Advertisement

Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications

  • Stephen Fordham
  • Xuan Wang
  • Mathieu Bosch
  • Hong-Cai ZhouEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 163)

Abstract

Metal-organic frameworks (MOFs) have emerged as a novel category of porous materials. Currently, rational design of MOFs provides a convenient method to design MOFs with desired properties. After a short introduction of traditional metal MOFs, this chapter discusses the development, properties, and applications of Lanthanide MOFs (Ln-MOFs). Ln-MOFs have garnered much interest due to a wide array of features from the marriage of lanthanide ions with traditional MOFs. An introduction to the Ln-MOF field is presented with several well-known structures to demonstrate various synthetic strategies. Furthermore, interesting structural and chemical properties including porosity, chirality, magnetism, and luminescence are highlighted from recent studies, as well as, a brief overview of potential applications including gas storage, catalysis, and chemical sensing.

Keywords

Catalysis Chemical sensing Porous coordination networks Coordination polymers Gas storage Lanthanide MOFs (Ln-MOFs) Luminescence Magnetism Metal-organic frameworks (MOFs) Porosity 

Abbreviations

bbc

4,4′,4″-(Benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate

bdc

1,4-Benzenedicarboxylate

BET

Brunauer–Emmett–Teller

btc

1,3,5-Benzenetricarboxylate

bpdc

4,4′-Biphenyldicarboxylate

COF

Covalent organic framework

DEF

N,N′-diethylformamide

DMA

Dimethylacetamide

DMF

N,N′-Dimethylformamide

DMSO

Dimethyl sulfoxide

dobdc

2,5-Dioxido-1,4-benzene-dicarboxylate

dpa

1,4-Phenylenediacetate

hfipbb

4,4′-(Hexafluoroisopropylidene)bis(benzoic acid)

HKUST

Hong Kong University of Science and Technology

htb

4,4′,4″-(1,3,4,6,7,9,9)-Heptaazaphenalene-2,5,8-triyl)tribenzoate

ina

Isonicotinic acid

ip

Isophthalic acid

LMCT

Ligand-to-metal charge transfer

Ln-MOF

Lanthanide MOF

Ln-TM MOF

Lanthanide-transition metal MOF

mdip

Methylenediisophthalate

mell

Mellitic acid

MIL

Materials of Institut Lavoisier

MLCT

Metal-ligand charge transfer

MOF

Metal-organic framework

NJU

Nanjing University

oda

Oxydiacetate

pam

4,4′-Methylenebis[3-hydroxy-2-naphthalenecarboxylate]

PCN

Porous coordination network

pdc

Pyridine-3,5-dicarboxylate

RPF

Rare earth polymeric frames

SBU

Secondary building unit

tatab

4,4′,4″-s-Triazine-1,3,5-triyltri-p-aminobenzoate

tatb

4,4′,4″-s-Triazine-2,4,6-triyltribenzoate

tda

1H-1,2,3-Triazole-4,5-dicarboxylate

TM

Transition metal

TOF

Turnover frequency

tpbtm

N,N′,N″-Tris(isophthalyl)-1,3,5,-benzenetricarboxamide

UMC

Unsaturated metal centers

UiO

University of Oslo

UTSA

University of Texas-San Antonio

Notes

Acknowledgements

The authors would like to acknowledge Texas A&M University, and our financial sponsors the United States Department of Energy (DOE), the United States Office of Naval Research (ONR), and the Welch Foundation. We would also like to acknowledge Zachary Perry, Weigang Lu, Muwei Zhang, and Lizzie West for assistance in the preparation of this chapter.

References

  1. 1.
    Batten SR, Champness NR, Chen X-M et al (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem 85:1715–1724CrossRefGoogle Scholar
  2. 2.
    Kitagawa S, Kitaura R, Noro S-I (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375CrossRefGoogle Scholar
  3. 3.
    Zhang M, Chen Y-P, Bosch M et al (2014) Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology. Angew Chem Int Ed 53(3):815–818CrossRefGoogle Scholar
  4. 4.
    Feng X, Ding X, Jiang D (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6022CrossRefGoogle Scholar
  5. 5.
    Lee J, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRefGoogle Scholar
  6. 6.
    Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38(5):1294–1314CrossRefGoogle Scholar
  7. 7.
    Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112(2):673–674 (Washington, DC, US)CrossRefGoogle Scholar
  8. 8.
    Lee Y-R, Kim J, Ahn W-S (2013) Synthesis of metal-organic frameworks: a mini review. Korean J Chem Eng 30(9):1667–1680CrossRefGoogle Scholar
  9. 9.
    Makal TA, Yuan D, Zhao D et al (2011) Metal-organic frameworks. In: Yang P (ed) The chemistry of nanostructured materials, vol II. World Scientific, Singapore, pp 37–64CrossRefGoogle Scholar
  10. 10.
    Biemmi E, Christian S, Stock N et al (2009) High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater 117(1–2):111–117CrossRefGoogle Scholar
  11. 11.
    Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279CrossRefGoogle Scholar
  12. 12.
    Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472CrossRefGoogle Scholar
  13. 13.
    Chui SS-Y, Lo SM-F, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405):1148–1150CrossRefGoogle Scholar
  14. 14.
    Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042CrossRefGoogle Scholar
  15. 15.
    Cavka JH, Jakobsen S, Olsbye U et al (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851CrossRefGoogle Scholar
  16. 16.
    Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112(2):933–969 (Washington, DC, US)CrossRefGoogle Scholar
  17. 17.
    Jhung SH, Lee JH, Yoon JW et al (2007) Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater 19(1):121–124 (Weinheim, Ger.)CrossRefGoogle Scholar
  18. 18.
    Kerner R, Palchik O, Gedanken A (2001) Sonochemical and microwave-assisted preparations of PbTe and PbSe. A comparative study. Chem Mater 13(4):1413–1419CrossRefGoogle Scholar
  19. 19.
    Son W-J, Kim J, Kim J et al (2008) Sonochemical synthesis of MOF-5. Chem Commun 47:6336–6338 (Cambridge, UK)CrossRefGoogle Scholar
  20. 20.
    Mueller U, Schubert M, Teich F et al (2006) Metal-organic frameworks-prospective industrial applications. J Mater Chem 16(7):626–636CrossRefGoogle Scholar
  21. 21.
    Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P et al (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst Growth Des 12(7):3489–3498CrossRefGoogle Scholar
  22. 22.
    Tranchemontagne DJ, Mendoza-Cortes JL, O’Keeffe M et al (2009) Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev 38(5):1257–1283CrossRefGoogle Scholar
  23. 23.
    Lu W, Wei Z, Gu Z-Y et al (2014) Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev 43:5561–5593. doi: 10.1039/C1034CS00003J CrossRefGoogle Scholar
  24. 24.
    Gagnon KJ, Perry HP, Clearfield A (2011) Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem Rev 112(2):1034–1054 (Washington, DC, US)CrossRefGoogle Scholar
  25. 25.
    Shimizu GKH, Vaidhyanathan R, Taylor JM (2009) Phosphonate and sulfonate metal organic frameworks. Chem Soc Rev 38(5):1430–1449CrossRefGoogle Scholar
  26. 26.
    Yaghi OM, O’Keeffe M, Ockwig NW et al (2003) Reticular synthesis and the design of new materials. Nature 423(6941):705–714CrossRefGoogle Scholar
  27. 27.
    Rosi NL, Kim J, Eddaoudi M et al (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518CrossRefGoogle Scholar
  28. 28.
    Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130(33):10870–10871CrossRefGoogle Scholar
  29. 29.
    Deng H, Grunder S, Cordova KE et al (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336(6084):1018–1023CrossRefGoogle Scholar
  30. 30.
    Férey G, Serre C, Mellot-Draznieks C et al (2004) Angew Chem Int Ed 436296Google Scholar
  31. 31.
    Kim M, Cahill JF, Su Y et al (2012) Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal-organic frameworks. Chem Sci 3(1):126CrossRefGoogle Scholar
  32. 32.
    Wang C, Wang JL, Lin W (2012) Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J Am Chem Soc 134(48):19895–19908CrossRefGoogle Scholar
  33. 33.
    Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425CrossRefGoogle Scholar
  34. 34.
    Daiguebonne C, Kerbellec N, Guillou O et al (2008) Structural and luminescent properties of micro- and nanosized particles of lanthanide terephthalate coordination polymers. Inorg Chem 47(9):3700–3708CrossRefGoogle Scholar
  35. 35.
    Chen L, Jiang F, Zhou K, Wu M, Hong M (2014) Metal-organic frameworks based on lanthanide clusters. Struct Bond. doi: 10.1007/430_2014_161 CrossRefGoogle Scholar
  36. 36.
    Luo F, Batten SR, Che Y et al (2007) Synthesis, structure, and characterization of three series of 3d–4f metal-organic frameworks based on rod-shaped and (6,3)-sheet metal carboxylate substructures. Chemistry 13(17):4948–4955CrossRefGoogle Scholar
  37. 37.
    Huang Y-G, Jiang F-L, Hong M-C (2009) Magnetic lanthanide–transition-metal organic–inorganic hybrid materials: from discrete clusters to extended frameworks. Coord Chem Rev 253(23–24):2814–2834CrossRefGoogle Scholar
  38. 38.
    Shi W, Liu K, Cheng P (2014) Transition-lanthanide heterometal-organic frameworks: synthesis, structures and properties. Struct Bond. doi: 10.1007/430_2014_157 Google Scholar
  39. 39.
    Zhang M, Bosch M, Gentle T III et al (2014) Rational design of metal-organic frameworks with anticipated porosities and functionalities. CrystEngComm 16(20):4069–4083CrossRefGoogle Scholar
  40. 40.
    Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214CrossRefGoogle Scholar
  41. 41.
    Chen Y, Ma S (2012) Microporous lanthanide metal-organic frameworks. Rev Inorg Chem 32(2–4):81Google Scholar
  42. 42.
    Han Y, Li X, Li L et al (2010) Structures and properties of porous coordination polymers based on lanthanide carboxylate building units. Inorg Chem 49(23):10781–10787CrossRefGoogle Scholar
  43. 43.
    Ma S, Yuan D, Wang X-S et al (2009) Microporous lanthanide metal-organic frameworks containing coordinatively linked interpenetration: syntheses, gas adsorption studies, thermal stability analysis, and photoluminescence investigation. Inorg Chem 48(5):2072–2077CrossRefGoogle Scholar
  44. 44.
    Li B, Chen B (2014) Porous lanthanide metal-organic frameworks for gas storage and separation. Struct Bond. doi: 10.1007/430_2014_159 Google Scholar
  45. 45.
    Park YK, Choi SB, Kim H et al (2007) Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew Chem Int Ed 46(43):8230–8233CrossRefGoogle Scholar
  46. 46.
    Zhou J-M, Li H-M, Xu N et al (2013) Construction of lanthanide multi-functional metal–organic frameworks via mixed ligand approach: syntheses, structures, magnetic and luminescent properties. Inorg Chem Commun 37:30–33CrossRefGoogle Scholar
  47. 47.
    Su S, Chen W, Qin C et al (2012) Lanthanide anionic metal–organic frameworks containing semirigid tetracarboxylate ligands: structure, photoluminescence, and magnetism. Cryst Growth Des 12(4):1808–1815CrossRefGoogle Scholar
  48. 48.
    Biswas S, Jena HS, Goswami S et al (2014) Synthesis and characterization of two lanthanide (Gd3+ and Dy3+)-based three-dimensional metal organic frameworks with squashed metallomacrocycle type building blocks and their magnetic, sorption, and fluorescence properties study. Cryst Growth Des 14(3):1287–1295CrossRefGoogle Scholar
  49. 49.
    Bencini A, Benelli C, Caneschi A et al (1985) Crystal and molecular-structure of and magnetic coupling in 2 complexes containing gadolinium(III) and copper(II) ions. J Am Chem Soc 107(26):8128–8136CrossRefGoogle Scholar
  50. 50.
    Pei Y, Journaux Y, Kahn O et al (1986) A Mn-II-Cu-II-Mn-II trinuclear species with an S = 9/2 ground-state. J Chem Soc Chem Commun 16:1300–1301CrossRefGoogle Scholar
  51. 51.
    Benelli C, Caneschi A, Gatteschi D et al (1990) Synthesis, crystal-structure, and magnetic-properties of tetranuclear complexes containing exchange-coupled Gd2cu2, Dy2cu2 species. Inorg Chem 29(9):1750–1755CrossRefGoogle Scholar
  52. 52.
    Rizzi A, Baggio R, Calvo R et al (2001) Synthesis, crystal structure, and magnetic properties of the mixed-ligand complex [Gd(CF3CO2)(3)(phen)(2)(H2O)]. Inorg Chem 40(14):3623–3625CrossRefGoogle Scholar
  53. 53.
