Skip to main content

Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications

  • Chapter
  • First Online:
Lanthanide Metal-Organic Frameworks

Part of the book series: Structure and Bonding ((STRUCTURE,volume 163))

Abstract

Metal-organic frameworks (MOFs) have emerged as a novel category of porous materials. Currently, rational design of MOFs provides a convenient method to design MOFs with desired properties. After a short introduction of traditional metal MOFs, this chapter discusses the development, properties, and applications of Lanthanide MOFs (Ln-MOFs). Ln-MOFs have garnered much interest due to a wide array of features from the marriage of lanthanide ions with traditional MOFs. An introduction to the Ln-MOF field is presented with several well-known structures to demonstrate various synthetic strategies. Furthermore, interesting structural and chemical properties including porosity, chirality, magnetism, and luminescence are highlighted from recent studies, as well as, a brief overview of potential applications including gas storage, catalysis, and chemical sensing.

The first two authors have equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bbc :

4,4′,4″-(Benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate

bdc :

1,4-Benzenedicarboxylate

BET:

Brunauer–Emmett–Teller

btc :

1,3,5-Benzenetricarboxylate

bpdc :

4,4′-Biphenyldicarboxylate

COF:

Covalent organic framework

DEF:

N,N′-diethylformamide

DMA:

Dimethylacetamide

DMF:

N,N′-Dimethylformamide

DMSO:

Dimethyl sulfoxide

dobdc :

2,5-Dioxido-1,4-benzene-dicarboxylate

dpa :

1,4-Phenylenediacetate

hfipbb :

4,4′-(Hexafluoroisopropylidene)bis(benzoic acid)

HKUST:

Hong Kong University of Science and Technology

htb :

4,4′,4″-(1,3,4,6,7,9,9)-Heptaazaphenalene-2,5,8-triyl)tribenzoate

ina :

Isonicotinic acid

ip :

Isophthalic acid

LMCT:

Ligand-to-metal charge transfer

Ln-MOF:

Lanthanide MOF

Ln-TM MOF:

Lanthanide-transition metal MOF

mdip :

Methylenediisophthalate

mell :

Mellitic acid

MIL:

Materials of Institut Lavoisier

MLCT:

Metal-ligand charge transfer

MOF:

Metal-organic framework

NJU:

Nanjing University

oda :

Oxydiacetate

pam :

4,4′-Methylenebis[3-hydroxy-2-naphthalenecarboxylate]

PCN:

Porous coordination network

pdc :

Pyridine-3,5-dicarboxylate

RPF:

Rare earth polymeric frames

SBU:

Secondary building unit

tatab :

4,4′,4″-s-Triazine-1,3,5-triyltri-p-aminobenzoate

tatb :

4,4′,4″-s-Triazine-2,4,6-triyltribenzoate

tda :

1H-1,2,3-Triazole-4,5-dicarboxylate

TM:

Transition metal

TOF:

Turnover frequency

tpbtm :

N,N′,N″-Tris(isophthalyl)-1,3,5,-benzenetricarboxamide

UMC:

Unsaturated metal centers

UiO:

University of Oslo

UTSA:

University of Texas-San Antonio

References

  1. Batten SR, Champness NR, Chen X-M et al (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem 85:1715–1724

    Article  CAS  Google Scholar 

  2. Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375

    Article  CAS  Google Scholar 

  3. Zhang M, Chen Y-P, Bosch M et al (2014) Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. Angew Chem Int Ed 53(3):815–818

    Article  CAS  Google Scholar 

  4. Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022

    Article  CAS  Google Scholar 

  5. Lee J, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    Article  CAS  Google Scholar 

  6. Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38(5):1294–1314

    Article  CAS  Google Scholar 

  7. Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112(2):673–674 (Washington, DC, US)

    Article  CAS  Google Scholar 

  8. Lee Y-R, Kim J, Ahn W-S (2013) Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng 30(9):1667–1680

    Article  CAS  Google Scholar 

  9. Makal TA, Yuan D, Zhao D et al (2011) Metal-organic frameworks. In: Yang P (ed) The chemistry of nanostructured materials, vol II. World Scientific, Singapore, pp 37–64

