Advertisement

Luminescent Lanthanide Metal–Organic Frameworks

  • Xue-Zhi Song
  • Shu-Yan SongEmail author
  • Hong-Jie ZhangEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 163)

Abstract

More and more attention has been paid to the design and synthesis of the lanthanide metal–organic frameworks (LnMOFs). Their physicochemical properties were investigated deeply, especially in terms of the luminescent properties. Lanthanide ions, used as luminescence centers, in MOFs enable tuning options that exceed all other metals of the periodic table of the elements. This chapter explains the basic principles of lanthanide luminescence in advance, which will help the readers to understand the luminescent properties of the subsequent LnMOFs. Single-Ln3+ LnMOFs show fundamental luminescent phenomenon and law. Furthermore, mixed-Ln3+ LnMOFs exhibit significant ability of tunable white light emission and temperature measurement. Representative publication of LnMOFs with NIR luminescence and upconversion luminescence is also important to discuss here. Furthermore, bulk LnMOFs have been scaled down to the nanoregime to form nanoscale LnMOFs, which will enable their use in a broad range of applications, including drug delivery, bioimaging, and molecular sense.

Keywords

Lanthanide metal–organic frameworks NIR luminescence Upconversion luminescence Visible luminescence White light emission 

Abbreviations

1,3,5-BTC

1,3,5-Benzenetricarboxylate

1,4-NDC

1,4-Naphthalenedicarboxylate

ad

Adeninate

BPDC

Biphenyldicarboxylate

BTB

1,3,5-Tris(4-carboxyphenyl)benzene

BTPCA

1,1′,1″-(Benzene-1,3,5-triyl)tripiperidine-4-carboxylate

CPs

Coordination polymers

CTAB

Cetyltrimethylammonium bromide

DEF

N,N′-Diethylformamide

DMA

Dimethylammonium

DMAc

N,N′-Dimethylacetamide

DMBDC

2,5-Dimethoxy-1,4-benzenedicarboxylate

DMF

N,N′-Dimethylformamide

DPA

Dipicolinic acid

dpdc

2,2-Diphenyldicarboxylate

H2bidc

Benzimidazole-5,6-dicarboxylic acid

H2L4

3,3-(4-Amino-4H-1,2,4-triazole-3,5-diyl)dibenzoic acid

H2oba

4,4-Oxybis(benzoic acid)

H2ox

Oxalic acid

H2PIA

5-(Pyridin-4-yl)isophthalic acid

H2PVDC

4,4-[(2,5-Dimethoxy-1,4-phenylene)di-2,1-ethenediyl]bisbenzoic acid

H3BPT

Biphenyl-3,4,5-tricarboxylic acid

H3cpda

5-(4-Carboxyphenyl)-2,6-pyridinedicarboxylic acid

H3DSB

3,5-Disulfobenzoic acid

H3L2

4,4-((2-((4-Carboxyphenoxy)methyl)-2-methylpropane-1,3-diyl)bis(oxy))dibenzoic acid

H4L3

N-phenyl-N′-phenyl bicyclo[2,2,2]-oct-7-ene-2,3,5,6-tetracarboxdiimide tetracarboxylic acid

H4MDIP

Methylenediisophthalic acid

H4pdca

Pyridine-2,3-dicarboxylic acid

H4ptptc

p-Terphenyl-3,3″,5,5″-tetracarboxylic acid

H4tpabn

N,N′,N′-Tetrakis[(6-carboxypyridin-2-yl)methyl]butylenediamine

H5L5

3,5-Bis(1-methoxy-3,5-benzene dicarboxylic acid)benzoic acid

HL1

4-(Dipyridin-2-yl)aminobenzoic acid

IP

1H-imidazo[4,5-f][1,10]-phenanthroline

LnMOFs

Lanthanide metal–organic frameworks

m-bdc

1,3-Benzenedicarboxylate

MOFs

Metal–organic frameworks

MRI

Magnetic resonance imaging

NIR

Near infrared

NMOFs

Nanoscale metal–organic frameworks

p-BDC

1,4-Benzenedicarboxylate

p-BDC-F4

Tetrafluoroterephthalate or 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylate

phen

1,10-Phenanthroline

PVP

Polyvinylpyrrolidone

UC

Upconversion

Notes

Acknowledgements

The authors are grateful to the financial aid from the National Natural Science Foundation of China (Grant Nos. 91122030, 21210001, 21221061, and 51372242) and the National Key Basic Research Program of China (No. 2014CB643802).

