Metal–Organic Frameworks Based on Lanthanide Clusters

  • Lian Chen
  • Feilong Jiang
  • Kang Zhou
  • Mingyan Wu
  • Maochun HongEmail author
Part of the Structure and Bonding book series (STRUCTURE, volume 163)


The assembly of the metal clusters to multidimensional metal–organic frameworks remains one of the most attractive research frontiers due to its attractive architectures and excellent properties. Compared with transition metals, the cluster chemistry of lanthanide ions is less developed. The chapter mainly highlights recent research progress on the synthetic strategy, structures, and properties of metal–organic frameworks based on lanthanide clusters. Varying from di- to octatetraconta-nuclei, lanthanide clusters can act as versatile nodes to construct different fascinating topological networks by the linkage of the ligands. The cluster formations and the topologies of these compounds as well as the influence factors on them are described in detail. Potential applications in a variety of fields, especially in luminescence, magnetism, and catalysis, are shown in these materials.


Lanthanide ions Luminescent properties Magnet properties Metal clusters Metal–organic frameworks 



We thank the 973 Program (2011CBA00507, 2011CB932504, 2014CB932101) and National Natural Science Foundation of China (21131006, 21371169, 21390392).


  1. 1.
    Zhang QC, Bu XH, Lin Z, Biasini M, Beyermann WP, Feng PY (2007) Metal-complex-decorated homochiral heterobimetallic telluride single-stranded helix. Inorg Chem 46:7262–7264Google Scholar
  2. 2.
    Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375Google Scholar
  3. 3.
    Meng XR, Song YL, Hou HW, Fan YT, Li G, Zhu Y (2003) Novel Pb and Zn coordination polymers: synthesis, molecular structures, and third-order nonlinear optical properties. Inorg Chem 42:1306–1315Google Scholar
  4. 4.
    Kondo M, Miyazawa M, Irie Y, Shinagawa R, Horiba T, Nakamura A, Naito T, Maeda K, Utsuno S, Uchida F (2002) A new Zn(II) coordination polymer with 4-pyridylthioacetate: assemblies of homo-chiral helices with sulfide sites. Chem Commun 2156–2157Google Scholar
  5. 5.
    Lee SJ, Hu AG, Lin WB (2002) First chiral organometallic triangle for asymmetric catalysis. J Am Chem Soc 124:12948–12949Google Scholar
  6. 6.
    Zhang J, Chen SM, Wu T, Feng PY, Bu XH (2008) Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. J Am Chem Soc 130:12882–12883Google Scholar
  7. 7.
    Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986Google Scholar
  8. 8.
    Prins LJ, Huskens J, de Jong F, Timmerman P, Reinhoudt DN (1999) Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. Nature 398:498–502Google Scholar
  9. 9.
    Chin J, Lee SS, Lee KJ, Park S, Kim DH (1999) A metal complex that binds alpha-amino acids with high and predictable stereospecificity. Nature 401:254–257Google Scholar
  10. 10.
    Bu XH, Liu H, Du M, Zhang L, Guo YM, Shionoya M, Ribas J (2002) New mononuclear, cyclic tetranuclear, and 1-D helical-chain Cu(II) complexes formed by metal-assisted hydrolysis of 3,6-di-2-pyridyl-1,2,4,5-tetrazine (DPTZ): crystal structures and magnetic properties. Inorg Chem 41:1855–1861Google Scholar
  11. 11.
    Wang XL, Chao Q, Wang EB, Lin X, Su ZM, Hu CW (2004) Interlocked and interdigitated architectures from self-assembly of long flexible ligands and cadmium salts. Angew Chem Int Ed 43:5036–5040Google Scholar
  12. 12.
    Cui Y, Ngo HL, White PS, Lin WB (2002) Homochiral 3D lanthanide coordination networks with an unprecedented 4966 topology. Chem Commun 1666–1667Google Scholar
  13. 13.
    Chen XM, Liu GF (2002) Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions. Chem Eur J 8:4811–4817Google Scholar
  14. 14.
    Xiong RG, You XZ, Abrahams BF, Xue ZL, Che CM (2001) Enantioseparation of racemic organic molecules by a zeolite analogue. Angew Chem Int Ed 40:4422–4425Google Scholar
  15. 15.
    Wang HY, Cheng JY, Ma JP, Dong YB, Huang RQ (2010) Synthesis and characterization of new coordination polymers with tunable luminescent properties generated from bent 1,2,4-triazole-bridged N, N′-dioxides and Ln(III) salts. Inorg Chem 49:2416–2426Google Scholar
  16. 16.
    Liu QK, Ma JP, Dong YB (2010) Adsorption and separation of reactive aromatic isomers and generation and stabilization of their radicals within cadmium(II)-triazole metal-organic confined space in a single-crystal-to-single-crystal fashion. J Am Chem Soc 132:7005–7017Google Scholar
  17. 17.
    Leroux YR, Lacroix JC, Chane-Ching KI, Fave C, Felidj N, Levi G, Aubard J, Krenn JR, Hohenau A (2005) conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J Am Chem Soc 127:16022–16023Google Scholar
  18. 18.
    Seminario JM, De La Cruz C, Derosa PA, Yan LM (2004) Nanometer-size conducting and insulating molecular devices. J Phys Chem B 108:17879–17885Google Scholar
  19. 19.
    Lan AJ, Li KH, Wu HH, Olson DH, Emge TJ, Ki W, Hong MC, Li J (2009) A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed 48:2334–2338Google Scholar
  20. 20.
    Li KH, Olson DH, Seidel J, Emge TJ, Gong HW, Zeng HP, Li J (2009) Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J Am Chem Soc 131:10368–10369Google Scholar
  21. 21.
    Li KH, Lee J, Olson DH, Emge TJ, Bi WH, Eibling MJ, Li J (2008) Unique gas and hydrocarbon adsorption in a highly porous metal-organic framework made of extended aliphatic ligands. Chem Commun 6123–6125Google Scholar
  22. 22.
    Cui YJ, Yue YF, Qian GD, Chen BL (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162Google Scholar
  23. 23.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352Google Scholar
  24. 24.
    Rocha J, Carlos LD, Almeida Paz FA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940Google Scholar
  25. 25.
    Bhunia A, Gotthardt MA, Yadav M, Gamer MT, Eichhöfer A, Kleist W, Roesky PW (2013) Salen-based coordination polymers of manganese and the rare-earth elements: synthesis and catalytic aerobic epoxidation of olefins. Chem Eur J 19:1986–1995Google Scholar
  26. 26.
    Qiu Y, Liu H, Ling Y, Deng H, Zeng R, Zhou G, Zeller M (2007) 3D Ln-Ag (Ln=Nd; Eu) coordination polymers based on N- and O-donor ligands: synthesis, crystal structures and luminescence. Inorg Chem Commun 10:1399–1403Google Scholar
  27. 27.
    Qiu YC, Liu ZH, Mou JX, Deng H, Zeller M (2010) Rationally designed and controlled syntheses of different series of 4d-4f heterometallic coordination frameworks based on lanthanide carboxylate and Ag(IN)2 substructures. CrystEngComm 12:277–290Google Scholar
  28. 28.
    Bu XH, Weng W, Du M, Chen W, Li JR, Zhang RH, Zhao LJ (2002) Novel lanthanide(III) coordination polymers with 1,4-bis(phenyl-sulfinyl)butane forming unique lamellar square array: syntheses, crystal structures, and properties. Inorg Chem 41:1007–1010Google Scholar
  29. 29.
    Li JR, Bu XH, Zhang RH (2004) Novel lanthanide coordination polymers with a flexible disulfoxide ligand, 1,2-bis(ethylsulfinyl)ethane: structures, stereochemistry, and the influences of counteranions on the framework formations. Inorg Chem 43:237–244Google Scholar
  30. 30.
    Li JR, Bu XH, Zhang RH, Duan CY, Wong KMC, Yam VWW (2004) Lanthanide perchlorate complexes with 1,4-bis(phenylsulfinyl)butane: structures and luminescent properties. New J Chem 28:261–265Google Scholar
  31. 31.
    Sun YQ, Zhang J, Chen YM, Yang GY (2005) Porous lanthanide-organic open frameworks with helical tubes constructed from interweaving triple-helical and double-helical chains. Angew Chem Int Ed 44:5814–5817Google Scholar
  32. 32.
    Sun YQ, Zhang J, Yang GY (2006) Two novel luminescent lanthanide sulfate-carboxylates with an unusual 2-D bamboo-raft-like structure based on the linkages of left- and right-handed helical tubes involving in situ decarboxylation. Chem Commun 1947–1949Google Scholar
  33. 33.
    Huang YG, Wu BL, Yuan DQ, Xu YQ, Jiang FL, Hong MC (2007) New lanthanide hybrid as clustered infinite nanotunnel with 3D Ln-O-Ln framework and (3,4)-connected net. Inorg Chem 46:1171–1176Google Scholar
  34. 34.
    Deng ZP, Huo LH, Wang HY, Gao S, Zhao H (2010) A series of three-dimensional lanthanide metal-organic frameworks with biphenylethene-4,4′-dicarboxylic acid: hydrothermal syntheses and structures. CrystEngComm 12:1526–1535Google Scholar
  35. 35.
    Tranchemontagne DJ, Mendoza-Cortes JL, O'Keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev 38:1257–1283Google Scholar
  36. 36.
    Tranchemontagne J, Ni Z, O’Keeffe M, Yaghi OM (2008) Reticular chemistry of metal-organic polyhedra. Angew Chem Int Ed 47:5136–5147Google Scholar
  37. 37.
    Perry JJ IV, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem Soc Rev 38:1400–1417Google Scholar
  38. 38.
    Ulrich S (2011) Cluster-based inorganic–organic hybrid materials. Chem Soc Rev 40:575–582Google Scholar
  39. 39.
    Kong XJ, Wu YL, Long LS, Zheng LS, Zheng ZP (2009) A chiral 60-metal sodalite cage featuring 24 vertex-sharing [Er43-OH)4] cubanes. J Am Chem Soc 131:6918–6919Google Scholar
  40. 40.
    Cheng JW, Zhang J, Zheng ST, Zhang MB, Yang GY (2006) Lanthanide-transition-metal sandwich framework comprising {Cu3} cluster pillars and layered networks of {Er36}) wheels. Angew Chem Int Ed 45:73–77Google Scholar
  41. 41.
    Zhao B, Cheng P, Chen XY, Cheng C, Shi W, Liao DZ, Yan SP, Jiang ZH (2004) Design and synthesis of 3d-4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe. J Am Chem Soc 126:3012–3013Google Scholar
  42. 42.
    Wang RY, Carducci MD, Zheng ZP (2000) Direct hydrolytic route to molecular oxo-hydroxo lanthanide clusters. Inorg Chem 39:1836–1837Google Scholar
  43. 43.
    Tang XL, Wang WH, Dou W, Jiang J, Liu WS, Qin WW, Zhang GL, Zhang HR, Yu KB, Zheng LM (2009) Olive-shaped chiral supramolecules: simultaneous self-assembly of heptameric lanthanum clusters and carbon dioxide fixation. Angew Chem Int Ed 48:3499–3502Google Scholar
  44. 44.
    Malaestean IL, Ellern A, Baca S, Kogerler P (2012) Cerium oxide nanoclusters: commensurate with concepts of polyoxometalate chemistry. Chem Commun 48:1499–1501Google Scholar
  45. 45.
    Xu G, Wang ZM, He Z, Lu Z, Liao CS, Yan CH (2002) Synthesis and structural characterization of nonanuclear lanthanide complexes. Inorg Chem 41:6802–6807Google Scholar
  46. 46.
    Wang R, Selby HD, Liu H, Carducci MD, Jin T, Zheng Z, Anthis JW, Staples RJ (2002) Halide-templated assembly of polynuclear lanthanide-hydroxo complexes. Inorg Chem 41:278–286Google Scholar
  47. 47.
    Zheng Y, Zhang QC, Long LS, Huang RB, Müller A, Schnack J, Zheng LS, Zheng ZP (2013) Molybdate templated assembly of Ln12Mo4-type clusters (Ln=Sm, Eu, Gd) containing a truncated tetrahedron core. Chem Commun 49:36–38Google Scholar
  48. 48.
    Chang LX, Xiong G, Wang L, Cheng P, Zhao B (2013) A 24-Gd nanocapsule with a large magnetocaloric effect Chem Commun 49:1055–1057Google Scholar
  49. 49.
    Xu J, Raymond KN (2000) Lord of the rings: An octameric lanthanum pyrazolonate cluster. Angew Chem Int Ed 39:2745–2747Google Scholar
  50. 50.
    Kajiwara T, Wu H, Ito T, Iki N, Miyano S (2004) Octalanthanide wheels supported by p-tert-butylsulfonylcalix[4]arene. Angew Chem Int Ed 43:1832–1835Google Scholar
  51. 51.
    Huang YG, Jiang FL, Yuan DQ, Wu MY, Gao Q, Wei W, Hong MC (2008) A prototypical zeolitic lanthanide-organic framework with nanotubular structure. Cryst Growth Des 8:166–168Google Scholar
  52. 52.
    Baerlocher C, Meier WM, Olson DH (2001) Atlas of zeolite framework types. Elsevier, AmsterdamGoogle Scholar
  53. 53.
    Guo XD, Zhu GS, Li ZY, Chen Y, Li XT, Qiu SL (2006) Rare earth coordination polymers with zeolite topology constructed from 4-connected building units. Inorg Chem 45:4065–4070Google Scholar
  54. 54.
    Spek LA (1999) Multipurpose crystallographic tool. Utrecht University, UtrechtGoogle Scholar
  55. 55.
    Jhung SH, Yoon JW, Kim HK, Chang JS (2005) Low temperature adsorption of hydrogen on nanoporous materials. Bull Korean Chem Soc 26:1075–1078Google Scholar
  56. 56.
    Jhung SH, Kim HK, Yoon JW, Chang JS (2006) Low-temperature adsorption of hydrogen on nanoporous aluminophosphates: effect of pore size. J Phys Chem B 110:9371–9374Google Scholar
  57. 57.
    Hou HW, Li G, Li LK, Zhu Y, Meng XR, Fan YT (2003) Synthesis, crystal structures, and magnetic properties of three novel ferrocenecarboxylato-bridged lanthanide dimers. Inorg Chem 42:428–435Google Scholar
  58. 58.
    Huang YG, Jiang FL, Yuan DQ, Wu MY, Gao Q, Wei W, Hong MC (2009) Intricate 3D lanthanide-organic frameworks with mixed nodes nets. J Solid State Chem 182:215–222Google Scholar
  59. 59.
    Feng R, Jiang FL, Wu MY, Chen L, Yan CF, Hong MC (2010) Structures and photoluminescent properties of the lanthanide coordination complexes with hydroxyquinoline carboxylate ligands. Cryst Growth Des 10:2306–2313Google Scholar
  60. 60.
    Gschneidner KA., Eyring L, Lander GH (eds) (2001) Handbook on the physics and chemistry of rare earths, vol. 32. Elsevier, AmsterdamGoogle Scholar
  61. 61.
    Gai YL, Xiong KC, Chen L, Bu Y, Li XJ, Jiang FL, Hong MC (2012) Visible and NIR photoluminescence properties of a series of novel lanthanide-organic coordination polymers based on hydroxyquinoline-carboxylate ligands. Inorg Chem 51:13128–13137Google Scholar
  62. 62.
    Wu MY, Jiang FL, Zhou YF, Feng R. Chen L, Hong MC (2012) Photoluminescences and 1D chain-like structures with dinuclear lanthanide(III) units featuring bipyridine-tetracarboxylate. Inorg Chem Commun 15:25–28Google Scholar
  63. 63.