    Chapter  Google Scholar 

  10. Biemmi E, Christian S, Stock N et al (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater 117(1–2):111–117

    Article  CAS  Google Scholar 

  11. Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279

    Article  CAS  Google Scholar 

  12. Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472

    Article  CAS  Google Scholar 

  13. Chui SS-Y, Lo SM-F, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405):1148–1150

    Article  CAS  Google Scholar 

  14. Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Article  Google Scholar 

  15. Cavka JH, Jakobsen S, Olsbye U et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  Google Scholar 

  16. Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969 (Washington, DC, US)

    Article  CAS  Google Scholar 

  17. Jhung SH, Lee JH, Yoon JW et al (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19(1):121–124 (Weinheim, Ger.)

    Article  CAS  Google Scholar 

  18. Kerner R, Palchik O, Gedanken A (2001) Sonochemical and microwave-assisted preparations of PbTe and PbSe. A comparative study. Chem Mater 13(4):1413–1419

    Article  CAS  Google Scholar 

  19. Son W-J, Kim J, Kim J et al (2008) Sonochemical synthesis of MOF-5. Chem Commun 47:6336–6338 (Cambridge, UK)

    Article  Google Scholar 

  20. Mueller U, Schubert M, Teich F et al (2006) Metal-organic frameworks-prospective industrial applications. J Mater Chem 16(7):626–636

    Article  CAS  Google Scholar 

  21. Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P et al (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst Growth Des 12(7):3489–3498

    Article  CAS  Google Scholar 

  22. Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M et al (2009) Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev 38(5):1257–1283

    Article  CAS  Google Scholar 

  23. Lu W, Wei Z, Gu Z-Y et al (2014) Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev 43:5561–5593. doi:10.1039/C1034CS00003J

    Article  CAS  Google Scholar 

  24. Gagnon KJ, Perry HP, Clearfield A (2011) Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem Rev 112(2):1034–1054 (Washington, DC, US)

    Article  Google Scholar 

  25. Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Phosphonate and sulfonate metal organic frameworks. Chem Soc Rev 38(5):1430–1449

    Article  CAS  Google Scholar 

  26. Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714

    Article  CAS  Google Scholar 

  27. Rosi NL, Kim J, Eddaoudi M et al (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518

    Article  CAS  Google Scholar 

  28. Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130(33):10870–10871

    Article  CAS  Google Scholar 

  29. Deng H, Grunder S, Cordova KE et al (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336(6084):1018–1023

    Article  CAS  Google Scholar 

  30. Férey G, Serre C, Mellot-Draznieks C et al (2004) Angew Chem Int Ed 436296

    Google Scholar 

  31. Kim M, Cahill JF, Su Y et al (2012) Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal-organic frameworks. Chem Sci 3(1):126

    Article  CAS  Google Scholar 

  32. Wang C, Wang JL, Lin W (2012) Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J Am Chem Soc 134(48):19895–19908

    Article  CAS  Google Scholar 

  33. Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  34. Daiguebonne C, Kerbellec N, Guillou O et al (2008) Structural and luminescent properties of micro- and nanosized particles of lanthanide terephthalate coordination polymers. Inorg Chem 47(9):3700–3708

    Article  CAS  Google Scholar 

  35. Chen L, Jiang F, Zhou K, Wu M, Hong M (2014) Metal-organic frameworks based on lanthanide clusters. Struct Bond. doi:10.1007/430_2014_161

    Article  Google Scholar 

  36. Luo F, Batten SR, Che Y et al (2007) Synthesis, structure, and characterization of three series of 3d–4f metal-organic frameworks based on rod-shaped and (6,3)-sheet metal carboxylate substructures. Chemistry 13(17):4948–4955

    Article  CAS  Google Scholar 

  37. Huang Y-G, Jiang F-L, Hong M-C (2009) Magnetic lanthanide–transition-metal organic–inorganic hybrid materials: from discrete clusters to extended frameworks. Coord Chem Rev 253(23–24):2814–2834

    Article  CAS  Google Scholar 

  38. Shi W, Liu K, Cheng P (2014) Transition-lanthanide heterometal-organic frameworks: synthesis, structures and properties. Struct Bond. doi:10.1007/430_2014_157

    Google Scholar 

  39. Zhang M, Bosch M, Gentle T III et al (2014) Rational design of metal-organic frameworks with anticipated porosities and functionalities. CrystEngComm 16(20):4069–4083

    Article  CAS  Google Scholar 

  40. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214

    Article  CAS  Google Scholar 

  41. Chen Y, Ma S (2012) Microporous lanthanide metal-organic frameworks. Rev Inorg Chem 32(2–4):81

    CAS  Google Scholar 

  42. Han Y, Li X, Li L et al (2010) Structures and properties of porous coordination polymers based on lanthanide carboxylate building units. Inorg Chem 49(23):10781–10787

    Article  CAS  Google Scholar 

  43. Ma S, Yuan D, Wang X-S et al (2009) Microporous lanthanide metal-organic frameworks containing coordinatively linked interpenetration: syntheses, gas adsorption studies, thermal stability analysis, and photoluminescence investigation. Inorg Chem 48(5):2072–2077

    Article  CAS  Google Scholar 

  44. Li B, Chen B (2014) Porous lanthanide metal-organic frameworks for gas storage and separation. Struct Bond. doi:10.1007/430_2014_159

    Google Scholar 

  45. Park YK, Choi SB, Kim H et al (2007) Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew Chem Int Ed 46(43):8230–8233

    Article  CAS  Google Scholar 

  46. Zhou J-M, Li H-M, Xu N et al (2013) Construction of lanthanide multi-functional metal–organic frameworks via mixed ligand approach: syntheses, structures, magnetic and luminescent properties. Inorg Chem Commun 37:30–33

    Article  CAS  Google Scholar 

  47. Su S, Chen W, Qin C et al (2012) Lanthanide anionic metal–organic frameworks containing semirigid tetracarboxylate ligands: structure, photoluminescence, and magnetism. Cryst Growth Des 12(4):1808–1815

    Article  CAS  Google Scholar 

  48. Biswas S, Jena HS, Goswami S et al (2014) Synthesis and characterization of two lanthanide (Gd3+ and Dy3+)-based three-dimensional metal organic frameworks with squashed metallomacrocycle type building blocks and their magnetic, sorption, and fluorescence properties study. Cryst Growth Des 14(3):1287–1295

    Article  CAS  Google Scholar 

  49. Bencini A, Benelli C, Caneschi A et al (1985) Crystal and molecular-structure of and magnetic coupling in 2 complexes containing gadolinium(III) and copper(II) ions. J Am Chem Soc 107(26):8128–8136

    Article  CAS  Google Scholar 

  50. Pei Y, Journaux Y, Kahn O et al (1986) A Mn-II-Cu-II-Mn-II trinuclear species with an S = 9/2 ground-state. J Chem Soc Chem Commun 16:1300–1301

    Article  Google Scholar 

  51. Benelli C, Caneschi A, Gatteschi D et al (1990) Synthesis, crystal-structure, and magnetic-properties of tetranuclear complexes containing exchange-coupled Gd2cu2, Dy2cu2 species. Inorg Chem 29(9):1750–1755

    Article  CAS  Google Scholar 

  52. Rizzi A, Baggio R, Calvo R et al (2001) Synthesis, crystal structure, and magnetic properties of the mixed-ligand complex [Gd(CF3CO2)(3)(phen)(2)(H2O)]. Inorg Chem 40(14):3623–3625

    Article  CAS  Google Scholar 

  53. Zhang M-B, Zhang J, Zheng S-T et al (2005) A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem Int Ed 44(9):1385–1388

    Article  CAS  Google Scholar 

  54. Huang X-F, Ma J-X, Liu W-S (2014) Lanthanide metalloligand strategy toward d–f heterometallic metal–organic frameworks: magnetism and symmetric-dependent luminescent properties. Inorg Chem 53(12):5922–5930

    Article  CAS  Google Scholar 

  55. Zou J-Y, Shi W, Xu N et al (2014) Cobalt(II)–lanthanide(III) heterometallic metal–organic frameworks with unique (6,6)-connected Nia topologies with 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, structures and magnetic properties. Eur J Inorg Chem 2014(2):407–412

    Article  CAS  Google Scholar 

  56. Cui Y, Yue Y, Qian G et al (2011) Luminescent functional metal–organic frameworks. Chem Rev 112(2):1126–1162 (Washington, DC, US)

    Article  Google Scholar 

  57. Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755 (Washington, DC, US)

    Article  Google Scholar 

  58. Gándara F, Andrés AD, Gómez-Lor B et al (2008) A rare-earth MOF series: fascinating structure, efficient light emitters, and promising catalysts. Cryst Growth Des 8(2):378–380

    Article  Google Scholar 

  59. Whan RE, Crosby GA (1962) Luminescence studies of rare earth complexes: benzoylacetonate and dibenzoylmethide chelates. J Mol Spectrosc 8(1–6):315–327

    Article  CAS  Google Scholar 

  60. Chandler BD, Cramb DT, Shimizu GKH (2006) Microporous metal–organic frameworks formed in a stepwise manner from luminescent building blocks. J Am Chem Soc 128(32):10403–10412

    Article  CAS  Google Scholar 

  61. Song X-Z, Song S-Y, Zhang H-J (2014) Luminescent lanthanide metal-organic frameworks. Struct Bond. doi:10.1007/430_2014_160

    Google Scholar 

  62. Horcajada P, Gref R, Baati T et al (2011) Metal–organic frameworks in biomedicine. Chem Rev 112(2):1232–1268 (Washington, DC, US)

    Article  Google Scholar 

  63. Ma S, Wang X-S, Yuan D et al (2008) A coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47(22):4130–4133

    Article  CAS  Google Scholar 

  64. Tang K, Yun R, Lu Z et al (2013) High CO2/N2 selectivity and H2 adsorption of a novel porous yttrium metal–organic framework based on N,N′,N″-tris(isophthalyl)-1,3,5-benzenetricarboxamide. Cryst Growth Des 13(4):1382–1385

    Article  CAS  Google Scholar 

  65. Ren Y-W, Liang J-X, Lu J-X et al (2011) 1,4-Phenylenediacetate-based Ln MOFs – synthesis, structures, luminescence, and catalytic activity. Eur J Inorg Chem 2011(28):4369–4376

    Article  CAS  Google Scholar 

  66. Shibasaki M, Yamada K-I, Yoshikawa N (2008) Lanthanide lewis acids catalysis, Lewis acids in organic synthesis. Wiley-VCH Verlag GmbH, Weinheim, pp 911–944

    Google Scholar 

  67. Gascon J, Corma A, Kapteijn F et al (2013) Metal organic framework catalysis: quo vadis? ACS Catal 4(2):361–378

    Article  Google Scholar 

  68. D’Vries RF, Iglesias M, Snejko N et al (2012) Mixed lanthanide succinate-sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. J Mater Chem 22(3):1191–1198

    Article  Google Scholar 

  69. D’Vries RF, de la Peña-O’Shea VA, Snejko N et al (2012) Insight into the correlation between net topology and ligand coordination mode in new lanthanide MOFs heterogeneous catalysts: a theoretical and experimental approach. Cryst Growth Des 12(11):5535–5545

    Article  Google Scholar 

  70. Batista PK, Alves DJM, Rodrigues MO et al (2013) Tuning the catalytic activity of lanthanide-organic framework for the cyanosilylation of aldehydes. J Mol Catal A Chem 379:68–71

    Article  CAS  Google Scholar 

  71. Chen B, Wang L, Xiao Y et al (2009) A luminescent metal–organic framework with lewis basic pyridyl sites for the sensing of metal ions. Angew Chem Int Ed 48(3):500–503

    Article  CAS  Google Scholar 

  72. Chen B, Wang L, Zapata F et al (2008) A luminescent microporous metal–organic framework for the recognition and sensing of anions. J Am Chem Soc 130(21):6718–6719

    Article  CAS  Google Scholar 

  73. Chen B, Yang Y, Zapata F et al (2007) Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv Mater 19(13):1693–1696 (Weinheim, Ger.)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Texas A&M University, and our financial sponsors the United States Department of Energy (DOE), the United States Office of Naval Research (ONR), and the Welch Foundation. We would also like to acknowledge Zachary Perry, Weigang Lu, Muwei Zhang, and Lizzie West for assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Cai Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fordham, S., Wang, X., Bosch, M., Zhou, HC. (2014). Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. In: Cheng, P. (eds) Lanthanide Metal-Organic Frameworks. Structure and Bonding, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_162

Download citation

Publish with us

Policies and ethics