Skip to main content

Porphyrins in Heavy Petroleums: A Review

  • Chapter
  • First Online:
Structure and Modeling of Complex Petroleum Mixtures

Part of the book series: Structure and Bonding ((STRUCTURE,volume 168))

Abstract

Vanadium and nickel are the most abundant and troublesome metal compounds present in the organic portions of fossil fuel deposits. These metal compounds may cause significant detrimental impact during refining processes, leading to the deactivation of catalysts used for sulfur and nitrogen removal. Therefore, it is highly desirable to remove vanadium and nickel from petroleum fractions before catalytic hydrogenation and cracking. Vanadium and nickel complexes generally have been classified into porphyrins and non-porphyrins. Studies of the porphyrins have focused extensively on their isolation and identification since their discovery in crude oils and shales. Although it was proposed that non-porphyrins will contain atypical porphyrin or pseudo aromatic tetradentate systems, no non-porphyrin molecules have been identified in crude oil. Ultraviolet–visible (UV–vis) spectroscopy and mass spectrometry are the common analytical techniques used to identify and quantify porphyrins. Due to the high intensity and sensitivity of electronic absorption of UV–vis radiation by porphyrins, approximately half of the vanadium and nickel porphyrins can be identified and quantified by their characteristic UV–vis spectra. The remaining vanadium and nickel compounds, the non-porphyrins, are defined by an absence of distinct UV–vis spectroscopic bands. However, the results of X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near-edge structure (XANES) spectroscopy indicated that these non-porphyrins are indeed still bound in a porphyrinic structure, although these metal compounds do not exhibit the characteristic UV–visible absorption. In addition, the recent results of mass spectrometry showed that majority of vanadium and nickel compounds existed in the form of porphyrins, including alkyl porphyrins, sulfur-containing porphyrins, nitrogen-containing porphyrins, and oxygen-containing porphyrins. The porphyrins with O, S, and N atoms should associate more strongly with the asphaltenes than the less polar components. Formation of complexes with other components would shift and attenuate the Soret absorption in UV–visible spectroscopy. The porphyrins are generally believed to chelate or non-covalently associate with aromatic asphaltene components by π–π interactions. Therefore, a portion of the vanadium and nickel compounds give strong optical absorption in the Soret band at ca. 400 nm, and the remainder do not, likely due to formation of complexes or due to chemical modification of the porphyrin ring. The implications of their chemical environments for alternative separation methods are important. In this review article, the current understanding of the forms of vanadium and nickel compounds in heavy petroleum is critically discussed and the methods of separation and demetallization evaluated. Effective separation and ultrahigh mass resolution are needed to resolve these vanadium and nickel compounds. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which has the highest available broadband mass resolution, mass resolving power, and mass accuracy, is shown to be a significant method for the qualitative analysis of vanadium and nickel compounds in oil fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer RF, Attanasi ED, Freeman PA (2007) Heavy oil and natural bitumen resources in geological basins of the world

    Google Scholar 

  2. Xu C, Bell L (2013) Worldwide reserves, oil production post modest rise. Oil Gas J 111(12):30–31

    Google Scholar 

  3. Branthaver JF (1987) Metal complexes in fossil fuels: geochemistry, characterization, and processing. In: Filby RH, Branthaver JF (ed.) ACS Symposium Series 344, Washington, D.C. American Chemical Society, pp 188–204

    Google Scholar 

  4. Treibs A (1934) Chlorophyll and haemin derivatives in bituminous rocks, petroleum, mineral waxes and asphalts. Justus Liebig's Annalen Chem 510:42–62

    Article  CAS  Google Scholar 

  5. Treibs A (1936) Chlorophyll and hemin derivatives in organic materials. Angew Chem 49(38):682–686

    Article  CAS  Google Scholar 

  6. Stoyanov SR, Yin C-X, Gray MR, Stryker JM, Gusarov S, Kovalenko A (2010) Computational and experimental study of the structure, binding preferences, and spectroscopy of nickel (II) and vanadyl porphyrins in petroleum. J Phys Chem B 114(6):2180–2188

    Article  CAS  Google Scholar 

  7. Mckenna AM, Purcell JM, Rodgers RP, Marshall AG (2009) Identification of vanadyl porphyrins in a heavy crude oil and raw asphaltene by atmospheric pressure photoionization fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Energy Fuel 23(4):2122–2128

    Article  CAS  Google Scholar 

  8. Agrawal R, Wei J (1984) Hydrodemetalation of nickel and vanadium porphyrins. 1. Intrinsic kinetics. Ind Eng Chem Process Design Dev 23(3):505–514

    Article  CAS  Google Scholar 

  9. Lewan M, Maynard J (1982) Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim Cosmochim Acta 46(12):2547–2560

    Article  CAS  Google Scholar 

  10. Lewan MD (1984) Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim Cosmochim Acta 48(11):2231–2238

    Article  CAS  Google Scholar 

  11. Barwise A (1990) Role of nickel and vanadium in petroleum classification. Energy Fuel 4(6):647–652

    Article  CAS  Google Scholar 

  12. Xu H, Que G, Yu D, Lu JR (2005) Characterization of petroporphyrins using ultraviolet-visible spectroscopy and laser desorption ionization time-of-flight mass spectrometry. Energy Fuel 19(2):517–524

    Article  CAS  Google Scholar 

  13. Barwise A, Whitehead E (1980) Separation and structure of petroporphyrins. Phys Chem Earth 12:181–192

    Article  CAS  Google Scholar 

  14. Reynolds JG (1985) Characterization of heavy residua by application of a modified D2007 separation and electron paramagnetic resonance. Liquid Fuels Technol 3(1):73–105

    Article  CAS  Google Scholar 

  15. Zhang L, Xu Z, Shi Q, Sun X, Zhang N, Zhang Y, Chung KH, Xu C, Zhao S (2012) Molecular characterization of polar heteroatom species in venezuela orinoco petroleum vacuum residue and its supercritical fluid extraction subfractions. Energy Fuel 26(9):5795–5803

    Article  CAS  Google Scholar 

  16. Pearson CD, Green JB (1989) Comparison of processing characteristics of Mayan and Wilmington heavy residues: 2. characterization of vanadium and nickel complexes in acid-base-neutral fractions. Fuel 68(4):465–474

    Article  CAS  Google Scholar 

  17. Baker E, Palmer S (1978) Geochemistry of porphyrins. Porphyrins 1:485–551

    Article  CAS  Google Scholar 

  18. Hajibrahim S, Tibbetts P, Watts C, Maxwell J, Eglinton G, Colin H, Guiochon G (1978) Analysis of carotenoid and porphyrin pigments of geochemical interest by high-performance liquid chromatography. Anal Chem 50(4):549–553

    Article  CAS  Google Scholar 

  19. Chen P, Xing Z, Liu M, Liao Z, Huang D (1999) Isolation of nine petroporphyrin biomarkers by reversed-phase high-performance liquid chromatography with coupled columns. J Chromatogr A 839(1):239–245

    Article  CAS  Google Scholar 

  20. Zhao X, Liu Y, Xu C, Yan Y, Zhang Y, Zhang Q, Zhao S, Chung K, Gray MR, Shi Q (2013) Separation and characterization of vanadyl porphyrins in Venezuela Orinoco heavy crude oil. Energy Fuel 27(6):2874–2882

    Article  CAS  Google Scholar 

  21. Martin J, Quirke E, Shaw GJ, Soper PD, Maxwell JR (1980) Petroporphyrins—II: the presence of porphyrins with extended alkyl substituents. Tetrahedron 36(22):3261–3267

    Article  CAS  Google Scholar 

  22. Dunning H, Rabon NA (1956) Porphyrin-metal complexes in petroleum stocks. Ind Eng Chem 48(5):951–955

    Article  CAS  Google Scholar 

  23. Baker EW (1966) Mass spectrometric characterization of petroporphyrins1. J Am Chem Soc 88(10):2311–2315

    Article  CAS  Google Scholar 

  24. Quirke JME, Eglinton G, Maxwell JR (1979) Petroporphyrins. 1. Preliminary characterization of the porphyrins of gilsonite. J Am Chem Soc 101(26):7693–7697

    Article  CAS  Google Scholar 

  25. Kowanko N, Branthaver JF, Sugihara JM (1978) Direct liquid-phase fluorination of petroleum. Fuel 57(12):769–775

    Article  CAS  Google Scholar 

  26. Branthaver J, Trudell L, Heppner R (1982) Nickel porphyrins in the bedding planes of a Colorado Lean Oil Shale. Org Geochem 4(1):1–7

    Article  CAS  Google Scholar 

  27. Branthaver J, Storm C, Baker E (1983) An investigation of the structure of abelsonites from the Uinta Basin of Utah. Org Geochem 4(3):121–134

    Article  CAS  Google Scholar 

  28. Ali MF, Perzanowski H, Bukhari A, Al-Haji AA (1993) Nickel and vanadyl porphyrins in Saudi Arabian crude oils. Energy Fuel 7(2):179–184

    Article  CAS  Google Scholar 

  29. Ekstrom A, Fookes C, Hambley T, Loeh H, Miller S, Taylor J (1983) Determination of the crystal structure of a petroporphyrin isolated from oil shale. Nature 306:173–174

    Article  CAS  Google Scholar 

  30. Baker EW, Louda JW (1984) Highly dealkylated copper and nickel etioporphyrins in marine sediments. Org Geochem 6:183–192

    Article  CAS  Google Scholar 

  31. Erdman JG (1965) Process for removing metals from a mineral oil with an alkyl sulfonic acid. US Patent 3,190,829

    Google Scholar 

  32. Baker EW, Yen TF, Dickie JP, Rhodes RE, Clark LF (1967) Mass spectrometry of porphyrins. II. Characterization of petroporphyrins. J Am Chem Soc 89(14):3631–3639

    Article  CAS  Google Scholar 

  33. Popl M, Dolanský V, Šebor G, Stejskal M (1978) Hydrocarbons and porphyrins in rock extracts. Fuel 57(9):565–570

    Article  CAS  Google Scholar 

  34. Van Berkel GJ, Quirke JME, Filby RH (1989) The Henryville bed of the new albany shale—I. Preliminary characterization of the nickel and vanadyl porphyrins in the bitumen. Org Geochem 14(2):119–128

    Article  Google Scholar 

  35. Chakraborty S, Bhatia V (1981) Isolation and characterization of metalloporphyrins from darius crude. Indian J Technol 19(3):92–99

    CAS  Google Scholar 

  36. Eglinton G, Hajibrahim SK, Maxwell JR, Martin J, Quirke E (1980) Petroporphyrins: structural elucidation and the application of HPLC fingerprinting to geochemical problems. Phys Chem Earth 12:193–203

    Article  CAS  Google Scholar 

  37. Kashiyama Y, Kitazato H, Ohkouchi N (2007) An improved method for isolation and purification of sedimentary porphyrins by high-performance liquid chromatography for compound-specific isotopic analysis. J Chromatogr A 1138(1):73–83

    Article  CAS  Google Scholar 

  38. Hajibrahim SK (1981) Development of high pressure liquid chromatography (HPLC) for fractionation and fingerprinting of petroporphyrin mixtures. J Liquid Chromatogr 4(5):749–764

    Article  CAS  Google Scholar 

  39. Hohn M, Hajibrahim S, Eglinton G (1982) High-pressure liquid chromatography of petroporhyrins: evaluation as a geochemical fingerprinting method by principal components analysis. Chem Geol 37(3):229–237

    Article  CAS  Google Scholar 

  40. Sundararaman P, Raedeke LD (1993) Vanadyl porphyrins in exploration: maturity indicators for source rocks and oils. Appl Geochem 8(3):245–254

    Article  Google Scholar 

  41. Quirke J, Eglinton G, Palmer S, Baker E (1982) High-performance liquid chromatographic and mass spectrometric analyses of porphyrins from deep-sea sediments. Chem Geol 35(1):69–85

    Article  CAS  Google Scholar 

  42. Peng P, Eglinton G, Fu J, Sheng G (1992) Biological markers in chinese ancient sediments. 1. Geoporphyrins. Energy Fuel 6(2):215–225

    Article  CAS  Google Scholar 

  43. Didyk BM, Alturki YI, Pillinger CT, Eglinton G (1975) Petroporphyrins as indicators of geothermal maturation. Nature, 256:563–565

    Google Scholar 

  44. Barwise AJG (1987) Mechanisms involved in altering deoxophylloerythroetioporphyrin-etioporphyrin ratios in sediments and oils. In: Filby RH, Branthaver JF (ed.) ACS Symposium Series 344, Washington, D.C. American Chemical Society, pp 100–109

    Google Scholar 

  45. Sundararaman P, Biggs WR, Reynolds JG, Fetzer JC (1988) Vanadylporphyrins, indicators of kerogen breakdown and generation of petroleum. Geochim Cosmochim Acta 52(9):2337–2341

    Article  CAS  Google Scholar 

  46. Doukkali A, Saoiabi A, Zrineh A, Hamad M, Ferhat M, Barbe J, Guilard R (2002) Separation and identification of petroporphyrins extracted from the oil shales of Tarfaya: geochemical study. Fuel 81(4):467–472

    Article  CAS  Google Scholar 

  47. Xu H, Yu D, Que G (2005) Characterization of petroporphyrins in gudao residue by ultraviolet–visible spectrophotometry and laser desorption ionization-time of flight mass spectrometry. Fuel 84(6):647–652

    Article  CAS  Google Scholar 

  48. Glebovskaya E, Volkenshtein M (1948) Spectra of porphyrins in petroleums and bitumens. J Gen Chem (USSR) 18:1440

    Google Scholar 

  49. Skinner DA (1952) Chemical state of vanadium in Santa Maria Valley crude oil. Ind Eng Chem 44(5):1159–1165

    Article  CAS  Google Scholar 

  50. Hood A, Carlson E, O’neal M (1960) Petroleum oil analysis. In: Clark GL (ed) Encyclopedia of spectroscopy. New York, pp 613

    Google Scholar 

  51. Mead W, Wilde A (1961) Mass spectrum of vanadyl etioporphyrin-I. Chem Ind 33:1315–1316

    Google Scholar 

  52. Freeman DH, Swahn ID, Hambright P (1990) Spectrophotometry and solubility properties of nickel and vanadyl porphyrin complexes. Energy Fuel 4(6):699–704

    Article  CAS  Google Scholar 

  53. Freeman DH, Saint Martin DC, Boreham CJ (1993) Identification of metalloporphyrins by third-derivative Uv/Vis diode array spectroscopy. Energy Fuel 7(2):194–199

    Article  CAS  Google Scholar 

  54. Foster NS, Day JW, Filby RH, Alford A, Rogers D (2002) The role of Na-montmorillonite in the evolution of copper, nickel, and vanadyl geoporphyrins during diagenesis. Org Geochem 33(8):907–919

    Article  CAS  Google Scholar 

  55. Cantú R, Stencel JR, Czernuszewicz RS, Jaffé PR, Lash TD (2000) Surfactant-enhanced partitioning of nickel and vanadyl deoxophylloerythroetioporphyrins from crude oil into water and their analysis using surface-enhanced resonance raman spectroscopy. Environ Sci Technol 34(1):192–198

    Article  CAS  Google Scholar 

  56. Freeman DH, O'haver TC (1990) Derivative spectrophotometry of petroporphyrins. Energy Fuel 4(6):688–694

    Article  CAS  Google Scholar 

  57. Gallegos EJ, Sundararaman P (1985) Mass spectrometry of geoporphyrins. Mass Spectrom Rev 4(1):55–85

    Article  CAS  Google Scholar 

  58. Howe WW (1961) Improved chromatographic analysis of petroleum porphyrin aggregates and quantitative measurement by integral absorption. Anal Chem 33(2):255–260

    Article  CAS  Google Scholar 

  59. Thomas D, Blumer M (1964) Porphyrin pigments of a triassie sediment. Geochim Cosmochim Acta 28(7):1147–1154

    Article  CAS  Google Scholar 

  60. Yen TF (1975) Chemical aspects of metals in native petroleum. In: Yen TF (ed.) The Role of Trace Metals in Petroleum. Ann Arbor Science Publishers, pp 1–30

    Google Scholar 

  61. Qi L, Liang R, Wang X (1981) Study of nickel porphyrins in some chinese crude oils. Acta Petrolei Sinica 2(4):108–116

    Google Scholar 

  62. Prowse W, Chicarelli M, Keely B, Kaur S, Maxwell J (1987) Characterisation of fossil porphyrins of the “Di-Dpep” type. Geochim Cosmochim Acta 51(10):2875–2877

    Article  CAS  Google Scholar 

  63. Liao Z, Huang D, Shi J (1990) Discovery of special predominance of vanadyl porphyrin and high abundance of Di-Dpep in nonmarine strata. Scientia Sinica Ser B 33(5):631–640

    CAS  Google Scholar 

  64. Quirke J (1987) Techniques for isolation and characterization of the geoporphyrins and chlorines. In: Filby RH, Branthaver JF (ed.) ACS Symposium Series 344, Washington, D.C. American Chemical Society, pp 308–337

    Google Scholar 

  65. Shaw GJ, Quirke JME, Eglinton G (1978) Analysis of petroporphyrins by chemical ionisation mass spectrometry. J Chem Soc Perkin Trans 1(12):1655–1659

    Google Scholar 

  66. Grigsby R, Green J (1997) High-resolution mass spectrometric analysis of a vanadyl porphyrin fraction isolated from the >700°C Resid of Cerro Negro Heavy Petroleum. Energy Fuel 11(3):602–609

    Article  CAS  Google Scholar 

  67. Premović P, Đorđević D, Pavlović M (2002) Vanadium of petroleum asphaltenes and source kerogens (La Luna Formation, Venezuela): isotopic study and origin. Fuel 81(15):2009–2016

    Article  Google Scholar 

  68. Wright BW, Smith RD (1989) Supercritical fluid chromatography-mass spectrometry: a potentially useful technique for porphyrin analysis. Org Geochem 14(2):227–232

    Article  CAS  Google Scholar 

  69. Eckardt CB, Dyas L, Yendle PW, Eglinton G (1988) Multimolecular data processing and display in organic geochemistry: the evaluation of petroporphyrin GC-MS data. Org Geochem 13(4):573–582

    Article  CAS  Google Scholar 

  70. Mcfadden W, Bradford D, Eglinton G, Hajlbrahim S, Nicolaides N (1979) Application of combined liquid chromatography/mass spectrometry (LC/MS): analysis of petroporphyrins and meibomian gland waxes. J Chromatogr Sci 17(9):518–522

    Article  CAS  Google Scholar 

  71. Johnson JV, Britton ED, Yost RA, Quirke JME, Cuesta LL (1986) Tandem mass spectrometry for characterization of high-carbon-number geoporphyrins. Anal Chem 58(7):1325–1329

    Article  CAS  Google Scholar 

  72. Beato BD, Yost RA, Van Berkel GJ, Filby RH, Quirke JME (1991) The Henryville bed of the new albany shale—III: tandem mass spectrometric analyses of geoporphyrins from the bitumen and kerogen. Org Geochem 17(1):93–105

    Article  CAS  Google Scholar 

  73. Van Berkel GJ, Quinones MA, Quirke JME (1993) Geoporphyrin analysis using electrospray ionization-mass spectrometry. Energy Fuel 7(3):411–419

    Article  Google Scholar 

  74. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71

    Article  CAS  Google Scholar 

  75. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1990) Electrospray ionization–principles and practice. Mass Spectrom Rev 9(1):37–70

    Article  CAS  Google Scholar 

  76. Iribarne J, Thomson B (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64(6):2287–2294

    Article  CAS  Google Scholar 

  77. Thomson B, Iribarne J (1979) Field induced ion evaporation from liquid surfaces at atmospheric pressure. J Chem Phys 71(11):4451–4463

    Article  CAS  Google Scholar 

  78. Sakairi M, Yergey AL, Siu KM, Le Blanc JY, Guevremont R, Berman SS (1991) Electrospray mass spectrometry: application of ion evaporation theory to amino acids. Anal Chem 63(14):1488–1490

    Article  CAS  Google Scholar 

  79. Fenn JB, Rosell J, Meng CK (1997) In electrospray ionization, how much pull does an ion need to escape its droplet prison? J Am Soc Mass Spectrom 8(11):1147–1157

    Article  CAS  Google Scholar 

  80. Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20(6):362–387

    Article  CAS  Google Scholar 

  81. Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Annu Rev Anal Chem 1:579–599

    Article  CAS  Google Scholar 

  82. Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37(1):53–59

    Article  CAS  Google Scholar 

  83. Rodgers RP, Schaub TM, Marshall AG (2005) Petroleomics: Ms returns to its roots. Anal Chem 77(1):20A–27A

    Google Scholar 

  84. Rodgers RP, Hendrickson CL, Emmett MR, Marshall AG, Greaney M, Qian K (2001) Molecular characterization of petroporphyrins in crude oil by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Can J Chem 79(5-6):546–551

    Article  CAS  Google Scholar 

  85. Purcell JM, Hendrickson CL, Rodgers RP, Marshall AG (2006) Atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis. Anal Chem 78(16):5906–5912

    Article  CAS  Google Scholar 

  86. Qian K, Mennito AS, Edwards KE, Ferrughelli DT (2008) Observation of vanadyl porphyrins and sulfur–containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 22(14):2153–2160

    Article  CAS  Google Scholar 

  87. Qian K, Edwards KE, Mennito AS, Walters CC, Kushnerick JD (2009) Enrichment, resolution, and identification of nickel porphyrins in petroleum asphaltene by cyclograph separation and atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 82(1):413–419

    Article  CAS  Google Scholar 

  88. Zhao X, Shi Q, Gray MR, Xu C (2014) New vanadium compounds in venezuela heavy crude oil detected by positive-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Sci. Rep., 4:5373

    Google Scholar 

  89. Mckenna AM, Williams JT, Putman JC, Aeppli C, Reddy CM, Valentine DL, Lemkau KL, Kellermann MY, Savory JJ, Kaiser NK (2014) Unprecedented ultrahigh resolution FT-ICR mass spectrometry and parts-per-billion mass accuracy enable direct characterization of nickel and vanadyl porphyrins in petroleum from natural seeps. Energy Fuel 28(4):2454–2464

    Article  CAS  Google Scholar 

  90. Jørgensen B (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar Biol 41(1):7–17

    Article  Google Scholar 

  91. Orr WL (1986) Kerogen/asphaltene/sulfur relationships in sulfur-rich monterey oils. Org Geochem 10(1):499–516

    Article  CAS  Google Scholar 

  92. Strausz OP, Mojelsky TW, Lown EM (1992) The molecular structure of asphaltene: an unfolding story. Fuel 71(12):1355–1363

    Article  CAS  Google Scholar 

  93. Peters KE, Fowler MG (2002) Applications of petroleum geochemistry to exploration and reservoir management. Org Geochem 33(1):5–36

    Article  CAS  Google Scholar 

  94. Hodgson G, Baker B (1969) Porphyrins in meteorites: metal complexes in orgueil, murray, cold bokkeveld, and mokoia carbonaceous chondrites. Geochim Cosmochim Acta 33(8):943–958

    Article  CAS  Google Scholar 

  95. Sugihara JM, Bean RM (1962) Direct determination of metalloporphyrins in boscan crude oil. J Chem Eng Data 7(2):269–271

    Article  CAS  Google Scholar 

  96. Senglet N, Williams C, Faure D, Des Courieres T, Guilard R (1990) Microheterogeneity study of heavy crude petroleum by UV–Visible spectroscopy and small angle X-ray scattering. Fuel 69(1):72–77

    Article  CAS  Google Scholar 

  97. Yen TF, Boucher LJ, Dickie JP, Tynan EC, Vaughan GB (1969) Vanadium complexes and porphyrins in asphaltenes. J Inst Petroleum 55(542):87–93

    CAS  Google Scholar 

  98. Yen T (1978) The nature of vanadium complexes in the refining of heavy oil. Energy Sources 3(3-4):339–351

    Article  CAS  Google Scholar 

  99. Loos M, Ascone I, Friant P, Ruiz-Lopez M, Goulon J, Barbe J, Senglet N, Guilard R, Faure D, Des Courieres T (1990) Vanadyl porphyrins: evidence for self-association and for specific interactions with hydroprocessing catalysts shown from XAFS and ESR studies. Catal Today 7(4):497–513

    Article  CAS  Google Scholar 

  100. Goulon J, Retournard A, Friant P, Goulon-Ginet C, Berthe C, Muller J-F, Poncet J-L, Guilard, R, Escalier J-C, Neff B (1984) Structural characterization by X-Ray absorption spectroscopy (exafs/xanes) of the vanadium chemical environment in boscan asphaltenes. J Chem Soc Dalton Trans (6):1095–1103

    Google Scholar 

  101. Poncet JL, Guilard R, Friant P, Goulonginet C, Goulon J (1984) Vanadium (IV) porphyrins-synthesis and classification of thiovanadyl and selenovanadyl porphyrins-EXAFS and RPE spectroscopic studies. New J Chem 8(10):583–590

    CAS  Google Scholar 

  102. Miller J, Fisher R, Thiyagarajan P, Winans R, Hunt J (1998) Subfractionation and characterization of Mayan asphaltene. Energy Fuel 12(6):1290–1298

    Article  CAS  Google Scholar 

  103. Miller J, Fisher R, Van Der Eerden A, Koningsberger D (1999) Structural determination by XAFS spectroscopy of non-porphyrin nickel and vanadium in Maya residuum, hydrocracked residuum, and toluene-insoluble solid. Energy Fuel 13(3):719–727

    Article  CAS  Google Scholar 

  104. Xu H, Que G-H, Wang J-Q, Yu D-Y, Zhang J, Xie Y-N, Hu T-D (2003) Structural characterization by XAFS spectroscopy of non-porphyrin nickel in liaohe vacuum residue. Acta Chim Sinica 61(3):450–453

    CAS  Google Scholar 

  105. Saraceno A, Fanale D, Coggeshall N (1961) An electron paramagnetic resonance investigation of vanadium in petroleum oils. Anal Chem 33(4):500–505

    Article  CAS  Google Scholar 

  106. Dickson F, Kunesh C, Mcginnis E, Petrakis L (1972) Use of electron spin resonance to characterize the vanadium (IV)-sulfur species in petroleum. Anal Chem 44(6):978–981

    Article  CAS  Google Scholar 

  107. Dickson FE, Petrakis L (1974) Application of electron spin resonance and electronic spectroscopy to the characterization of vanadium species in petroleum fractions. Anal Chem 46(8):1129–1130

    Article  CAS  Google Scholar 

  108. Reynolds JG, Biggs WR, Fetzer JC (1985) Characterization of vanadium compounds in selected crudes II. Electron paramagnetic resonance studies of the first coordination spheres in porphyrin and non-porphyrin fractions. Liquid Fuels Technol 3(4):423–448

    Article  CAS  Google Scholar 

  109. Reynolds JG, Gallegos EJ, Fish RH, Komlenic JJ (1987) Characterization of the binding sites of vanadium compounds in heavy crude petroleum extracts by electron paramagnetic resonance spectroscopy. Energy Fuel 1(1):36–44

    Article  CAS  Google Scholar 

  110. Malhotra VM, Buckmaster HA (1985) 34 Ghz EPR study of vanadyl complexes in various asphaltenes: statistical correlative model of the coordinating ligands. Fuel 64(3):335–341

    Article  CAS  Google Scholar 

  111. Fish RH, Komlenic JJ (1984) Molecular characterization and profile identifications of vanadyl compounds in heavy crude petroleums by liquid chromatography/graphite furnace atomic absorption spectrometry. Anal Chem 56(3):510–517

    Article  CAS  Google Scholar 

  112. Fish RH, Komlenic JJ, Wines BK (1984) Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size-exclusion liquid chromatography/graphite furnace atomic absorption spectrometry. Anal Chem 56(13):2452–2460

    Article  CAS  Google Scholar 

  113. Fish R, Izquierdo A, Komlenic J, Reynolds J, Gallegos E (1986) Molecular characterization of nickel and vanadium non-porphyrin compounds found in heavy crude petroleums and bitumens. Am Chem Soc Div Pet Chem Prepr (United States) 31:CONF-860425

    Google Scholar 

  114. Caumette G, Lienemann C-P, Merdrignac I, Bouyssiere B, Lobinski R (2010) Fractionation and speciation of nickel and vanadium in crude oils by size exclusion chromatography-ICP MS and normal phase HPLC-ICP MS. J Anal Atomic Spectrometry 25(7):1123–1129

    Article  CAS  Google Scholar 

  115. Hodgson G, Peake E (1961) Metal chlorine complexes in recent sediments as initial precursors to petroleum porphyrin pigments. Nature, 191(4790):766–767

    Google Scholar 

  116. Hodgson G (1973) Geochemistry of porphyrins—reactions during diagenesis. Ann N Y Acad Sci 206(1):670–684

    Article  CAS  Google Scholar 

  117. Mackenzie JQ Jr (1980) Maxwell, molecular parameters of maturation in the toarcian shales, Paris Basin, France, II. Evolution of metallo-porphyrins. In: Ag Douglas JM (ed) Advances in organic geochemistry. Pergamon, Oxford, pp 239–248

    Google Scholar 

  118. Barwise A (1983) Use of porphyrins as a maturity parameter for oils and sediments. Geol Soc Lond Spec Publ 12(1):309–315

    Article  Google Scholar 

  119. Sundararaman P (1993) On the mechanism of change in DPEP/ETIO ratio with maturity. Geochim Cosmochim Acta 57(18):4517–4520

    Article  CAS  Google Scholar 

  120. Sundararaman P, Dahl JE (1993) Depositional environment, thermal maturity and irradiation effects on porphyrin distribution: Alum Shale, Sweden. Org Geochem 20(3):333–337

    Article  CAS  Google Scholar 

  121. Sundararaman P, Moldowan JM (1993) Comparison of maturity based on steroid and vanadyl porphyrin parameters: a new vanadyl porphyrin maturity parameter for higher Maturities. Geochim Cosmochim Acta 57(6):1379–1386

    Article  CAS  Google Scholar 

  122. Lee AK, Gregg HR, Reynolds JG (1995) Metallopetroporphyrins as process indicators: mass spectral identification of NI (ETIO) and NI (DPEP) homologous series in Green River Shale Oil. Fuel Sci Tech Int 13(9):1153–1166

    Article  CAS  Google Scholar 

  123. Lee AK, Murray AM, Reynolds JG (1995) Metallopetroporphyrins as process indicators: separation of petroporphyrins in Green River Oil Shale pyrolysis products. Fuel Sci Technol Int 13(8):1081–1097

    Article  CAS  Google Scholar 

  124. Barwise A, Roberts I (1984) Diagenetic and catagenetic pathways for porphyrins in sediments. Org Geochem 6:167–176

    Article  CAS  Google Scholar 

  125. Brons G, Yu JM (1995) Solvent deasphalting effects on whole cold lake bitumen. Energy Fuel 9(4):641–647

    Article  CAS  Google Scholar 

  126. Zhao S, Xu Z, Xu C, Chung KH, Wang R (2005) Systematic characterization of petroleum residua based on SFEF. Fuel 84(6):635–645