    Ma J, Jiang FL, Chen L, Wu MY, Zhang SQ, Xiong KC, Han D, Hong MC (2012) Structure and photoluminescent properties of lanthanide coordination polymers based on two isomers of iminodiacetic acid substituted isophthalate and terephthalate ligands. CrystEngComm 14:6055–6063Google Scholar
  64. 64.
    Gai YL, Jiang FL, Chen L, Bu Y, Su KZ, Al-Thabaiti SA, Hong MC (2013) Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand. Inorg Chem 52:7658–7665Google Scholar
  65. 65.
    Freund C, Porzio W, Giovanella U, Vignali F, Pasini M, Destri S, Mech A, Di Pietro S, Di Bari L, Mineo P (2011) Thiophene based europium ß-diketonate complexes: effect of the ligand structure on the emission quantum yield. Inorg Chem 50:5417–5429Google Scholar
  66. 66.
    Eliseeva SV, Pleshkov DN, Lyssenko KA, Lepnev LS, Bunzli JC, Kuzmina NP (2011) Deciphering three beneficial effects of 2,2′-bipyridine-N, N′-dioxide on the luminescence sensitization of lanthanide(III) hexafluoroacetylacetonate ternary complexes. Inorg Chem 50:5137–5144Google Scholar
  67. 67.
    Sivakumar S, Reddy ML, Cowley AH, Butorac RR (2011) Lanthanide-based coordination polymers assembled from derivatives of 3,5-dihydroxy benzoates: syntheses, crystal structures, and photophysical properties. Inorg Chem 50:4882–4891Google Scholar
  68. 68.
    Gai YL, Jiang FL, Chen L, Wu MY, Su KZ, Pan J, Wan XY, Hong MC (2014) Europium and terbium coordination polymers assembled from hexacarboxylate ligands: structures and luminescent properties. Cryst Growth Des 14:1010–1017Google Scholar
  69. 69.
    Sang RL, Xu L (2013) Unprecedented infinite lanthanide hydroxide ribbons [Ln33-OH)3]n 6n+ in a 3-D metal-organic framework. Chem Commum 49:8344–8346Google Scholar
  70. 70.
    Ke HS, Xu GF, Zhao L, Tang JK, Zhang XY, Zhang HJ (2009) A Dy10 cluster incorporates two sets of vertex-sharing Dy3 triangles. Chem Eur J 15:10335–10338Google Scholar
  71. 71.
    Miao YL, Liu JL, Leng JD, Lin ZJ, Tong ML (2011) Chloride templated formation of {Dy12(OH)16}20+ cluster core incorporating 1,10-phenanthroline-2,9-dicarboxylate. CrystEngComm 13:3345–3348Google Scholar
  72. 72.
    Bürgstein MR, Gamer MT, Roesky PW (2004) Nitrophenolate as a building block for lanthanide chains, layers, and clusters. J Am Chem Soc 126:5213–5218Google Scholar
  73. 73.
    Wang RY, Zheng ZP, Jin TZ, Staples RJ (1999) Coordination chemistry of lanthanides at “high” pH: synthesis and structure of the pentadecanuclear complex of europium(III) with tyrosine. Angew Chem Int Ed 38:1813–1815Google Scholar
  74. 74.
    Zheng ZP (2001) Ligand-controlled self-assembly of polynuclear lanthanide-oxo/hydroxo complexes: from synthetic serendipity to rational supramolecular design. Chem Commun 2521–2529Google Scholar
  75. 75.
    Kong XJ, Long LS, Zheng LS, Wang RY, Zheng ZP (2009) Hydrolytic synthesis and structural characterization of lanthanide hydroxide clusters supported by nicotinic acid. Inorg Chem 48:3268–3273Google Scholar
  76. 76.
    Zhang HJ, Wang XZ, Zhu DR, Song Y, Xu Y, Xu H, Shen X, Gao T, Huang MX (2011) Novel 3D lanthanide-organic frameworks with an unusual infinite nanosized ribbon [Ln33-OH)2(CO2)6]n + (Ln=Eu, Gd, Dy): syntheses, structures, luminescence, and magnetic properties. CrystEngComm 13:2586–2592Google Scholar
  77. 77.
    Ma BQ, Zhang DS, Gao S, Jin TZ, Yan CH, Xu GX (2000) From cubane to supercubane: the design, synthesis, and structure of a three-dimensional open framework based on a Ln4O4 cluster. Angew Chem Int Ed 39:3644–3646Google Scholar
  78. 78.
    Li X, Sun HL, Wu XS, Qiu X, Du M (2010) Unique (3,12)-connected porous lanthanide-organic frameworks based on Ln4O4 clusters: synthesis, crystal structures, luminescence, and magnetism. Inorg Chem 49:1865–1871Google Scholar
  79. 79.
    McMasters OD, Gschneidner KA Jr, Brizzone G, Palenzona AJ (1971) Stoichiometry, crystal structures and some melting points of lanthanide-gold alloys. Less-common Met 25:135–160Google Scholar
  80. 80.
    Wang WH, Tian HR, Zhou ZC, Feng YL, Cheng JW (2012) Two unusual chiral lanthanide-sulfate frameworks with helical tubes and channels constructed from interweaving two double-helical chains. Cryst Growth Des 12:2567–2571Google Scholar
  81. 81.
    Shi FN, Cunha-Silva L, Trindade T, Almeida Paz FA, Rocha J (2009) Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters. Cryst Growth Des 9:2098–2109Google Scholar
  82. 82.
    Shi PF, Zheng YZ, Zhao XQ, Xiong G, Zhao B, Wan FF, Cheng P (2012) 3D MOFs containing trigonal bipyramidal Ln5 clusters as nodes: large magnetocaloric effect and slow magnetic relaxation behavior. Chem Eur J 18:15086–15091Google Scholar
  83. 83.
    Lu WG, Jiang L, Feng XL, Lu TB (2009) Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange. Inorg Chem 48:6997–6999Google Scholar
  84. 84.
    Yuan N, Sheng TL, Tian CB, Hu SM, Fu RB, Zhu QL, Tan CH, Wu XT (2011) Syntheses, structures and properties of three-dimensional lanthanide frameworks constructed with a trigonal anti-prismatic lanthanide cluster. CrystEngComm 13:4244–4250Google Scholar
  85. 85.
    Bernini MC, Snejko N, Gutierrez-Puebla E, Monge A (2011) From globular star-shaped molecules to self-assembled nano-spheres: a novel scandium croconate polynuclear complex. CrystEngComm 13:1797–1800Google Scholar
  86. 86.
    Fleming S, Gutsche CD, Harrowfield JM, Ogden MI, Skelton BW, Stewart DF, White AH (2003) calixarenes as aryloxides: oligonuclear europium(III) derivatives. Dalton Trans 3319–3327Google Scholar
  87. 87.
    Canaj AB, Tzimopoulos DI, Philippidis A, Kostaki GE, Millios CJ (2012) A strongly blue-emitting heptametallic [DyIII 7] centered-octahedral single-molecule magnet. Inorg Chem 51:7451–7453Google Scholar
  88. 88.
    Zheng XJ, Jin LP, Gao S (2004) Synthesis and characterization of two novel lanthanide coordination polymers with an open framework based on an unprecedented [Ln73-OH)8]13+ cluster. Inorg Chem 43:1600–1602Google Scholar
  89. 89.
    Fang WH, Cheng L, Huang L, Yang GY (2013) A series of lanthanide-based cluster organic frameworks made of heptanuclear trigonal-prismatic cluster units. Inorg Chem 52:6–8Google Scholar
  90. 90.
    Blatov VA, Shevchenko AP, Serezhkin VN (2000) TOPOS3.2: a new version of the program package for multipurpose crystal-chemical analysis. J Appl Crystallogr 33:1193Google Scholar
  91. 91.
    Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13Google Scholar
  92. 92.
    Zhang MB, Zhang J, Zheng ST, Yang GY (2005) A 3D coordination framework based on linkages of nanosized hydroxo lanthanide clusters and copper centers by isonicotinate ligands. Angew Chem Int Ed 44:1385–1388Google Scholar
  93. 93.
