemical types valency groups. Proc R Soc London Ser A 176:153–180

    Article  CAS  Google Scholar 

  89. Gillespie RJ, Nyholm RS (1958) Stereochemistry of inorganic molecules and complex ions inorganic stereochemistry. Progr Stereochem (Academic, New York) 2:261–305

    Google Scholar 

  90. Gillespie RJ, Nyholm R (1957) Inorganic stereochemistry. Q Rev Chem Soc 17:339–380

    Article  Google Scholar 

  91. Gillespie RJ, Popelier PLA (2001) Chemical bonding and molecular geometry. Oxford University Press, New York, pp 154–155

    Google Scholar 

  92. Gillespie RJ, Robinson EA (2006) Gilbert N Lewis and the chemical bond: the electron pair and the octet rule from 1916 to the present day. J Comput Chem 28:87–97

    Article  CAS  Google Scholar 

  93. Mingos DMP, Hawes JC (1985) Complementary spherical electron density model. Struct Bond 63:1–63

    Article  CAS  Google Scholar 

  94. Mingos DMP, Zhenyang L (1989) Non-bonding orbitals in co-ordination, hydrocarbon and cluster compounds. Struct Bond 71:1–56

    Article  CAS  Google Scholar 

  95. Mingos DMP (2004) Complementary spherical electron density model and its implications to 18 electron rule. J Organomet Chem 689:4420–4436

    Article  CAS  Google Scholar 

  96. Mingos DMP (2006) The relevance of the complementary spherical electron density model to organometallic intermediates in homogeneous catalysis. J Organomet Chem 691:3165–3175

    Article  CAS  Google Scholar 

  97. Lin Z (2016) Lewis description of bonding in transition metal complexes. Struct Bond. doi:10.1007/430_2015_182

    Google Scholar 

  98. Hoffman RV (2004) Organic chemistry an intermediate text. Wiley, New York

    Book  Google Scholar 

  99. Mingos DMP, Crabtree R (2007) Comprehensive organometallic chemistry 3. Elsevier, Oxford

    Google Scholar 

  100. Ghosh A, Berg S (2014) Arrow pushing in inorganic chemistry: a logical approach to the chemistry of main group elements. Wiley, New York

    Book  Google Scholar 

  101. Mingos DMP (1998) Essential trends in inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  102. Longuet-Higgins HC, Bell RP (1943) The structure of boron hydrides. J Chem Soc 250–255

    Google Scholar 

  103. Lipscomb WN (1959) Recent studies on boron hydrides. Adv Inorg Radiochem 1:118–157

    Google Scholar 

  104. Bartlett N (1962) Xenonhexafluoroplatinate. Proc Chem Soc, pp 218

    Google Scholar 

  105. Bartlett N, Lohmann DH (1964) Fluorides of the noble metals III fluorides of platinum. J Chem Soc 619–626

    Google Scholar 

  106. Moeller T (1952) Inorganic chemistry. Wiley, New York

    Google Scholar 

  107. Dye JL, Andrews CW, Mathews SE (1975) Strategies for the preparation of compounds of alkali metal anions. J Phys Chem 79:3065–3070

    Article  CAS  Google Scholar 

  108. Orgel LE (1960) Introduction to transition metal chemistry. Methuen, London

    Google Scholar 

  109. Kotz JC, Treichel P (1999) Chemistry and chemical reactivity, 4th edn. Saunders College, New York

    Google Scholar 

  110. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules Part I. J Chem Soc 2260–2265

    Google Scholar 

  111. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules Part II. J Chem Soc 2266–2295

    Google Scholar 

  112. Walsh AD (1953), The electronic orbitals, shapes and spectra of polyatomic molecules Part III. J Chem Soc 2296–2300

    Google Scholar 

  113. Walsh AD (1953) The electronic orbitals, shapes and spectra of polyatomic molecules Part IV. J Chem Soc 2301–2305

    Google Scholar 

  114. Walsh AD (1953) The lectronic electronic orbitals, shapes and spectra of polyatomic molecules Part V. J Chem Soc 2306–2310

    Google Scholar 

  115. Herzberg G (1967) Molecular structure and molecular spectra. Van Nostrand, New York

    Google Scholar 

  116. Molina JM, Dobado JA (2001) The three-centre four –electron model revisited. An atoms in molecules approach (AIM) and ELF study. Theor Chem Acta 105:328–337

    Article  CAS  Google Scholar 

  117. Noury S, Silvi B, Gillespie RJ (2002) Chemical bonding in hypervalent molecules: is the octet rule relevant? Inorg Chem 41:2164–2172

    Article  CAS  Google Scholar 

  118. See RF (2009) Which method of assigning bond orders in Lewis structures best reflects experimental data? J Chem Educ 86:1241–1247

    Article  CAS  Google Scholar 

  119. Haaland A, Tilset M (2016) Lewis and Kossel’s legacy – structure and bonding in main group compounds. Struct Bond. doi:10.1007/430_2015_192

    Google Scholar 

  120. Stalke D (2016) Charge density and chemical bonding. Struct Bond. doi:10.1007/430_2015_199

    Google Scholar 

  121. Grimm HG, Gunther M, Tittus H (1931) Zur Kenntnis der isomorphen Vetretbarkeit nichtpolar gebundener Atome und Atomgruppen. Z Phys Chem 14B:169

    Google Scholar 

  122. Grimm HG (1925) Z Elektrochem 31:474

    CAS  Google Scholar 

  123. Grimm HG (1929) Naturzisseenchaften 17:535

    Google Scholar 

  124. Erlenmeyer H, Leo M (1932) Uber pseudoatome. Helv Chim Acta 15:1171–1186

    Article  CAS  Google Scholar 

  125. Hückel E (1931) Quantum theoretical contributions to the benzene problem I, II. The electron configuration of benzene and related compounds. Z Phys 70(204–309):310–349

    Article  Google Scholar 

  126. Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill, New York

    Google Scholar 

  127. Longuet-Higgins HC, de V Roberts M (1955) The electronic structure of an icosahedron of boron atoms. Proc Roy Soc 230:110–119

    Article  CAS  Google Scholar 

  128. Mingos DMP, Johnston RL (1987) Theoretical models of cluster bonding. Struct Bond 68:31–82

    Google Scholar 

  129. Williams RE (1971) Carboranes and boranes; polyhedra and polyhedral fragments. Inorg Chem 10:210–214

    Article  CAS  Google Scholar 

  130. Wade K (1971) Structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes, and borane anions, and various transition metal carbonyl cluster compounds. J Chem Soc Chem Commun 792–793

    Google Scholar 

  131. Mingos DMP (1971) A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci 236:99–102

    Article  Google Scholar 

  132. Rudolph RW (1976) Boranes and heteroboranes: a paradigm for the electron requirements of clusters? Acc Chem Res 9:446–452

    Article  CAS  Google Scholar 

  133. Mingos DMP, Johnston RL (1987) Group theoretical paradigms for describing the skeletal molecular orbitals of cluster compounds I and II. J Chem Soc Dalton Trans 647–656; 1445–1456

    Google Scholar 

  134. Stone AJ (1981) New approach to bonding in transition-metal clusters and related compounds. Inorg Chem 20:563–571

    Article  CAS  Google Scholar 

  135. Stone AJ (1981) The bonding in boron and transition-metal cluster compounds. Polyhedron 3:1299–1306

    Article  Google Scholar 

  136. Elian M, Chen MML, Mingos DMP, Hoffmann R (1976) A comparative study of conical fragments. Inorg Chem 15:1148–1155

    Article  CAS  Google Scholar 

  137. Hoffmann R (1982) Building bridges between inorganic and organic chemistry, Nobel Prize Lecture. Angew Chem Int Ed 21:711–724

    Article  Google Scholar 

  138. Weinhold F, Landis C (2005) Valency and bonding. Cambridge University Press, Cambridge, pp 96–100

    Book  Google Scholar 

  139. Allen HF, Kennard O, Taylor R (1983) Systematic analysis of structural data as a research technique in organic chemistry. Acc Chem Res 16:146–153

    Article  CAS  Google Scholar 

  140. Cotton FA, Walton RA (1993) Multiple bonds between metal atoms, 2nd edn. Clarendon University Press, Oxford

    Google Scholar 

  141. Desclaux JP (1973) Relativistic Dirac-Fock expectation values for atoms with Z =1 to Z = 120. At Data Nucl Data Tables 12:311–406

    Article  CAS  Google Scholar 

  142. Gavroglu K, Simoes A (1994) Early ideas in the history of quantum chemistry. Hist Stud Phys Sci 25:47–110

    Article  Google Scholar 

  143. Burrau Ø (1927) Berechnung des Energiewertes des Wasserstoffmolekel-Ions (H2 +) im Normalzustand. Danske Vidensk. Selskab. Math.-fys. Meddel (in German) M 7:14: 1–18

    Google Scholar 

  144. Burrau Ø (1927) The calculation of the energy value of hydrogen molecule ions (H2+) in their normal position. Naturwissen 15:16–17

    Article  CAS  Google Scholar 

  145. Heitler W, London F (1927) Interaction of neutral atoms according and homoplar binding according to the quantum mechanics. Z Phys 44:455–472

    Article  CAS  Google Scholar 

  146. Hettema H (2000) English translation - Quantum chemistry: classic scientific papers. World Scientific, London, pp 140–161

    Google Scholar 

  147. Pauli W (1922) Über das Modell des Wasserstoffmolekülions. Ann Phys 373:177–240

    Article  Google Scholar 

  148. Pauli W (1922) Extended doctoral dissertation; received 4 Mar 1922, published in issue no 11 of 3 Aug 1922

    Google Scholar 

  149. Hund F (1926) Zur Deutung einiger Erscheinungen in den Molekelspektren (On the interpretation of some phenomena in molecular spectra). Z Phys 36:657–674

    Article  CAS  Google Scholar 

  150. Urey HC (1925) The structure of the hydrogen molecule ion. Proc Natl Acad Sci U S A 11:618–621

    Article  CAS  Google Scholar 

  151. Lennard-Jones JK (1929) The electronic structure of some diatomic molecules. Trans Faraday Soc 25:668–686

    Article  CAS  Google Scholar 

  152. Pauling L (1928) The application of the quantum mechanics to the structure of the hydrogen molecule and hydrogen molecule-ion and to related problems. Chem Rev 5:173–213

    Article  Google Scholar 

  153. Slater JC (1931) Directed valence in polyatomic molecules. Phys Rev 37:481–489

    Article  CAS  Google Scholar 

  154. James HM, Coolidge AS (1933) The ground state of the hydrogen molecule. J Chem Phys 1:825–835

    Article  CAS  Google Scholar 

  155. Li J, McWeeny R (2002) Pushing valence bond to new limits. Int J Quantum Chem 89:208–216

    Article  CAS  Google Scholar 

  156. Engelberts JJ, Havenith RWA, van Lenthe JH, Jenneskens LW, Fowler PW (2005) The electronic structure of inorganic benzenes: valence bond and ring current descriptions. Inorg Chem 44:5266–5274

    Article  CAS  Google Scholar 

  157. Shaik S, Hiberty PC (2004) Valence bond theory, its history, fundamentals and applications: a primer. Rev Comput Chem 20:1–100

    CAS  Google Scholar 

  158. Shaik S, Hiberty PC (1995) Valence bond mixing and curve crossing diagrams in chemical reactivity and bonding. Adv Quantum Chem 26:99–163

    Article  CAS  Google Scholar 

  159. Coulson CA, Fisher I (1949) Notes on the molecular orbital theory of the hydrogen molecule. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Series 7 40:386–393

    Google Scholar 

  160. Hunt WJ, Hay PJ, Goddard WA (1972) Self-consistent procedures for generalised valence bond wavefunctions. Applications H3, BH, H2O, C2H6 and O3. J Chem Phys 57:738–748

    Article  Google Scholar 

  161. Goodgame MM, Goddard WA (1985) Modified generalized valence-bond method: a simple correction for the electron correlation missing in generalized valence-bond wave functions; prediction of double-well states for Cr2 and Mo2. Phys Rev Lett 54:661–664

    Article  CAS  Google Scholar 

  162. Hund F (1927) Zur Deutung der Molekelspektren. I. Z Phys 40:742–764

    Article  CAS  Google Scholar 

  163. Hund F (1928) Zur Deutung der Molekelspektren. II. Z Phys 42:93–120

    Article  Google Scholar 

  164. Hund F (1928) Zur Deutung der Molekelspektren. III. Z Phys 43:805–826

    Article  Google Scholar 

  165. Hund F (1928) Zur Deutung der Molekelspektren. IV. Z Phys 51:759–795

    Article  CAS  Google Scholar 

  166. Hund F (1930) Zur Deutung der Molekelspektren. V. Z Phys 63:719–751

    Article  CAS  Google Scholar 

  167. Mulliken RS (1927) Electronic states. IV. Hund’s theory; second positive nitrogen and Swan bands; alternate intensities. Phys Rev 29:637–649

    Article  CAS  Google Scholar 

  168. Mulliken RS (1928) The assignment of quantum numbers for electrons in molecules. Phys Rev 32:186–222

    Article  CAS  Google Scholar 

  169. Kutzelnigg W (1966) Hund and chemistry -the occasion of Hund’s 100th birthday. Angew Chem Int Ed 35:573–586

    Google Scholar 

  170. Mulliken RS (1967) Spectroscopy, molecular orbitals and chemical bonding, Nobel Lecture. Science 157:13–24

    Article  CAS  Google Scholar 

  171. Mulliken RS (1932) The interpretation of band spectra part III. Electron quantum numbers and states of molecules and their atoms. Rev Mod Phys 4:1

    Article  CAS  Google Scholar 

  172. Fehlner TP, Bowser JR (1988) Proton power: an intuitive approach to the electronic structures of molecule hydrides. J Chem Educ 65:976–980

    Article  CAS  Google Scholar 

  173. Lowe JP (1978) Quantum chemistry. Academic, New York, pp 168–192

    Google Scholar 

  174. Woodward RB, Hoffmann R (1965) Stereochemistry of electrocyclic reactions. J Am Chem Soc 87:395–397

    Article  CAS  Google Scholar 

  175. Woodward RB, Hoffmann R (1968) Conservation of orbital symmetry. Acc Chem Res 1:17–22

    Article  Google Scholar 

  176. Longuet-Higgins HC, Abrahamson EW (1965) The electronic mechanism of electrocyclic reactions. J Am Chem Soc 87:2045–2046

    Article  CAS  Google Scholar 

  177. Fukui K (1992) Nobel Prize Lecture, Chemistry, 1981–1990. The role of frontier orbitals in chemical reactions, vol 3. World Scientific, New York, p 27

    Google Scholar 

  178. Fukui K (1981) The path of chemical reactions – the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  179. Fukui K (1965) The stereoselectivity associated with noncycloaddition to unsaturated bonds. Tetrahedron Lett 28:2427–2432

    Article  Google Scholar 

  180. Fukui K, Fujimoto H (1966) Bull Chem Soc Jpn 39:498

    Article  CAS  Google Scholar 

  181. Zimmerman HE (1966) Molecular orbital correlation diagrams, Möbius systems and factors controlling ground and excited state reactions I and II. J Am Chem Soc 88(1564–1566):1566–1567

    Article  CAS  Google Scholar 

  182. Dewar MJS (1966) A molecular orbital theory of organic chemistry VII – aromaticity and electrocyclic reactions. Tetrahedron 22(Suppl 8):75–92

    Article  Google Scholar 

  183. Fukui K (1965) Stereospecificity with respect to cyclic reactions. Tetrahedron Lett 6:2009–2015

    Article  Google Scholar 

  184. Fukui K, Fujimoto H (1966) Bull Chem Soc Jpn 39:2116

    Article  CAS  Google Scholar 

  185. Dewar MJS (1969) The molecular orbital theory of organic chemistry. McGraw-Hill & Co, New York

    Google Scholar 

  186. Dewar MJS (1949) The electronic theory of organic chemistry. Oxford University Press, Oxford

    Google Scholar 

  187. Dewar MJS (1952) A molecular orbital theory of organic chemistry I-VI. J Am Chem Soc 74:3341; 3345; 3350; 3353; 3355; 3357

    Google Scholar 

  188. Dewar MJS, Longuet-Higgins HC (1952) The correspondence between resonance and molecular orbital theories. Proc Roy Soc Ser A 21:482–493

    Article  Google Scholar 

  189. Longuet-Higgins HC (1950) Molecular orbital theory 1-III. J Chem Phys 18:265–274; 275–282; 283–291

    Google Scholar 

  190. Hoffmann R (1963) Extended Hückel theory I – hydrocarbons. J Chem Phys 39:1397–1412

    Article  CAS  Google Scholar 

  191. Albright TA, Burdett JK, Whangbo M-H (1985) Orbital interactions in chemistry. Wiley, New York

    Google Scholar 

  192. Pearson RG (1976) The symmetry rules for chemical reactions. Wiley, New York

    Google Scholar 

  193. Gimarc BM (1979) Molecular structure and bonding. Academic, New York

    Google Scholar 

  194. Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. VCH, Weinheim

    Google Scholar 

  195. Hieber W (1942) The present status of the chemistry of metal-carbonyls. Die Chem 55:24–28

    CAS  Google Scholar 

  196. Hieber W (1970) Metal carbonyls, forty years of research. Adv Organomet Res 8:1–28

    Article  CAS  Google Scholar 

  197. Chatt J (1950) The co-ordinate link in chemistry. Nature (London) 165:637

    Article  CAS  Google Scholar 

  198. Chatt J, Duncanson LA (1953) Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 2939–2953

    Google Scholar 

  199. Chatt J, Willians AA (1951) The nature of the co-ordinate link IV. Complex formation by phosphorus trifluoride. J Chem Soc 3061–3078

    Google Scholar 

  200. Wilkinson G (1951) The preparation and properties of tetrakistribromophosphine-nickel and tetrakistrifluorophosphinenickel. J Am Chem Soc 73:5501–5502

    Article  CAS  Google Scholar 

  201. Dewar MJS (1951) A review of π complex theory. Bull Soc Chim Fr 18:C79

    Google Scholar 

  202. Mingos DMP (2002) A historical perspective on Dewar’s landmark contribution to organometallic chemistry. J Organomet Chem 635:1–8

    Article  Google Scholar 

  203. Orgel LE (1956) Electronic structures of some mixed compounds of cyclopentadienyl and carbon monoxide or nitric oxide with the transition metals. J Inorg Nucl Chem 2:315–322

    Article  CAS  Google Scholar 

  204. Cotton FA, Wilkinson G (1962) Advanced inorganic chemistry: a comprehensive text. Intersciene/Wiley, New York

    Google Scholar 

  205. Craig DP, Macoll A, Nyholm RS, Orgel LE (1954) Chemical bonds involving d orbitals I. J Chem Soc 332–353

    Google Scholar 

  206. Craig DP, Macoll A, Nyholm RS, Orgel LE (1954) Chemical bonds involving d orbitals II. J Chem Soc 354–357

    Google Scholar 

  207. Wilkinson G, Rosenblum M, Whiting MC, Woodward RB (1952) The structure of iron bis(cyclopentadienyl). J Am Chem Soc 74:2125–2156

    Google Scholar 

  208. Dunitz JD, Orgel LE (1953) Dicyclopentadienyliron: a molecular sandwich. Nature 171:121–122

    Article  CAS  Google Scholar 

  209. Orgel LE (1955) Electronic structure of metal bis-cyclopentadienyls. J Chem Phys 23:954–958

    Article  Google Scholar 

  210. Moffitt W (1954) The electronic structure of bis-cyclopentadienyl compounds. J Am Chem Soc 76:3386–3392

    Article  CAS  Google Scholar 

  211. Orgel LE (1952) The effects of crystal field theory on the properties of transition metal ions. J Chem Soc 4756–4761

    Google Scholar 

  212. Orgel LE (1955) Electronic structure of transition metal complexes. J Chem Phys 23:1819–1823

    Article  CAS  Google Scholar 

  213. Orgel LE (1955) Spectra of transition metal complexes. J Chem Phys 23:1004–1014

    Article  CAS  Google Scholar 

  214. Kubas G (2014) Activation of dihydrogen and co-ordiantion of molecular H2 to transition metals. J Organomet Chem 751:33–49

    Article  CAS  Google Scholar 

  215. Brookhart M, Green MLH (1988) Carbon-hydrogen-transition metal bonds. Prog Inorg Chem 36:1–124

    Article  CAS  Google Scholar 

  216. Braunschweig H, Gruss K, Radachki K (2007) Interaction between d and p block metals. Synthesis and structure of platinum alane adducts. Angew Chem Int Ed 46:7782–7784

    Article  CAS  Google Scholar 

  217. Amgoune A, Bourissou D (2011) σ-Acceptor Z-type ligands for transition metals. J Chem Soc Chem Commun 47:859–871

    Article  CAS  Google Scholar 

  218. Mingos DMP (2014) A theoretical analysis of ambivalent and ambiphilic Lewis acid/bases with symmetry signatures. Coord Chem Rev 293–294:2–18

    Google Scholar 

  219. Winkler JR, Gray HB (2012) Electronic structures of oxo-metal ions. Struct Bond 142:17–28

    Article  CAS  Google Scholar 

  220. Hinchcliffe A (2000) Modelling molecular structures, 2nd edn. Wiley, Chichester

    Google Scholar 

  221. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, Mineola

    Google Scholar 

  222. Kaltsoyanis N, McGrady JE (2004) Principles and applications of density functional theory in inorganic chemistry I. Struct Bond 112:1–189

    Article  CAS  Google Scholar 

  223. Kaltsoyanis N, McGrady JE (2004) Principles and applications of density functional theory in inorganic chemistry II. Struct Bond 113:1–232

    Article  CAS  Google Scholar 

  224. Putz MV, Mingos DMP (2012) Application of density functional theory to chemical reactivity. Struct Bond 149:1–186

    Article  CAS  Google Scholar 

  225. Putz MV, Mingos DMP (2012) Application of density functional theory biological and bioinorganic chemistry. Struct Bond 150:1–231

    Article  CAS  Google Scholar 

  226. Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. Wiley, New Jersey

    Book  Google Scholar 

  227. Weinhold F, Landis CR (2001) Natural bond orbitals and extensions of localized bonding concepts. Chem Educ Res Pract 2:91–104

    Article  CAS  Google Scholar 

  228. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  229. McWeeny R (1979) Coulson’s valence, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  230. Coulson CA (1961) Valence, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael P. Mingos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mingos, D.M.P. (2016). The Chemical Bond: Lewis and Kossel’s Landmark Contribution. In: Mingos, D. (eds) The Chemical Bond I. Structure and Bonding, vol 169. Springer, Cham. https://doi.org/10.1007/430_2015_203

Download citation

Publish with us

Policies and ethics