    Article  CAS  Google Scholar 

  127. Zhao S, Xu C, Sun X, Chung KH, Xiang Y (2010) China refinery tests asphaltenes extraction process. Oil Gas J 108(12):52–59

    CAS  Google Scholar 

  128. Siskin M, Kelemen S, Eppig C, Brown L, Afeworki M (2006) Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking. Energy Fuel 20(3):1227–1234

    Article  CAS  Google Scholar 

  129. Speronello B, Reagan W (1984) Test measures FCC catalyst deactivation by Ni V. Oil Gas J 82(5):139–143

    CAS  Google Scholar 

  130. Tsiatouras VA, Evmiridis NP (2008) FCC catalysts: Cu (II)-exchanged USY-type. Stability, dealumination, and acid sites after thermal and hydrothermal treatment before and after vanadium impregnation. Ind Eng Chem Res 47(23):9288–9296

    Article  CAS  Google Scholar 

  131. Ware RA, Wei J (1985) Catalytic hydrodemetallation of nickel porphyrins: I. Porphyrin structure and reactivity. J Catal 93(1):100–121

    Article  CAS  Google Scholar 

  132. Ware RA, Wei J (1985) Catalytic hydrodemetallation of nickel porphyrins: III. Acid-base modification of selectivity. J Catal 93(1):135–151

    Article  CAS  Google Scholar 

  133. Ware RA, Wei J (1985) Catalytic hydrodemetallation of nickel porphyrins: II. Effects of pyridine and of sulfiding. J Catal 93(1):122–134

    Article  CAS  Google Scholar 

  134. Furimsky E, Massoth FE (1999) Deactivation of hydroprocessing catalysts. Catal Today 52(4):381–495

    Article  CAS  Google Scholar 

  135. Scheuerman GL, Johnson DR, Reynolds BE, Bachtel RW, Threlkel RS (1993) Advances in Chevron RDS technology for heavy oil upgrading flexibility. Fuel Process Technol 35(1):39–54

    Article  CAS  Google Scholar 

  136. Hung C-W, Wei J (1980) The kinetics of porphyrin hydrodemetallation. 1. Nickel compounds. Ind Eng Chem Process Design Dev 19(2):250–257

    Article  CAS  Google Scholar 

  137. Gray RM (1994) Upgrading petroleum residues and heavy oils. Marcel Dekker, Inc.:New York

    Google Scholar 

  138. Dechaine GP, Gray MR (2010) Chemistry and association of vanadium compounds in heavy oil and bitumen, and implications for their selective removal. Energy Fuel 24(5):2795–2808

    Article  CAS  Google Scholar 

  139. Gould KA (1980) Oxidative demetallization of petroleum asphaltenes and residua. Fuel 59(10):733–736

    Article  CAS  Google Scholar 

  140. Dedeles GR, Abe A, Saito K, Asano K, Saito K, Yokota A, Tomita F (2000) Microbial demetallization of crude oil: nickel protoporphyrin disodium as a model organo-metallic substrate. J Biosci Bioeng 90(5):515–521

    Article  CAS  Google Scholar 

  141. Ovalles C, Rojas I, Acevedo S, Escobar G, Jorge G, Gutierrez LB, Rincon A, Scharifker B (1996) Upgrading of orinoco belt crude oil and its fractions by an electrochemical system in the presence of protonating agents. Fuel Process Technol 48(2):159–172

    Article  CAS  Google Scholar 

  142. Sakanishi K, Yamashita N, Whitehurst DD, Mochida I (1998) Depolymerization and demetallation treatments of asphaltene in vacuum residue. Catal Today 43(3):241–247

    Article  CAS  Google Scholar 

  143. Shiraishi Y, Hirai T, Komasawa I (2000) A novel demetalation process for vanadyl-and nickelporphyrins from petroleum residue by photochemical reaction and liquid–liquid extraction. Ind Eng Chem Res 39(5):1345–1355

    Article  CAS  Google Scholar 

  144. Sakanishi K, Saito I, Watanabe I, Mochida I (2004) Dissolution and demetallation treatment of asphaltene in resid using adsorbent and oil-soluble MO complex. Fuel 83(14):1889–1893

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC, 21376262, 21236009) and National Basic Research Program of China (2010CB226901). The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, X., Xu, C., Shi, Q. (2015). Porphyrins in Heavy Petroleums: A Review. In: Xu, C., Shi, Q. (eds) Structure and Modeling of Complex Petroleum Mixtures. Structure and Bonding, vol 168. Springer, Cham. https://doi.org/10.1007/430_2015_189

Download citation

Publish with us

Policies and ethics