    Huang L, Han LJ, Feng WJ, Zheng L, Zhang ZB, Xu Y, Chen Q, Zhu DR, Sy N (2010) Two 3D coordination frameworks based on nanosized huge Ln26 (Ln=Dy and Gd) spherical clusters. Cryst Growth Des 10:2548–2552Google Scholar
  94. 94.
    Sen R, Hazra DK, Mukherjee M, Koner S (2011) Gd26 cluster consisting of distorted cubane cores: synthesis, structure and heterogeneous catalytic epoxidation of olefins. Eur J Inorg Chem 2826–2831Google Scholar
  95. 95.
    Gu XJ, Xue DF (2007) Surface modification of high-nuclearity lanthanide clusters: two tetramers constructed by cage-shaped {Dy26} clusters and isonicotinate linkers. Inorg Chem 46:3212–3216Google Scholar
  96. 96.
    Sen R, Hazra DK, Koner S, Helliwell M, Mukherjee M, Bhattacharjee A (2010) Hydrothermal synthesis of dimeric lanthanide compounds X-ray structure, magnetic study and heterogeneous catalytic epoxidation of olefins. Polyhedron 29:3183–3191Google Scholar
  97. 97.
    Sen R, Hazra DK, Koner S, Helliwell M, Mukherjee M (2011) Heterogeneous catalytic epoxidation of olefins over hydrothermally synthesized lanthanide containing framework compounds. J Inorg Chem 241–248Google Scholar
  98. 98.
    Wu MY, Jiang FL, Kong XJ, Yuan DQ, Long LS, Al-Thabaiti SA, Hong MC (2013) Two polymeric 36-metal pure lanthanide nanosize clusters. Chem Sci 4:3104–3109Google Scholar
  99. 99.
    Kong XJ, RenYP LLS, Zheng ZP, Nochol G, Huang RB, Zheng LS (2008) Dual shell-like magnetic clusters containing NiII and LnIII (Ln=La, Pr, and Nd) ions. Inorg Chem 47:2728–2739Google Scholar
  100. 100.
    Kostakis GE, Perlepes SP, Blatov VA, Proserpio DM, Powell AK (2012) High-nuclearity cobalt coordination clusters: synthetic, topological and magnetic aspects. Coord Chem Rev 256:1246–1278Google Scholar
  101. 101.
    Kostakis GE, Blatov VA, Proserpio DM (2012) A method for topological analysis of high nuclearity coordination clusters and its application to Mn coordination compounds. Dalton Trans 41:4634–4640Google Scholar
  102. 102.
    Wu MY, Jiang FL, Yuan DQ, Pang JD, Qian JJ, Al-Thabaiti SA, Hong MC (2014) Polymeric double-anion templated Er48 nanotubes. Chem Commun 50:1113–1115Google Scholar
  103. 103.
    Chen L, Guo JY, Xu X, Ju WW, Zhang D, Zhu DR, Xu Y (2013) A novel 2-D coordination polymer constructed from high-nuclearity waist drum-like pure Ho48 clusters. Chem Commun 49:9278–9730Google Scholar
  104. 104.
    Xiong KC, Jiang FL, Gai YL, Yuan DQ, Chen L, Wu MY, Su KZ, Hong MC (2012) Truncated octahedral coordination cage incorporating six tetranuclear-metal building blocks and twelve linear edges. Chem Sci 3:2321–2325Google Scholar
  105. 105.
    Xiong KC, Jiang FL, Gai YL, Yuan DQ, Han D, Ma J, Zhang SQ, Hong MC (2012) Chlorine-Induced assembly of a cationic coordination cage with a μ5-carbonato-bridged MnII 24 core. Chem Eur J 18:5536–5540Google Scholar
  106. 106.
    Xiong KC, Jiang FL, Gai YL, Zheng HG, Yuan DQ, Chen L, Hong MC (2012) Self-assembly of thiacalix[4]arene-supported nickel(II)/cobalt(II) complexes sustained by in situ generated 5-methyltetrazolate ligand. Cryst Grow Des 12:3335–3341Google Scholar
  107. 107.
    Xiong KC, Jiang FL, Gai YL, Zhou YF, Yuan DQ, Su KZ, Wang XY, Hong MC (2012) A series of octanuclear-nickel(II) complexes supported by thiacalix[4]arenes. Inorg Chem 51:3283–3288Google Scholar
  108. 108.
    Wu MY, Wei W, Gao Q, Yuan DQ, Huang YG, Jiang FL, Hong MC (2009) Hydrogen-bonded helical array, sodium-ion-mediated head-to-tail chain, and regular ionic bilayer: structural diversities of p-sulfonatothiacalix[4]arene tetranuclear cluster units. Cryst Grow Des 9:1584–1589Google Scholar
  109. 109.
    Wu MY, Yuan DQ, Huang YG, Wei W, Gao Q, Jiang FL, Hong MC (2007) Captures of copper(II)-2,2′-bpy complexes in conformation-fixed homometallic anionic dimers and heterometallic clusters. Cryst Grow Des 7:1446–1451Google Scholar
  110. 110.
    Wu MY, Jiang FL, Hong MC (2009) Inclusion of p-sulfonatothiacalix[4] arene and its metal complexes. Chem Rec 9:155–168Google Scholar
  111. 111.
    Kajiwara T, Katagiri K, Taksishi S, Tamashita M, Iki N (2006) A dodecalanthanide wheel supported by p-tert-butylsulfonylcalix[4]aren. Chem Asian J 1:349–351Google Scholar
  112. 112.
    Sanz S, McIntosh MD, Beavers CM, Teat SJ, Evangelisti M, Brechin EK, Dalgarno SJ (2012) Calix[4]arene-supported rare earth octahedral. Chem Commun 48:1449–1451Google Scholar
  113. 113.
    Liu CM, Zhang DQ, Hao X, Zhu DB (2012) Syntheses, crystal structures, and magnetic properties of two p-tert-butylsulfonylcalix[4]arene supported cluster complexes with a totally disordered Ln4(OH)4 cubane core. Cryst Grow Des 12:2948–2954Google Scholar
  114. 114.
    Gándara F, Gutiérrez-Puebla E, Iglesias M, Snejko N, Monge MA (2010) Isolated hexanuclear hydroxo lanthanide secondary building units in a rare-earth polymeric framework based on p-sulfonatocalix[4]arene. Cryst Grow Des 10:128–134Google Scholar
  115. 115.
    Xiong KC, Wang XY, Jiang FL, Gai YL, Xu WT, Su KZ, Li XJ, Yuan DQ, Hong MC (2012) Heterometallic thiacalix[4]arene-supported Na2NiII 12LnIII 2 clusters with vertex-fused tricubane cores (Ln=Dy and Tb). Chem Commun 48:7456–7458Google Scholar
  116. 116.
    Su KZ, Jiang FL, Qian JJ, Wu MY, Xiong KC, Gai YL, Hong MC (2013) Thiacalix[4]arene-supported kite-like heterometallic tetranuclear ZnIILnIII 3 (Ln=Gd, Tb, Dy, Ho) complexes. Inorg Chem 52:3780–3786Google Scholar
  117. 117.
    Kajiwara T, Iki N, Tamashita M (2007) Transition metal and lanthanide cluster complexes constructed with thiacalix[n]arene and its derivatives. Coord Chem Rev 251:1734–1746Google Scholar
  118. 118.
    Bi YF, Wang XT, Liao WP, Wang XW, Deng RP, Zhang HJ, Gao S (2009) Thiacalix[4]arene-supported planar Ln4 (Ln=TbIII, DyIII) clusters: toward luminescent and magnetic bifunctional materials. Inorg Chem 48:11743–11747Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lian Chen
    • 1
  • Feilong Jiang
    • 1
  • Kang Zhou
    • 1
  • Mingyan Wu
    • 1
  • Maochun Hong
    • 1
    Email author
  1. 1.State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations