Progress in the Area of High Energy Density Materials

  • Thomas M. KlapötkeEmail author
  • Robert D. Chapman
Part of the Structure and Bonding book series (STRUCTURE, volume 172)


Great strides have been made in increasing performance and decreasing sensitivity in energetic materials since the first commercialization of nitroglycerine (NG) in the form of dynamite in 1867 by Alfred Nobel. However, the high energy manufacturers continue to rely on traditional chemicals to meet their needs. New energetic materials must be developed to extend their capabilities and handling capabilities. The new materials which have been prepared recently have led to new possibilities. Important advances have been made especially in the area of high-nitrogen compounds, organic difluoramine derivatives. Computational simulations have also led not only to a greater insight into the basic thermodynamics and kinetics of these materials but also their practical behavior in the field. This chapter summarizes new developments that have been achieved since Volume 126 of Structure and Bonding, which was published in 2007 and gave a comprehensive review of the field.


Difluoramine compounds Explosives Fluorine explosives High-nitrogen compounds N-oxides 



1:1 Mixture of bis(2,2-dinitropropyl) acetal and bis(2,2-dinitropropyl) formal


Carbonic dihydrazidinium bis[3-(5-nitroimino-1,2,4-triazolate)] DNAN dinitroanisole








2,6-Diamino-3,5-dinitropyrazine 1-oxide






Propyl nitroguanidine




Bis(hydroxylammonium) 5,5′-bitetrazolate 1,1′-dioxide





Financial support of this work by the Ludwig Maximilian University of Munich (LMU), the US Army Research Laboratory (ARL), the Armament Research, Development and Engineering Center (ARDEC), the Office of Naval Research (ONR) under grant no. ONR.N00014-12-1-0538, and the Bundeswehr–Wehrtechnische Dienststelle für Waffen und Munition (WTD 91) under grant no. E/E91S/FC015/CF049 is gratefully acknowledged. The authors acknowledge collaborations with Dr. Muhamed Suceska (Brodarski Institut, Croatia) in the development of new computational codes to predict the detonation and propulsion parameters of novel explosives. We are indebted to and thank Drs. Betsy M. Rice and Ed Byrd (ARL, Aberdeen Proving Ground, MD) and Dr. Anthony Bellamy for many inspired discussions and their help preparing this chapter.


  1. 1.
    Gökçınar E, Klapötke TM, Bellamy AJ (2010) J Mol Struct (TheoChem) 953:18–23CrossRefGoogle Scholar
  2. 2.
    Bellamy AJ, Contini, AE, Andrews MRG (2009) New trends in research of energetic materials. In: Proceedings of the seminar, 12th, Pardubice, Czech Republic, April 1–3 (Pt. 2) pp 473–480Google Scholar
  3. 3.
    Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) J Mater Chem 22(38):20418–20422CrossRefGoogle Scholar
  4. 4.
    Fischer N, Klapötke TM, Matecic MS, Stierstorfer J, Suceska M (2013) TKX-50, new trends in research of energetic materials, Part II, Czech Republic, pp 574–585Google Scholar
  5. 5.
    Golubev V, Klapötke TM, Stierstorfer J (2014) TKX-50 and MAD-X1 – a progress report, 40th international pyrotechnics seminar, Colorado Springs, CO, July 13–18Google Scholar
  6. 6.
    Klapötke TM (2015) Chemistry of high-energy materials, 3rd edn. de Gruyter, BerlinCrossRefGoogle Scholar
  7. 7.
    Wang R, Xu H, Guo Y, Sa R, Shreeve JM (2010) J Am Chem Soc 32:11904CrossRefGoogle Scholar
  8. 8.
    Chapman RD (2007) Struct Bond 125:123CrossRefGoogle Scholar
  9. 9.
    Ye C, Gao H, Shreeve JM (2007) J Fluor Chem 128:1410CrossRefGoogle Scholar
  10. 10.
    Chapman RD, Groshens TJ (2009) US Patent 7,563,889Google Scholar
  11. 11.
    Chapman RD, Groshens TJ (2009) US Patent 7,632,943Google Scholar
  12. 12.
    Chapman RD, Groshens TJ (2013) US Patent 8,444,783Google Scholar
  13. 13.
    Chapman RD, Welker MF, Kreutzberger CB (1998) J Org Chem 63:1566CrossRefGoogle Scholar
  14. 14.
    Chapman RD, Hollins RA (2011) US Patent 8,008,527Google Scholar
  15. 15.
    Chapman RD, Hollins RA, Groshens TJ, Thompson D, Schilling TJ, Wooldridge D, Cash PN, Jones TS, Ooi GT (2014) N,N-Dihaloamine explosives as harmful agent defeat materials. Technical report DTRA-TR-14-26. Defense Threat Reduction Agency, Fort Belvoir, VA. Accessed 7 June 2015
  16. 16.
    Kang L, Liu J, Zhang M, Liu H (2011) Huaxue Tuijinji Yu Gaofenzi Cailiao 9(5):93Google Scholar
  17. 17.
    Lawton EA, Cain EFC, Shefhan DF, Warner M (1961) J Inorg Nucl Chem 17:188CrossRefGoogle Scholar
  18. 18.
    Parker CO, Freeman JP (1970) Inorg Synth 12:307Google Scholar
  19. 19.
    Belter RK (2011) J Fluor Chem 132:961CrossRefGoogle Scholar
  20. 20.
    Belter RK (2012) J Fluor Chem 137:73CrossRefGoogle Scholar
  21. 21.
    Belter RK (2015) J Fluor Chem 175:110CrossRefGoogle Scholar
  22. 22.
    Zhang M, Liu H, Gao B, Zhang L, Kang L, Zhang K (2012) Hanneng Cailiao 20:314Google Scholar
  23. 23.
    Archibald TG, Manser GE, Immoos JE (1993) US Patent 5,272,249Google Scholar
  24. 24.
    Archibald TG, Manser GE, Immoos JE (1995) US Patent 5,420,311Google Scholar
  25. 25.
    McPake CB, Murray CB, Sandford G (2013) Aust J Chem 66:145CrossRefGoogle Scholar
  26. 26.
    Weck PF, Gobin C, Kim E, Pravica MG (2009) J Raman Spectrosc 40:964CrossRefGoogle Scholar
  27. 27.
    Erben MF, Padro JM, Willner H, Della Védova CO (2009) J Phys Chem A 113:13029CrossRefGoogle Scholar
  28. 28.
    Chapman RD (2012) US Patent 8,221,566Google Scholar
  29. 29.
    Li H, Wang W, Zhang L, Pan R (2013) Int Annu Conf ICT 44:40/1Google Scholar
  30. 30.
    Li H, Pan R, Wang W, Zhang L (2014) Propellants Explos Pyrotech 39:819CrossRefGoogle Scholar
  31. 31.
    Li H, Pan R, Wang W, Zhang L (2014) J Therm Anal Calorim 118:189CrossRefGoogle Scholar
  32. 32.
    Wang W, Li H, Zhang L, Pan R (2013) Int Annu Conf ICT 44:41/1Google Scholar
  33. 33.
    Fan XW, Ju XH (2007) J Comput Chem 29:505CrossRefGoogle Scholar
  34. 34.
    Ju XH, Wang ZY, Xiao HM (2007) J Chin Chem Soc 54:313 (Taipei, Taiwan)CrossRefGoogle Scholar
  35. 35.
    Fan XW, Ju XH, Xia QY, Xiao HM (2008) J Hazard Mater 151:255CrossRefGoogle Scholar
  36. 36.
    Campanelli AR, Domenicano A, Ramondo F (2011) Struct Chem 22:449CrossRefGoogle Scholar
  37. 37.
    Campanelli AR, Domenicano A, Hnyk D (2015) J Phys Chem A 119:205CrossRefGoogle Scholar
  38. 38.
    Liu Y, Wang L, Wang G, Du H, Gong X (2012) J Mol Model 18:1561CrossRefGoogle Scholar
  39. 39.
    Ueda K, Takahashi O (2012) J Electron Spectrosc Relat Phenom 185:301CrossRefGoogle Scholar
  40. 40.
    Wang G, Gong X, Xiao H (2013) Adv Mater Res 742:202 (Durnten-Zurich, Switz)CrossRefGoogle Scholar
  41. 41.
    Fan XW, Ju XH, Xiao HM (2008) J Hazard Mater 156:342CrossRefGoogle Scholar
  42. 42.
    Wei T, Zhu W, Zhang X, Li YF, Xiao H (2009) J Phys Chem A 113:9404CrossRefGoogle Scholar
  43. 43.
    Li YF, Fan XW, Wang ZY, Ju XH (2009) J Mol Struct (TheoChem) 896:96CrossRefGoogle Scholar
  44. 44.
    Li YF, Wang ZY, Ju XH, Fan XW (2009) J Mol Struct (TheoChem) 907:29CrossRefGoogle Scholar
  45. 45.
    Zhang JJ, Gao HW, Wei T, Wang CJ (2010) Wuli Huaxue Xuebao 26:3337Google Scholar
  46. 46.
    Zhang X, Zhu W, Xiao H (2010) Int J Quantum Chem 110:1549CrossRefGoogle Scholar
  47. 47.
    Wei T, Zhu W, Zhang J, Xiao H (2010) J Hazard Mater 179:581CrossRefGoogle Scholar
  48. 48.
    Zhang X, Zhu W, Wei T, Zhang C, Xiao H (2010) J Phys Chem C 114:13142CrossRefGoogle Scholar
  49. 49.
    Zhang X, Zhu W, Xiao H (2010) J Phys Chem A 114:603CrossRefGoogle Scholar
  50. 50.
    Liu Y, Gong X, Wang L, Wang G, Xiao H (2011) J Phys Chem A 115:1754CrossRefGoogle Scholar
  51. 51.
    Zhu W, Zhang C, Wei T, Xiao H (2011) J Comput Chem 32:2298CrossRefGoogle Scholar
  52. 52.
    Wang F, Du H, Zhang J, Gong X (2011) J Phys Chem A 115:11852CrossRefGoogle Scholar
  53. 53.
    Wang F, Du H, Liu H, Gong X (2012) Chem Asian J 7:2577CrossRefGoogle Scholar
  54. 54.
    Wang F, Zhang Q, Gong X, Li H, Zhao Z (2014) Struct Chem 25:1785CrossRefGoogle Scholar
  55. 55.
    Pan Y, Zhu W, Xiao H (2012) J Mol Model 18:3125CrossRefGoogle Scholar
  56. 56.
    Pan Y, Li J, Cheng B, Zhu W, Xiao H (2012) Comput Theor Chem 992:110CrossRefGoogle Scholar
  57. 57.
    Liu H, Wang F, Wang G, Gong X (2013) Mol Simul 39:123CrossRefGoogle Scholar
  58. 58.
    Liu H, Wang F, Wang GX, Gong XD (2013) J Phys Org Chem 26:30CrossRefGoogle Scholar
  59. 59.
    Liu Z, Wu Q, Zhu W, Xiao H (2013) J Phys Org Chem 26:939CrossRefGoogle Scholar
  60. 60.
    Shao Y, Zhu W, Xiao H (2013) J Mol Graph Model 40:54CrossRefGoogle Scholar
  61. 61.
    Wu Q, Zhu W, Xiao H (2013) J Chem Eng Data 58:2748CrossRefGoogle Scholar
  62. 62.
    Yan T, Sun G, Chi W, Li L, Li B, Wu H (2013) C R Chim 16:765CrossRefGoogle Scholar
  63. 63.
    Liu H, Gong XD (2013) Struct Chem 24:471CrossRefGoogle Scholar
  64. 64.
    Shao Y, Pan Y, Wu Q, Zhu W, Li J, Cheng B, Xiao H (2013) Struct Chem 24:1429CrossRefGoogle Scholar
  65. 65.
    Lian P, Lai WP, Wang BZ, Wang XJ, Luo YF (2014) Asian J Chem 26:2357Google Scholar
  66. 66.
    Yang J, Yan H, Wang G, Zhang X, Wang T, Gong X (2014) J Mol Model 20:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryLudwig Maximilian University of Munich, Energetic Materials ResearchMunichGermany
  2. 2.Chemistry Branch (Code 4F0000D), Research Division, Research and Intelligence DepartmentNaval Air Warfare Center Weapons Division, Naval Air Systems CommandChina LakeUSA

Personalised recommendations