References

  1. 1.
    Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298:1762–1765CrossRefGoogle Scholar
  2. 2.
    Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRefGoogle Scholar
  3. 3.
    Kitagawa S, Kitaura R, S-i N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375CrossRefGoogle Scholar
  4. 4.
    Dincă M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779CrossRefGoogle Scholar
  5. 5.
    Rowsell JL, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679CrossRefGoogle Scholar
  6. 6.
    Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38:1248–1256CrossRefGoogle Scholar
  7. 7.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459CrossRefGoogle Scholar
  8. 8.
    Evans OR, Lin W (2002) Crystal engineering of NLO materials based on metal-organic coordination networks. Acc Chem Res 35:511–522CrossRefGoogle Scholar
  9. 9.
    Liu Y, Xuan W, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 22:4112–4135CrossRefGoogle Scholar
  10. 10.
    Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504CrossRefGoogle Scholar
  11. 11.
    Chen B, Xiang S, Qian G (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124CrossRefGoogle Scholar
  12. 12.
    Xie Z, Ma L, deKrafft KE, Jin A, Lin W (2010) Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc 132:922–923CrossRefGoogle Scholar
  13. 13.
    Kent CA, Mehl BP, Ma L, Papanikolas JM, Meyer TJ, Lin W (2010) Energy transfer dynamics in metal-organic frameworks. J Am Chem Soc 132:12767–12769CrossRefGoogle Scholar
  14. 14.
    Rieter WJ, Pott KM, Taylor KML, Lin W (2008) Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 130:11584–11585CrossRefGoogle Scholar
  15. 15.
    Huxford RC, Dekrafft KE, Boyle WS, Liu D, Lin W (2012) Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem Sci 3:198–204CrossRefGoogle Scholar
  16. 16.
    Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267CrossRefGoogle Scholar
  17. 17.
    Das MC, Xiang S, Zhang Z, Chen B (2011) Functional mixed metal-organic frameworks with metalloligands. Angew Chem Int Ed 50:10510–10520CrossRefGoogle Scholar
  18. 18.
    Zhu QL, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213CrossRefGoogle Scholar
  19. 19.
    Kaltsoyannis N, Scott P (1999) The f elements. In: Evans J (ed) Oxford chemistry primers. Oxford Science Publications, OxfordGoogle Scholar
  20. 20.
    Cotton S (1991) Lanthanides and actinides, MacMillan Physical Science Series. MacMillan Education, LondonGoogle Scholar
  21. 21.
    Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077CrossRefGoogle Scholar
  22. 22.
    Moore EG, Samuel APS, Raymond KN (2009) From antenna to assay: lessons learned in lanthanide luminescence. Acc Chem Res 42:542–552CrossRefGoogle Scholar
  23. 23.
    Bünzli J-CG (2006) Benefiting from the unique properties of lanthanide ions. Acc Chem Res 39:53–61CrossRefGoogle Scholar
  24. 24.
    Carnall WT (1979) The absorption and fluorescence spectra of rare earth ions in solution. In: Gschneidner Jr KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. Elsevier, Amsterdam, pp 171–208Google Scholar
  25. 25.
    Bünzli J-CG (2005) Rare earth luminescent centers in organic and biochemical compounds. In: Liu G, Jacquier B (eds) Spectroscopic properties of rare earths in optical materials. Springer-Verlag, Berlin Heidelberg, pp 462–499CrossRefGoogle Scholar
  26. 26.
    Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761CrossRefGoogle Scholar
  27. 27.
    Ofelt GS (1962) Intensities of crystal spectra of rare-earth ions. J Chem Phys 37:511–520CrossRefGoogle Scholar
  28. 28.
    Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374CrossRefGoogle Scholar
  29. 29.
    Weissman SI (1942) Intramolecular energy transfer the fluorescence of complexes of europium. J Chem Phys 10:214–217CrossRefGoogle Scholar
  30. 30.
    Whan RE, Crosby GA (1962) Luminescence studies of rare earth complexes: benzoylacetonate and dibenzoylmethide chelates. J Mol Spectrosc 8:315–327CrossRefGoogle Scholar
  31. 31.
    Crosby GA, Whan RE, Alire RM (1961) Intramolecular energy transfer in rare earth chelates. role of the triplet state. J Chem Phys 34:743–748CrossRefGoogle Scholar
  32. 32.
    Crosby GA, Whan RE, Freeman JJ (1962) Spectroscopic studies of rare earth chelates. J Phys Chem 66:2493–2499CrossRefGoogle Scholar
  33. 33.
    Feng J, Zhang H (2013) Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev 42:387–410CrossRefGoogle Scholar
  34. 34.
    Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227CrossRefGoogle Scholar
  35. 35.
    Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRefGoogle Scholar
  36. 36.
    Beeby A, Faulkner S, Parker D, Williams JAG (2001) Sensitised luminescence from phenanthridine appended lanthanide complexes: analysis of triplet mediated energy transfer processes in terbium, europium and neodymium complexes. J Chem Soc Perkin Trans (2) 1268–1273Google Scholar
  37. 37.
    Guo X, Zhu G, Sun F, Li Z, Zhao X, Li X, Wang H, Qiu S (2006) Synthesis, structure, and luminescent properties of microporous lanthanide metal-organic frameworks with inorganic rod-shaped building units. Inorg Chem 45:2581–2587CrossRefGoogle Scholar
  38. 38.
    Li Z, Zhu G, Guo X, Zhao X, Jin Z, Qiu S (2007) Synthesis, structure, and luminescent and magnetic properties of novel lanthanide metal-organic frameworks with zeolite-like topology. Inorg Chem 46:5174–5178CrossRefGoogle Scholar
  39. 39.
    Xia J, Zhao B, Wang H-S, Shi W, Ma Y, Song H-B, Cheng P, Liao D-Z, Yan S-P (2007) Two- and three-dimensional lanthanide complexes structures, and properties. Inorg Chem 46:3450–3458CrossRefGoogle Scholar
  40. 40.
    Black CA, Costa JS, Fu WT, Massera C, Roubeau O, Teat SJ, Aromı´ G, Gamez P, Reedijk J (2009) 3-D lanthanide metal-organic frameworks structure, photoluminescence, and magnetism. Inorg Chem 48:1062–1068Google Scholar
  41. 41.
    Reineke TM, Eddaoudi M, Fehr M, Kelley D, Yaghi OM (1999) From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J Am Chem Soc 121:1651–1657CrossRefGoogle Scholar
  42. 42.
    Cepeda J, Balda R, Beobide G, Castillo O, Fernandez J, Luque A, Perez-Yanez S, Roman P, Vallejo-Sanchez D (2011) Lanthanide(III)/pyrimidine-4,6-dicarboxylate/oxalate extended frameworks: a detailed study based on the lanthanide contraction and temperature effects. Inorg Chem 50:8437–8451CrossRefGoogle Scholar
  43. 43.
    Harbuzaru BV, Corma A, Rey F, Atienzar P, Jorda JL, Garcia H, Ananias D, Carlos LD, Rocha J (2008) Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew Chem Int Ed 47:1080–1083CrossRefGoogle Scholar
  44. 44.
    Gai Y-L, Jiang F-L, Chen L, Bu Y, Su K-Z, Al-Thabaiti SA, Hong M-C (2013) Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand. Inorg Chem 52:7658–7665CrossRefGoogle Scholar
  45. 45.
    Su S, Chen W, Qin C, Song S, Guo Z, Li G, Song X, Zhu M, Wang S, Hao Z, Zhang H (2012) Lanthanide anionic metal-organic frameworks containing semirigid tetracarboxylate ligands: structure, photoluminescence, and magnetism. Cryst Growth Des 12:1808–1815CrossRefGoogle Scholar
  46. 46.
    Ramya AR, Sharma D, Natarajan S, Reddy ML (2012) Highly luminescent and thermally stable lanthanide coordination polymers designed from 4-(dipyridin-2-yl)aminobenzoate: efficient energy transfer from Tb3+ to Eu3+ in a mixed lanthanide coordination compound. Inorg Chem 51:8818–8826CrossRefGoogle Scholar
  47. 47.
    Steemers FJ, Verboom W, Reinhoudt DN, van der Tol EB, Verhoeven JW (1995) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J Am Chem Soc 117:9408–9414CrossRefGoogle Scholar
  48. 48.
    Li X, Budai JD, Liu F, Howe JY, Zhang J, Wang X-J, Gu Z, Sun C, Meltzer RS, Pan Z (2013) New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light Sci Appl 2:e50Google Scholar
  49. 49.
    Hye Oh J, Ji Yang S, Rag Do Y (2014) Healthy, natural, efficient and tunable lighting: four-package white leds for optimizing the circadian effect, color quality and vision performance. Light Sci Appl 3:e141CrossRefGoogle Scholar
  50. 50.
    Zhang Y-H, Li X, Song S (2013) White light emission based on a single component Sm(III) framework and a two component Eu(III)-doped Gd(III) framework constructed from 2,2'-diphenyl dicarboxylate and 1 h-imidazo[4,5-f][1,10]-phenanthroline. Chem Commun 49:10397–10399CrossRefGoogle Scholar
  51. 51.
    Sava DF, Rohwer LES, Rodriguez MA, Nenoff TM (2012) Intrinsic broad-band white-light emission by a tuned, corrugated metal-organic framework. J Am Chem Soc 134:3983–3986CrossRefGoogle Scholar
  52. 52.
    Tang Q, Liu S, Liu Y, Miao J, Li S, Zhang L, Shi Z, Zheng Z (2013) Cation sensing by a luminescent metal-organic framework with multiple lewis basic sites. Inorg Chem 52:2799–2801CrossRefGoogle Scholar
  53. 53.
    Tang Q, Liu S, Liu Y, He D, Miao J, Wang X, Ji Y, Zheng Z (2014) Color tuning and white light emission via in situ doping of luminescent lanthanide metal-organic frameworks. Inorg Chem 53:289–293CrossRefGoogle Scholar
  54. 54.
    Ma X, Li X, Cha Y-E, Jin L-P (2012) Highly thermostable one-dimensional lanthanide(III) coordination polymers constructed from benzimidazole-5,6-dicarboxylic acid and 1,10-phenanthroline: synthesis, structure, and tunable white-light emission. Cryst Growth Des 12:5227–5232CrossRefGoogle Scholar
  55. 55.
    Dang S, Zhang J-H, Sun Z-M (2012) Tunable emission based on lanthanide(III) metal-organic frameworks: an alternative approach to white light. J Mater Chem 22:8868–8873CrossRefGoogle Scholar
  56. 56.
    Zhu M, Hao Z-M, Song X-Z, Meng X, Zhao S-N, Song S-Y, Zhang H-J (2014) A new type of double-chain based 3D lanthanide(III) metal-organic framework demonstrating proton conduction and tunable emission. Chem Commun 50:1912–1914CrossRefGoogle Scholar
  57. 57.
    Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD (2011) Lanthanide-based luminescent molecular thermometers. New J Chem 35:1177–1183CrossRefGoogle Scholar
  58. 58.
    Carlos LD, Ferreira RAS, de Zea Bermudez V, Julián-Lopez B, Escribano P (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–549Google Scholar
  59. 59.
    Feng J, Tian K, Hu D, Wang S, Li S, Zeng Y, Li Y, Yang G (2011) A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range. Angew Chem Int Ed 50:8072–8076CrossRefGoogle Scholar
  60. 60.
    Cui Y, Xu H, Yue Y, Guo Z, Yu J, Chen Z, Gao J, Yang Y, Qian G, Chen B (2012) A luminescent mixed-lanthanide metal-organic framework thermometer. J Am Chem Soc 134:3979–3982CrossRefGoogle Scholar
  61. 61.
    Rao X, Song T, Gao J, Cui Y, Yang Y, Wu C, Chen B, Qian G (2013) A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. J Am Chem Soc 135:15559–15564CrossRefGoogle Scholar
  62. 62.
    Cui Y, Zou W, Song R, Yu J, Zhang W, Yang Y, Qian G (2014) A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chem Commun 50:719–721CrossRefGoogle Scholar
  63. 63.
    D'Vries RF, Álvarez-García S, Snejko N, Bausá LE, Gutiérrez-Puebla E, de Andrés A, Monge MÁ (2013) Multimetal rare earth MOFs for lighting and thermometry: tailoring color and optimal temperature range through enhanced disulfobenzoic triplet phosphorescence. J Mater Chem C 1:6316–6324CrossRefGoogle Scholar
  64. 64.
    Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940CrossRefGoogle Scholar
  65. 65.
    Chen B, Yang Y, Zapata F, Qian G, Luo Y, Zhang J, Lobkovsky EB (2006) Enhanced near-infrared–luminescence in an erbium tetrafluoroterephthalate framework. Inorg Chem 45:8882–8886CrossRefGoogle Scholar
  66. 66.
    Marchal C, Filinchuk Y, Chen X-Y, Imbert D, Mazzanti M (2009) Lanthanide-based coordination polymers assembled by a flexible multidentate linker: design, structure, photophysical properties, and dynamic solid-state behavior. Chem Eur J 15:5273–5288CrossRefGoogle Scholar
  67. 67.
    White KA, Chengelis DA, Zeller M, Geib SJ, Szakos J, Petoud S, Rosi NL (2009) Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. Chem Commun 4506–4508Google Scholar
  68. 68.
    White KA, Chengelis DA, Gogick KA, Stehman J, Rosi NL, Petoud S (2009) Near-infrared luminescent lanthanide MOF barcodes. J Am Chem Soc 131:18069–18071CrossRefGoogle Scholar
  69. 69.
    Guo Z, Xu H, Su S, Cai J, Dang S, Xiang S, Qian G, Zhang H, O’Keeffe M, Chen B (2011) A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem Commun 47:5551–5553CrossRefGoogle Scholar
  70. 70.
    Dang S, Min X, Yang W, Yi F-Y, You H, Sun Z-M (2013) Lanthanide metal-organic frameworks showing luminescence in the visible and near-infrared regions with potential for acetone sensing. Chem Eur J 19:17172–17179CrossRefGoogle Scholar
  71. 71.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–173CrossRefGoogle Scholar
  72. 72.
    Yang J, Yue Q, Li G-D, Cao J-J, Li G-H, Chen J-S (2006) Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages. Inorg Chem 45:2857–2865CrossRefGoogle Scholar
  73. 73.
    Mahata P, Ramya KV, Natarajan S (2007) Synthesis, structure and optical properties of rare-earth benzene carboxylates. Dalton Trans 4017–4026Google Scholar
  74. 74.
    Mahata P, Ramya KV, Natarajan S (2008) Pillaring of CdCl2-like layers in lanthanide metal-organic frameworks: synthesis, structure, and photophysical properties. Chem Eur J 14:5839–5850CrossRefGoogle Scholar
  75. 75.
    Weng D, Zheng X, Jin L (2006) Assembly and upconversion properties of lanthanide coordination polymers based on hexanuclear building blocks with (μ3-OH) bridges. Eur J Inorg Chem 2006:4184–4190CrossRefGoogle Scholar
  76. 76.
    Sun C-Y, Zheng X-J, Chen X-B, Li L-C, Jin L-P (2009) Assembly and upconversion luminescence of lanthanide-organic frameworks with mixed acid ligands. Inorg Chim Acta 362:325–330CrossRefGoogle Scholar
  77. 77.
    Dong Y-B, Wang P, Ma J-P, Zhao X-X, Wang H-Y, Tang B, Huang R-Q (2007) Coordination-driven nanosized lanthanide “molecular lantern” with tunable luminescent properties. J Am Chem Soc 129:4872–4873CrossRefGoogle Scholar
  78. 78.
    Wang P, Ma J-P, Dong Y-B, Huang R-Q (2007) Tunable luminescent lanthanide coordination polymers based on reversible solid-state ion-exchange monitored by ion-dependent photoinduced emission spectra. J Am Chem Soc 129:10620–10621CrossRefGoogle Scholar
  79. 79.
    Wang P, Ma J-P, Dong Y-B (2009) Guest-driven luminescence: lanthanide-based host-guest systems with bimodal emissive properties based on a guest-driven approach. Chem Eur J 15:10432–10445CrossRefGoogle Scholar
  80. 80.
    An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL (2011) Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. J Am Chem Soc 133:1220–1223CrossRefGoogle Scholar
  81. 81.
    Ma M-L, Qin J-H, Ji C, Xu H, Wang R, Li B-J, Zang S-Q, Hou H-W, Batten SR (2014) Anionic porous metal-organic framework with novel 5-connected vbk topology for rapid adsorption of dyes and tunable white light emission. J Mater Chem C 2:1085–1093CrossRefGoogle Scholar
  82. 82.
    Qin J-S, Zhang S-R, Du D-Y, Shen P, Bao S-J, Lan Y-Q, Su Z-M (2014) A microporous anionic metal-organic framework for sensing luminescence of lanthanide(III) ions and selective absorption of dyes by ionic exchange. Chem Eur J 20:5625–5630CrossRefGoogle Scholar
  83. 83.
    Luo F, Batten SR (2010) Metal-organic framework (MOF): lanthanide(III)-doped approach for luminescence modulation and luminescent sensing. Dalton Trans 39:4485–4488CrossRefGoogle Scholar
  84. 84.
    Lan Y-Q, Jiang H-L, Li S-L, Xu Q (2011) Mesoporous metal-organic frameworks with size-tunable cages: selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Adv Mater 23:5015–5020CrossRefGoogle Scholar
  85. 85.
    Wang Y, Yang J, Liu Y-Y, Ma J-F (2013) Controllable syntheses of porous metal-organic frameworks: encapsulation of Ln(III) cations for tunable luminescence and small drug molecules for efficient delivery. Chem Eur J 19:14591–14599CrossRefGoogle Scholar
  86. 86.
    He W-W, Li S-L, Yang G-S, Lan Y-Q, Su Z-M, Fu Q (2012) Controllable synthesis of a non-interpenetrating microporous metal-organic framework based on octahedral cage-like building units for highly efficient reversible adsorption of iodine. Chem Commun 48:10001–10003CrossRefGoogle Scholar
  87. 87.
    Li Y-A, Ren S-K, Liu Q-K, Ma J-P, Chen X, Zhu H, Dong Y-B (2012) Encapsulation and sensitization of UV–vis and near infrared lanthanide hydrate emitters for dual- and bimodal-emissions in both air and aqueous media based on a porous heteroatom-rich Cd(II)-framework. Inorg Chem 51:9629–9635CrossRefGoogle Scholar
  88. 88.
    Zhou Y, Yan B (2014) Imparting tunable and white-light luminescence to a nanosized metal-organic framework by controlled encapsulation of lanthanide cations. Inorg Chem 53:3456–3463CrossRefGoogle Scholar
  89. 89.
    Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968CrossRefGoogle Scholar
  90. 90.
    Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025CrossRefGoogle Scholar
  91. 91.
    Rieter WJ, Taylor KML, Lin W (2007) Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J Am Chem Soc 129:9852–9853CrossRefGoogle Scholar
  92. 92.
    Foucault-Collet A, Gogick KA, White KA, Villettea S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (2013) Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks. Proc Natl Acad Sci U S A 110:17199–17204CrossRefGoogle Scholar
  93. 93.
    Rosi NL, Kim J, Eddaoudi M, Chen B, O'Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518CrossRefGoogle Scholar
  94. 94.
    Liu K, You H, Zheng Y, Jia G, Song Y, Huang Y, Yang M, Jia J, Guo N, Zhang H (2010) Facile and rapid fabrication of metal-organic framework nanobelts and color-tunable photoluminescence properties. J Mater Chem 20:3272–3279CrossRefGoogle Scholar
  95. 95.
    Guo H, Zhu Y, Qiu S, Lercher JA, Zhang H (2010) Coordination modulation induced synthesis of nanoscale Eu1-xTbx-metal-organic frameworks for luminescent thin films. Adv Mater 22:4190–4192CrossRefGoogle Scholar
  96. 96.
    Yang W, Feng J, Song S, Zhang H (2012) Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing. ChemPhysChem 13:2734–2738CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP.R. China
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations