Skip to main content

Anion Receptors Based on Organic Frameworks: Recent Advances

  • Chapter
  • First Online:
50 Years of Structure and Bonding ā€“ The Anniversary Volume

Part of the book series: Structure and Bonding ((STRUCTURE,volume 172))

Abstract

This chapter looks at key advances in anion receptors based on organic frameworks since 2008 including the development of halogen-bonding systems, Cā€“H hydrogen bond donors, new transmembrane anion transporters and the roles anions can play in self-assembly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Recognition of Anions (2008) Structure and bonding, vol 129. Springer, Berlin

    Google ScholarĀ 

  2. Bates GW, Gale PA (2008) An introduction to anion receptors based on organic frameworks. Struct Bond 129:1ā€“44

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Li Y, Flood AH (2008) Strong, size-selective, and electronically tunable Cā€“HĀ·Ā·Ā· halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. J Am Chem Soc 130:12111ā€“12122

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Li Y, Flood AH (2008) Pure C-H hydrogen bonding to chloride ions: a preorganised and rigid macrocyclic receptor. Angew Chem Int Ed 120:2689ā€“2692

    ArticleĀ  Google ScholarĀ 

  5. McDonald K, Hua Y, Flood A (2010) 1,2,3-Triazoles and the expanding utility of charge neutral CHĀ·Ā·Ā· anion interactions. In: Gale PA, Dehaen W (eds) Anion recognition in supramolecular chemistry, vol 24, Topics in heterocyclic chemistry. Springer, Heidelberg, pp 341ā€“366

    ChapterĀ  Google ScholarĀ 

  6. Lee S, Chen C-H, Flood AH (2013) A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat Chem 5:704ā€“710. doi:10.1038/nchem.1668

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Yawer MA, Havel V, Sindelar V (2015) A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew Chem Int Ed 54:276ā€“279

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding. Angew Chem Int Ed 47:6114ā€“6127

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Caballero A, White NG, Beer PD (2011) A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. Angew Chem Int Ed 50:1845ā€“1848

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Chudzinski MG, McClary CA, Taylor MS (2011) Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. J Am Chem Soc 133:10559ā€“10567

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Hay BP, Bryantsev VS (2008) Anionā€“arene adducts: Cā€“H hydrogen bonding, anionā€“pi interaction, and carbon bonding motifs. Chem Commun 2417ā€“2428

    Google ScholarĀ 

  12. Robertazzi A, Krull F, Knapp E-W, Gamez P (2011) Recent advances in anion-pi interactions. CrystEngComm 13:3293ā€“3300

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Schwans JP, Sunden F, Lassila JK, Gonzalez A, Tsai Y, Herschlag D (2013) Use of anion-aromatic interactions to position the general base in the ketosteroid isomerase active site. Proc Natl Acad Sci U S A 110:11308ā€“11313

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Davis JT, Gale PA, Okunola OA, Prados P, Iglesias-SĆ”nchez JC, Torroba T, Quesada R (2009) Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes. Nat Chem 1:138ā€“144

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Casey JR (2006) Why bicarbonate? Biochem Cell Biol 84:930ā€“939

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Moore SJ, Wenzel M, Light ME, Morley R, Bradberry SJ, Gomez-Iglesias P, Soto-Cerrato V, Perez-Tomas R, Gale PA (2012) Towards ā€œdrug-likeā€ indole-based transmembrane anion transporters. Chem Sci 3:2501ā€“2509

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Hansch C, Fujita T (1964) J Am Chem Soc 86:1616ā€“1626

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Busschaert N, Bradberry SJ, Wenzel M, Haynes CJE, Hiscock JR, Kirby IL, Karagiannidis LE, Moore SJ, Wells NJ, Herniman J, Langley GJ, Horton PN, Light ME, Marques I, Costa PJ, Felix V, Frey JG, Gale PA (2013) Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chem Sci 4:3036ā€“3045

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Busschaert N, Kirby IL, Young S, Coles SJ, Horton PN, Light ME, Gale PA (2012) Squaramides as potent transmembrane anion transporters. Angew Chem Int Ed 51:4426ā€“4430

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Moore SJ, Haynes CJE, Gonzalez J, Sutton JL, Brooks SJ, Light ME, Herniman J, Langley GJ, Soto-Cerrato V, Perez-Tomas R, Marques I, Costa PJ, Felix V, Gale PA (2013) Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas. Chem Sci 4:103ā€“117

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Karagiannidis LE, Haynes CJE, Holder KJ, Kirby IL, Moore SJ, Wells NJ, Gale PA (2014) Highly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas. Chem Commun 50:12050ā€“12053

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Valkenier H, Judd LW, Li H, Hussain S, Sheppard DN, Davis AP (2014) Preorganized bis-thioureas as powerful anion carriers: chloride transport by single molecules in large unilamellar vesicles. J Am Chem Soc 136:12507ā€“12512

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Valkenier H, LĆ³pez Mora N, Kros A, Davis AP (2015) Visualisation and quantification of transmembrane ion transport into giant unilamellar vesicles. Angew Chem Int Ed 54:2137ā€“2141

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Busschaert N, Wenzel M, Light ME, Iglesias-HernĆ”ndez P, PĆ©rez-TomĆ”s R, Gale PA (2011) Structureā€“activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. J Am Chem Soc 133:14136ā€“14148

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Hernando E, Soto-Cerrato V, Cortes-Arroyo S, Perez-Tomas R, Quesada R (2014) Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs. Org Biomol Chem 12:1771ā€“1778

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Ko S-K, Kim SK, Share A, Lynch VM, Park J, Namkung W, Van Rossom W, Busschaert N, Gale PA, Sessler JL, Shin I (2014) Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat Chem 6:885ā€“892

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S (2011) Ditopic ion transport systems: anion-pi interactions and halogen bonds at work. Angew Chem Int Ed 50:11675ā€“11678

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Vargas Jentzsch A, Matile S (2013) Transmembrane halogen-bonding cascades. J Am Chem Soc 135:5302ā€“5303

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Jentzsch AV, Emery D, Mareda J, Nayak SK, Metrangolo P, Resnati G, Sakai N, Matile S (2012) Transmembrane anion transport mediated by halogen-bond donors. Nat Commun 3:905

    ArticleĀ  Google ScholarĀ 

  30. Harrell WA Jr, Bergmeyer ML, Zavalij PY, Davis JT (2010) Ceramide-mediated transport of chloride and bicarbonate across phospholipid membranes. Chem Commun 46:3950ā€“3952

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. McNally BA, Oā€™Neil EJ, Nguyen A, Smith BD (2008) Membrane transporters for anions that use a relay mechanism. J Am Chem Soc 130:17274ā€“17275

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Hasenknopf B, Lehn J-M, Kneisel BO, Baum G, Fenske D (1996) Self-assembly of a circular double helicate. Angew Chem Int Ed 35:1838ā€“1840

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Ayme J-F, Beves JE, Leigh DA, McBurney RT, Rissanen K, Schultz D (2012) A synthetic molecular pentafoil knot. Nat Chem 4:15ā€“20

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Spence GT, Beer PD (2013) Expanding the scope of the anion templated synthesis of interlocked structures. Acc Chem Res 46:571ā€“586

    ArticleĀ  CASĀ  Google ScholarĀ 

  35. Langton MJ, Beer PD (2014) Rotaxane and catenane host structures for sensing charged guest species. Acc Chem Res 47:1935ā€“1949

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Langton MJ, Robinson SW, Marques I, FĆ©lix V, Beer PD (2014) Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nat Chem 6:1039ā€“1043

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Chem Rev. doi:10.1021/acs.chemrev.5b00099

Download references

Acknowledgements

PAG thanks the Royal Society and the Wolfson Foundation for a Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Gale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gale, P.A. (2015). Anion Receptors Based on Organic Frameworks: Recent Advances. In: Mingos, D. (eds) 50 Years of Structure and Bonding ā€“ The Anniversary Volume. Structure and Bonding, vol 172. Springer, Cham. https://doi.org/10.1007/430_2015_174

Download citation

Publish with us

Policies and ethics