Skip to main content

Lewis Description of Bonding in Transition Metal Complexes

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 169))

Abstract

Transition metal complexes have been playing an increasingly important role in modern chemistry in the past century, and this is partly due to their distinctive structure and bonding features that allow them to play a special role in organometallic reactions. Despite their importance, the current understanding of their structure and bonding relies to a large extent on sophisticated quantum chemical treatments, which do not encourage the formulation of more generalized rules. In this review, commemorating the centennial anniversary of the seminal Lewis paper, we would like to go back to basics and start from the classical Lewis description and then combine some observations we obtain from modern molecular orbital theory to give a simple but general bonding picture for transition metal complexes. This model, albeit simple, provides a localized description to metal–ligand interactions in these complexes and allows us to easily treat various cases with atypical metal–ligand or even metal–metal interactions in a modular manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785. doi:10.1021/ja02261a002

    Article  CAS  Google Scholar 

  2. Sidgwick NV (1927) The electronic theory of valency. Oxford University Press, London

    Google Scholar 

  3. Langmuir I (1921) Types of valence. Science 54:59–67. doi:10.1126/science.54.1386.59

    Article  CAS  Google Scholar 

  4. Hedberg L, Iijima T, Hedberg K (1979) Nickel tetracarbonyl, Ni(CO)4. I. Molecular structure by gaseous electron diffraction. II. Refinement of quadratic force field. J Chem Phys 70:3224–3229. doi:10.1063/1.437911

    Article  CAS  Google Scholar 

  5. Spiro TG, Terzis A, Raymond KN (1970) Structure of Ni(CN)5 3−. Raman, infrared, and x-ray crystallographic evidence. Inorg Chem 9:2415–2420. doi:10.1021/ic50093a006

    Article  CAS  Google Scholar 

  6. Lo W, Hu C, Lumeij M, Dronskowski R, Lovihayeem M, Ishal O, Jiang JF (2013) [CoI(CN)2(CO)3], a new discovery from an 80-year-old reaction. Chem Commun 49:7382–7384. doi:10.1039/C3CC43269F

    Article  CAS  Google Scholar 

  7. Wang X-Y, Justice R, Sevov SC (2007) Hydrogen-bonded metal-complex sulfonate (MCS) inclusion compounds: effect of the guest molecule on the host framework. Inorg Chem 46:4626–4631. doi:10.1021/ic070324p

    Article  CAS  Google Scholar 

  8. Karunadasa HI, Long JR (2009) Synthesis and redox-induced structural isomerization of the pentagonal bipyramidal complexes [W(CN)5(CO)2]3− and [W(CN)5(CO)2]2−. Angew Chem Int Ed 48:738–741. doi:10.1002/anie.200804199

    Article  CAS  Google Scholar 

  9. Guggenberger LJ (1973) Structure of tetrahydridotetrakis(methyldiphenylphosphine)molybdenum(IV). Inorg Chem 12:2295–2304. doi:10.1021/ic50128a017

    Article  CAS  Google Scholar 

  10. Bennett MV, Long JR (2003) New cyanometalate building units: synthesis and characterization of [Re(CN)7]3− and [Re(CN)8]3−. J Am Chem Soc 125:2394–2395. doi:10.1021/ja029795v

    Article  CAS  Google Scholar 

  11. Abrahams SC, Ginsberg AP, Knox K (1964) Transition metal-hydrogen compounds. II. The crystal and molecular structure of potassium rhenium hydride, K2ReH9. Inorg Chem 3:558–567. doi:10.1021/ic50014a026

    Article  CAS  Google Scholar 

  12. Gillespie RJ, Nyholm RS (1957) Inorganic stereochemistry. Q Rev Chem Soc 11:339–380. doi:10.1039/QR9571100339

    Article  CAS  Google Scholar 

  13. Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry. Allyn & Bacon, Boston

    Google Scholar 

  14. Pauling L (1931) The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J Am Chem Soc 53:1367–1400. doi:10.1021/ja01355a027

    Article  CAS  Google Scholar 

  15. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, 3rd edn. Cornell University Press, Ithaca

    Google Scholar 

  16. Kimball GE (1940) Directed valence. J Chem Phys 8:188–198. doi:10.1063/1.1750628

    Article  CAS  Google Scholar 

  17. Landis CR, Firman TK, Root DM, Cleveland T (1998) A valence bond perspective on the molecular shapes of simple metal alkyls and hydrides. J Am Chem Soc 120:1842–1854. doi:10.1021/ja9710114

    Article  CAS  Google Scholar 

  18. Mulliken RS (1967) Spectroscopy, molecular orbitals, and chemical bonding. Science 157:13–24. doi:10.1126/science.157.3784.13

    Article  CAS  Google Scholar 

  19. Göthe MC, Wannberg B, Karlsson L, Svensson S, Baltzer P, Chau FT, Adam MY (1991) X‐ray, ultraviolet, and synchrotron radiation excited inner‐valence photoelectron spectra of CH4. J Chem Phys 94:2536–2542. doi:10.1063/1.459880

    Article  Google Scholar 

  20. Hoffmann R (1982) Building bridges between inorganic and organic chemistry (Nobel lecture). Angew Chem Int Ed Engl 21:711–724. doi:10.1002/anie.198207113

    Article  Google Scholar 

  21. Mingos DMP, Hawes J (1985) Complementary spherical electron-density model. Struct Bond 63:1–63

    Article  CAS  Google Scholar 

  22. Mingos DMP (2004) Complementary spherical electron density model and its implications for the 18 electron rule. J Organomet Chem 689:4420–4436. doi:10.1016/j.jorganchem.2004.07.020

    Article  CAS  Google Scholar 

  23. Verkade JG (1986) A pictorial approach to molecular bonding. Springer, New York

    Book  Google Scholar 

  24. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdiscip Rev Comput Mol Sci 2:1–42. doi:10.1002/wcms.51

    Article  CAS  Google Scholar 

  25. Mingos DMP, Lin Z (1990) Hybridization schemes for co-ordination and organometallic compounds. In: Bioinorganic chemistry. Springer, Berlin/Heidelberg, pp 73–111

    Google Scholar 

  26. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95. doi:10.1109/Mcse.2007.55

    Article  Google Scholar 

  27. visvis (2013) The object oriented approach to visualization. Google Project Hosting. https://code.google.com/p/visvis/. Accessed 31 May 2015

  28. Mingos DMP, Lin Z (1989) Non-bonding orbitals in co-ordination, hydrocarbon and cluster compounds. In: Stereochemistry and bonding. Springer, Berlin/Heidelberg, pp 1–56

    Google Scholar 

  29. Pyykkö P (2006) Understanding the eighteen-electron rule. J Organomet Chem 691:4336–4340. doi:10.1016/j.jorganchem.2006.01.064

    Article  Google Scholar 

  30. Schütte K, van der Waerden BL (1951) Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? Math Ann 123:96–124. doi:10.1007/BF02054944

    Article  Google Scholar 

  31. Weaire D, Aste T (2008) The pursuit of perfect packing, 2nd edn. CRC, New York

    Google Scholar 

  32. Tammes PML (1930) On the origin of number and arrangement of the places of exit on pollen grains. Recl Trav Bot Néerl 27:1

    Google Scholar 

  33. Lin Z, Bytheway I (1996) Stereochemistry of seven-coordinate main group and d0 transition metal molecules. Inorg Chem 35:594–603. doi:10.1021/ic950271o

    Article  CAS  Google Scholar 

  34. Thompson HB, Bartell LS (1968) Seven-coordination and ligand-repulsion models for bond geometry. Inorg Chem 7:488–491. doi:10.1021/ic50061a020

    Article  CAS  Google Scholar 

  35. Hall MB (1978) Stereochemical activity of s orbitals. Inorg Chem 17:2261–2269. doi:10.1021/ic50186a050

    Article  CAS  Google Scholar 

  36. Hall MB (1978) Valence shell electron pair repulsions and the Pauli exclusion principle. J Am Chem Soc 100:6333–6338. doi:10.1021/ja00488a007

    Article  CAS  Google Scholar 

  37. Rossi AR, Hoffmann R (1975) Transition metal pentacoordination. Inorg Chem 14:365–374. doi:10.1021/ic50144a032

    Article  CAS  Google Scholar 

  38. Lin Z, Hall MB (1993) A group theoretical analysis on transition-metal complexes with metal-ligand multiple bonds. Coord Chem Rev 123:149–167. doi:10.1016/0010-8545(93)85054-8

    Article  CAS  Google Scholar 

  39. Cipressi J, Brown SN (2014) Octahedral to trigonal prismatic distortion driven by subjacent orbital π antibonding interactions and modulated by ligand redox noninnocence. Chem Commun 50:7956–7959. doi:10.1039/C4CC03404J

    Article  CAS  Google Scholar 

  40. Roessler B, Seppelt K (2000) [Mo(CH3)6] and [Mo(CH3)7]. Angew Chem Int Ed 39:1259–1261. doi:10.1002/(SICI)1521-3773(20000403)39:7<1259::AID-ANIE1259>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  41. Cowie M, Bennett MJ (1976) Trigonal-prismatic vs. octahedral coordination in a series of tris(benzene-1,2-dithiolato) complexes. 1. Crystal and molecular structure of tris(benzene-1,2-dithiolato)molybdenum(VI), Mo(S2C6H4)3. Inorg Chem 15:1584–1589. doi:10.1021/ic50161a023

    Article  CAS  Google Scholar 

  42. Raudaschl G, Lippert B, Hoeschele JD, Howard-Lock HE, Lock CJL, Pilon P (1985) Adduct formation of cis-(NH3)2PtX2 (X = Cl, I) with formamides and the crystal structures of cis-(NH3)2PtCl2·(CH3)2NCHO. Application for the purification of the antitumor agent cisplatin. Inorg Chim Acta 106:141–149. doi:10.1016/S0020-1693(00)87550-7

    Article  CAS  Google Scholar 

  43. Sellmann D, Wille M, Knoch F (1993) Transition metal complexes with sulfur ligands. 97. Coordinatively and electronically unsaturated and saturated chromium, molybdenum, and tungsten dithiolate complexes of the type [M(CO)3(‘S2’)]2− and [M2(CO)7(‘S2’)]2− {‘S22− = S2C6R4 2− (R = H, Cl, Me); S2C2H4 2−}. Inorg Chem 32:2534–2543. doi:10.1021/ic00063a054

    Article  CAS  Google Scholar 

  44. Bowmaker GA, Brown CL, Hart RD, Healy PC, Rickard CEF, White AH (1999) Co-ordination and conformational isomerism in bis(tricyclohexylphosphine) gold(I) halides. J Chem Soc Dalton Trans 881–890. doi:10.1039/A808928K

  45. Amgoune A, Bourissou D (2010) σ-Acceptor, Z-type ligands for transition metals. Chem Commun 47:859–871. doi:10.1039/C0CC04109B

    Article  Google Scholar 

  46. Rutsch P, Renner G, Huttner G, Sandhofner S (2002) Ügangsmetallorganisch stabilisierte Indate und Germanate: Synthese, Struktur und Eigenschaften der Komplexe [{(CO)5M}EX3]2− (M = Cr, Mo, W; E = In; X = Cl, Br), [(CO)5Cr)InBr(μ2-Br)]2 2− sowie [{(CO)5Cr}E(oxinat)2]n– (E = In, n = 2; E = Ge, n = 1). Z Naturforsch 57b:757–772

    Google Scholar 

  47. Leiner E, Hampe O, Scheer M (2002) Synthesis and structure of novel complexes of gallium. Eur J Inorg Chem 2002:584–590. doi:10.1002/1099-0682(200203)2002:3<584::AID-EJIC584>3.0.CO;2-J

    Article  Google Scholar 

  48. Braunschweig H, Gruss K, Radacki K (2007) Interaction between d- and p-block metals: synthesis and structure of platinum–alane adducts. Angew Chem Int Ed 46:7782–7784. doi:10.1002/anie.200702726

    Article  CAS  Google Scholar 

  49. Pang K, Quan SM, Parkin G (2006) Palladium complexes with Pd→B dative bonds: analysis of the bonding in the palladaboratrane compound [κ4-B(mimBut)3]Pd(PMe3). Chem Commun 5015–5017. doi:10.1039/B611654J

  50. Mingos DMP (2014) Ambivalent Lewis acid/bases with symmetry signatures and isolobal analogies. In: Mingos DMP (ed) Nitrosyl complexes inorganic chemistry biochemistry medicine II. Springer, Berlin/Heidelberg, pp 1–51

    Google Scholar 

  51. Mingos DMP (2014) A review of complexes of ambivalent and ambiphilic Lewis acid/bases with symmetry signatures and an alternative notation for these non-innocent ligands. J Organomet Chem 751:153–173. doi:10.1016/j.jorganchem.2013.08.033

    Article  CAS  Google Scholar 

  52. Mingos DMP (2015) A theoretical analysis of ambivalent and ambiphilic Lewis acid/bases with symmetry signatures. Coord Chem Rev 293–294:2–18. doi:10.1016/j.ccr.2014.11.009

    Article  Google Scholar 

  53. Murahashi T, Mochizuki E, Kai Y, Kurosawa H (1999) Organometallic sandwich chains made of conjugated polyenes and metal−metal chains. J Am Chem Soc 121:10660–10661. doi:10.1021/ja992387f

    Article  CAS  Google Scholar 

  54. Sheong FK, Chen W-J, Lin Z (2015) Electron counting approach to the structure and bonding of sandwiched low dimensional palladium clusters. J Organomet Chem. 792:93–101. doi:10.1016/j.jorganchem.2015.02.026

    Article  CAS  Google Scholar 

  55. Horiuchi S, Tachibana Y, Yamashita M, Yamamoto K, Masai K, Takase K, Matsutani T, Kawamata S, Kurashige Y, Yanai T, Murahashi T (2015) Multinuclear metal-binding ability of a carotene. Nat Commun 6. doi:10.1038/ncomms7742

  56. Freitag K, Gemel C, Jerabek P, Oppel IM, Seidel RM, Frenking G, Banh H, Dilchert K, Fischer RA (2015) The σ-aromatic clusters [Zn3]+ and [Zn2Cu]: embryonic brass. Angew Chem Int Ed 54:4370–4374. doi:10.1002/anie.201410737

    Article  CAS  Google Scholar 

  57. Kirchmann M, Eichele K, Schappacher FM, Schappacher FM, Pottgen R, Wesemann L (2008) Octahedral coordination compounds of the Ni, Pd, Pt triad. Angew Chem Int Ed 47:963–966. doi:10.1002/anie.200704814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the Hong Kong Research Grants Council (Grant No. GRF16303014 and CUHK7/CRF/12G). F.K.S. acknowledges support from the Hong Kong Ph.D. Fellowship Scheme 2012/13 (PF11-08816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyang Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sheong, F.K., Chen, WJ., Lin, Z. (2015). Lewis Description of Bonding in Transition Metal Complexes. In: Mingos, D. (eds) The Chemical Bond I. Structure and Bonding, vol 169. Springer, Cham. https://doi.org/10.1007/430_2015_182

Download citation

Publish with us

Policies and ethics