    Zhang M-B, Zhang J, Zheng S-T et al (2005) A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem Int Ed 44(9):1385–1388CrossRefGoogle Scholar
  54. 54.
    Huang X-F, Ma J-X, Liu W-S (2014) Lanthanide metalloligand strategy toward d–f heterometallic metal–organic frameworks: magnetism and symmetric-dependent luminescent properties. Inorg Chem 53(12):5922–5930CrossRefGoogle Scholar
  55. 55.
    Zou J-Y, Shi W, Xu N et al (2014) Cobalt(II)–lanthanide(III) heterometallic metal–organic frameworks with unique (6,6)-connected Nia topologies with 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, structures and magnetic properties. Eur J Inorg Chem 2014(2):407–412CrossRefGoogle Scholar
  56. 56.
    Cui Y, Yue Y, Qian G et al (2011) Luminescent functional metal–organic frameworks. Chem Rev 112(2):1126–1162 (Washington, DC, US)CrossRefGoogle Scholar
  57. 57.
    Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755 (Washington, DC, US)CrossRefGoogle Scholar
  58. 58.
    Gándara F, Andrés AD, Gómez-Lor B et al (2008) A rare-earth MOF series: fascinating structure, efficient light emitters, and promising catalysts. Cryst Growth Des 8(2):378–380CrossRefGoogle Scholar
  59. 59.
    Whan RE, Crosby GA (1962) Luminescence studies of rare earth complexes: benzoylacetonate and dibenzoylmethide chelates. J Mol Spectrosc 8(1–6):315–327CrossRefGoogle Scholar
  60. 60.
    Chandler BD, Cramb DT, Shimizu GKH (2006) Microporous metal–organic frameworks formed in a stepwise manner from luminescent building blocks. J Am Chem Soc 128(32):10403–10412CrossRefGoogle Scholar
  61. 61.
    Song X-Z, Song S-Y, Zhang H-J (2014) Luminescent lanthanide metal-organic frameworks. Struct Bond. doi: 10.1007/430_2014_160 Google Scholar
  62. 62.
    Horcajada P, Gref R, Baati T et al (2011) Metal–organic frameworks in biomedicine. Chem Rev 112(2):1232–1268 (Washington, DC, US)CrossRefGoogle Scholar
  63. 63.
    Ma S, Wang X-S, Yuan D et al (2008) A coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47(22):4130–4133CrossRefGoogle Scholar
  64. 64.
    Tang K, Yun R, Lu Z et al (2013) High CO2/N2 selectivity and H2 adsorption of a novel porous yttrium metal–organic framework based on N,N′,N″-tris(isophthalyl)-1,3,5-benzenetricarboxamide. Cryst Growth Des 13(4):1382–1385CrossRefGoogle Scholar
  65. 65.
    Ren Y-W, Liang J-X, Lu J-X et al (2011) 1,4-Phenylenediacetate-based Ln MOFs – synthesis, structures, luminescence, and catalytic activity. Eur J Inorg Chem 2011(28):4369–4376CrossRefGoogle Scholar
  66. 66.
    Shibasaki M, Yamada K-I, Yoshikawa N (2008) Lanthanide lewis acids catalysis, Lewis acids in organic synthesis. Wiley-VCH Verlag GmbH, Weinheim, pp 911–944Google Scholar
  67. 67.
    Gascon J, Corma A, Kapteijn F et al (2013) Metal organic framework catalysis: quo vadis? ACS Catal 4(2):361–378CrossRefGoogle Scholar
  68. 68.
    D’Vries RF, Iglesias M, Snejko N et al (2012) Mixed lanthanide succinate-sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. J Mater Chem 22(3):1191–1198CrossRefGoogle Scholar
  69. 69.
    D’Vries RF, de la Peña-O’Shea VA, Snejko N et al (2012) Insight into the correlation between net topology and ligand coordination mode in new lanthanide MOFs heterogeneous catalysts: a theoretical and experimental approach. Cryst Growth Des 12(11):5535–5545CrossRefGoogle Scholar
  70. 70.
    Batista PK, Alves DJM, Rodrigues MO et al (2013) Tuning the catalytic activity of lanthanide-organic framework for the cyanosilylation of aldehydes. J Mol Catal A Chem 379:68–71CrossRefGoogle Scholar
  71. 71.
    Chen B, Wang L, Xiao Y et al (2009) A luminescent metal–organic framework with lewis basic pyridyl sites for the sensing of metal ions. Angew Chem Int Ed 48(3):500–503CrossRefGoogle Scholar
  72. 72.
    Chen B, Wang L, Zapata F et al (2008) A luminescent microporous metal–organic framework for the recognition and sensing of anions. J Am Chem Soc 130(21):6718–6719CrossRefGoogle Scholar
  73. 73.
    Chen B, Yang Y, Zapata F et al (2007) Luminescent open metal sites within a metal–organic framework for sensing small molecules. Adv Mater 19(13):1693–1696 (Weinheim, Ger.)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephen Fordham
    • 1
  • Xuan Wang
    • 1
  • Mathieu Bosch
    • 1
  • Hong-Cai Zhou
    • 1
    Email author
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations