Anion Receptors Based on Organic Frameworks: Recent Advances

  • Philip A. GaleEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 172)


This chapter looks at key advances in anion receptors based on organic frameworks since 2008 including the development of halogen-bonding systems, C–H hydrogen bond donors, new transmembrane anion transporters and the roles anions can play in self-assembly processes.


Anion transport Anions Halogen bonding Hydrogen bonding Self-assembly Supramolecular chemistry 



PAG thanks the Royal Society and the Wolfson Foundation for a Research Merit Award.


  1. 1.
    Recognition of Anions (2008) Structure and bonding, vol 129. Springer, BerlinGoogle Scholar
  2. 2.
    Bates GW, Gale PA (2008) An introduction to anion receptors based on organic frameworks. Struct Bond 129:1–44CrossRefGoogle Scholar
  3. 3.
    Li Y, Flood AH (2008) Strong, size-selective, and electronically tunable C–H··· halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. J Am Chem Soc 130:12111–12122CrossRefGoogle Scholar
  4. 4.
    Li Y, Flood AH (2008) Pure C-H hydrogen bonding to chloride ions: a preorganised and rigid macrocyclic receptor. Angew Chem Int Ed 120:2689–2692CrossRefGoogle Scholar
  5. 5.
    McDonald K, Hua Y, Flood A (2010) 1,2,3-Triazoles and the expanding utility of charge neutral CH··· anion interactions. In: Gale PA, Dehaen W (eds) Anion recognition in supramolecular chemistry, vol 24, Topics in heterocyclic chemistry. Springer, Heidelberg, pp 341–366CrossRefGoogle Scholar
  6. 6.
    Lee S, Chen C-H, Flood AH (2013) A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat Chem 5:704–710. doi: 10.1038/nchem.1668 CrossRefGoogle Scholar
  7. 7.
    Yawer MA, Havel V, Sindelar V (2015) A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew Chem Int Ed 54:276–279CrossRefGoogle Scholar
  8. 8.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding. Angew Chem Int Ed 47:6114–6127CrossRefGoogle Scholar
  9. 9.
    Caballero A, White NG, Beer PD (2011) A bidentate halogen-bonding bromoimidazoliophane receptor for bromide ion recognition in aqueous media. Angew Chem Int Ed 50:1845–1848CrossRefGoogle Scholar
  10. 10.
    Chudzinski MG, McClary CA, Taylor MS (2011) Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. J Am Chem Soc 133:10559–10567CrossRefGoogle Scholar
  11. 11.
    Hay BP, Bryantsev VS (2008) Anion–arene adducts: C–H hydrogen bonding, anion–pi interaction, and carbon bonding motifs. Chem Commun 2417–2428Google Scholar
  12. 12.
    Robertazzi A, Krull F, Knapp E-W, Gamez P (2011) Recent advances in anion-pi interactions. CrystEngComm 13:3293–3300CrossRefGoogle Scholar
  13. 13.
    Schwans JP, Sunden F, Lassila JK, Gonzalez A, Tsai Y, Herschlag D (2013) Use of anion-aromatic interactions to position the general base in the ketosteroid isomerase active site. Proc Natl Acad Sci U S A 110:11308–11313CrossRefGoogle Scholar
  14. 14.
    Davis JT, Gale PA, Okunola OA, Prados P, Iglesias-Sánchez JC, Torroba T, Quesada R (2009) Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes. Nat Chem 1:138–144CrossRefGoogle Scholar
  15. 15.
    Casey JR (2006) Why bicarbonate? Biochem Cell Biol 84:930–939CrossRefGoogle Scholar
  16. 16.
    Moore SJ, Wenzel M, Light ME, Morley R, Bradberry SJ, Gomez-Iglesias P, Soto-Cerrato V, Perez-Tomas R, Gale PA (2012) Towards “drug-like” indole-based transmembrane anion transporters. Chem Sci 3:2501–2509CrossRefGoogle Scholar
  17. 17.
    Hansch C, Fujita T (1964) J Am Chem Soc 86:1616–1626CrossRefGoogle Scholar
  18. 18.
    Busschaert N, Bradberry SJ, Wenzel M, Haynes CJE, Hiscock JR, Kirby IL, Karagiannidis LE, Moore SJ, Wells NJ, Herniman J, Langley GJ, Horton PN, Light ME, Marques I, Costa PJ, Felix V, Frey JG, Gale PA (2013) Towards predictable transmembrane transport: QSAR analysis of anion binding and transport. Chem Sci 4:3036–3045CrossRefGoogle Scholar
  19. 19.
    Busschaert N, Kirby IL, Young S, Coles SJ, Horton PN, Light ME, Gale PA (2012) Squaramides as potent transmembrane anion transporters. Angew Chem Int Ed 51:4426–4430CrossRefGoogle Scholar
  20. 20.
    Moore SJ, Haynes CJE, Gonzalez J, Sutton JL, Brooks SJ, Light ME, Herniman J, Langley GJ, Soto-Cerrato V, Perez-Tomas R, Marques I, Costa PJ, Felix V, Gale PA (2013) Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas. Chem Sci 4:103–117CrossRefGoogle Scholar
  21. 21.
    Karagiannidis LE, Haynes CJE, Holder KJ, Kirby IL, Moore SJ, Wells NJ, Gale PA (2014) Highly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas. Chem Commun 50:12050–12053CrossRefGoogle Scholar
  22. 22.
    Valkenier H, Judd LW, Li H, Hussain S, Sheppard DN, Davis AP (2014) Preorganized bis-thioureas as powerful anion carriers: chloride transport by single molecules in large unilamellar vesicles. J Am Chem Soc 136:12507–12512CrossRefGoogle Scholar
  23. 23.
    Valkenier H, López Mora N, Kros A, Davis AP (2015) Visualisation and quantification of transmembrane ion transport into giant unilamellar vesicles. Angew Chem Int Ed 54:2137–2141CrossRefGoogle Scholar
  24. 24.
    Busschaert N, Wenzel M, Light ME, Iglesias-Hernández P, Pérez-Tomás R, Gale PA (2011) Structure–activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. J Am Chem Soc 133:14136–14148CrossRefGoogle Scholar
  25. 25.
    Hernando E, Soto-Cerrato V, Cortes-Arroyo S, Perez-Tomas R, Quesada R (2014) Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs. Org Biomol Chem 12:1771–1778CrossRefGoogle Scholar
  26. 26.
    Ko S-K, Kim SK, Share A, Lynch VM, Park J, Namkung W, Van Rossom W, Busschaert N, Gale PA, Sessler JL, Shin I (2014) Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat Chem 6:885–892CrossRefGoogle Scholar
  27. 27.
    Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S (2011) Ditopic ion transport systems: anion-pi interactions and halogen bonds at work. Angew Chem Int Ed 50:11675–11678CrossRefGoogle Scholar
  28. 28.
    Vargas Jentzsch A, Matile S (2013) Transmembrane halogen-bonding cascades. J Am Chem Soc 135:5302–5303CrossRefGoogle Scholar
  29. 29.
    Jentzsch AV, Emery D, Mareda J, Nayak SK, Metrangolo P, Resnati G, Sakai N, Matile S (2012) Transmembrane anion transport mediated by halogen-bond donors. Nat Commun 3:905CrossRefGoogle Scholar
  30. 30.
    Harrell WA Jr, Bergmeyer ML, Zavalij PY, Davis JT (2010) Ceramide-mediated transport of chloride and bicarbonate across phospholipid membranes. Chem Commun 46:3950–3952CrossRefGoogle Scholar
  31. 31.
    McNally BA, O’Neil EJ, Nguyen A, Smith BD (2008) Membrane transporters for anions that use a relay mechanism. J Am Chem Soc 130:17274–17275CrossRefGoogle Scholar
  32. 32.
    Hasenknopf B, Lehn J-M, Kneisel BO, Baum G, Fenske D (1996) Self-assembly of a circular double helicate. Angew Chem Int Ed 35:1838–1840CrossRefGoogle Scholar
  33. 33.
    Ayme J-F, Beves JE, Leigh DA, McBurney RT, Rissanen K, Schultz D (2012) A synthetic molecular pentafoil knot. Nat Chem 4:15–20CrossRefGoogle Scholar
  34. 34.
    Spence GT, Beer PD (2013) Expanding the scope of the anion templated synthesis of interlocked structures. Acc Chem Res 46:571–586CrossRefGoogle Scholar
  35. 35.
    Langton MJ, Beer PD (2014) Rotaxane and catenane host structures for sensing charged guest species. Acc Chem Res 47:1935–1949CrossRefGoogle Scholar
  36. 36.
    Langton MJ, Robinson SW, Marques I, Félix V, Beer PD (2014) Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nat Chem 6:1039–1043CrossRefGoogle Scholar
  37. 37.
    Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Chem Rev. doi: 10.1021/acs.chemrev.5b00099

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ChemistryUniversity of SouthamptonSouthamptonUK

Personalised recommendations