Advertisement

Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation

  • Bin Li
  • Banglin ChenEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 163)

Abstract

Lanthanide metal–organic frameworks (Ln-MOFs) have attracted increasing attention as an emerging type of porous materials in the last decades due to their high porosities, adjustable pore sizes/sharps, ready functionalization, as well as high thermal/chemical stability. In this chapter, we seek to not only provide a comprehensive review focusing on porous Ln-MOF materials for a wide range of applications in gas storage and separation, such as H2 storage, selective CO2 capture and separation, and H2 and CH4 purification, but also highlight some strategies as a means of effectively enhancing their gas storage capacities and selectivities.

Keywords

Framework interpenetration Gas separation Gas storage Lanthanide metal–organic frameworks Pore size/sharp exclusion 

Abbreviations

btb

1,3,5-Benzenetrisbenzoic

H2bdc

1,4-Benzenedicarboxylic acid

H2bpdc

2,2′-Bipyridine-3,3′-dicarboxylic acid

H2C2O4

Oxalic acid

H2fda

Furan-2,5-dicarboxylic acid

H2ftzb

2-Fluoro-4-(1H-tetrazol-5-yl)benzoic acid

H2pam

4,4′-Methylenebis[3-hydroxy-2-naphthalenecarboxylic acid]

H2pda

Pyridine-2,6-dicarboxylic acid

H2tbdc

2,3,5,6-Tetramethyl-1,4-benzenedicarboxylic acid

H3btc

1,3,5-Benzenetricarboxylate

H3btn

1,3,5-Tri(6-hydroxycarbonylnaphthalen-2-yl)benzene

H3CIP

5-(4-Carboxybenzylideneamino)isophthalic acid

H3L2

5,5′,5″-(Benzene-1,3,5-triyl)tris(1-naphthoic acid)

H3L2

5,5′,5″-(Benzene-1,3,5-triyl)tris(1-naphthoic acid)

H3L3

Tris((4-carboxyl)phenylduryl)amine acid

H3L3

Tris((4-carboxyl)phenylduryl)amine acid

H3L5

4,4′,4″-(Benzenetricarbonyltris-(azanediyl)) tribenzoic acid

H3tpo

Tris-(4-carboxylphenyl)phosphineoxide

H4L4

2,6-Di(3′,5′-dicarboxylphenyl)pyridine

H6L1

5′,5″″-(4″-Carboxy-5′-(4-carboxyphenyl)-[1,1′:3′,1″-terphenyl]-3,5-diyl)bis(([1,1′:3′,1″-terphenyl]-4,4″-dicarboxylic acid))

H6tpbtm

N,N′,N″-tris(isophthalyl)-1,3,5-benzenetricarboxamide

p-CDCH2

1,12-Dihydroxycarbonyl-1,12-dicarba-closo-dodecaborane

tatb

4,4′,4″-S-triazine-2,4,6-triyl tribenzoate

Notes

Acknowledgment

This work was supported by grant AX-1730 from the Welch Foundation (BC).

References

  1. 1.
    Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674CrossRefGoogle Scholar
  2. 2.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:6149–6160CrossRefGoogle Scholar
  3. 3.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae T-H, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781CrossRefGoogle Scholar
  4. 4.
    Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112:782–835CrossRefGoogle Scholar
  5. 5.
    He Y, Li B, O’Keeffec M, Chen B (2014) Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem Soc Rev 43:5618–5656Google Scholar
  6. 6.
    Férey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38:1380–1399CrossRefGoogle Scholar
  7. 7.
    Wu H, Gong Q, Olson DH, Li J (2012) Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem Rev 112:836–868CrossRefGoogle Scholar
  8. 8.
    Li J-R, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932CrossRefGoogle Scholar
  9. 9.
    Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 327:846–850CrossRefGoogle Scholar
  10. 10.
    Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033CrossRefGoogle Scholar
  11. 11.
    Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT (2012) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021CrossRefGoogle Scholar
  12. 12.
    Kong G-Q, Han Z-D, He Y, Ou S, Zhou W, Yildirim T, Krishna R, Zou C, Chen B, Wu C-D (2013) Expanded organic building units for the construction of highly porous metal–organic frameworks. Chem Eur J 19:14886–14894CrossRefGoogle Scholar
  13. 13.
    Li B, Wen H-M, Wang H, Wu H, Tyagi M, Yildirim T, Zhou W, Chen B (2014) A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J Am Chem Soc 136:6207–6210CrossRefGoogle Scholar
  14. 14.
    Xiang S-C, Zhang Z, Zhao C-G, Hong K, Zhao X, Ding D-R, Xie M-H, Wu C-D, Das MC, Gill R, Thomas KM, Chen B (2011) Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nat Commun 2:204–210CrossRefGoogle Scholar
  15. 15.
    Xiang S, Zhou W, Gallegos JM, Liu Y, Chen B (2009) Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites. J Am Chem Soc 131:12415–12419CrossRefGoogle Scholar
  16. 16.
    Li T, Sullivan JE, Rosi NL (2013) Design and preparation of a core–shell metal-organic framework for selective CO2 capture. J Am Chem Soc 135:9984–9987CrossRefGoogle Scholar
  17. 17.
    Li B, Wang H, Chen B (2014) Microporous metal-organic frameworks for gas separation. Chem Asian J 9:1474–1498CrossRefGoogle Scholar
  18. 18.
    Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84CrossRefGoogle Scholar
  19. 19.
    He Y, Krishna R, Chen B (2012) Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci 5:9107–9120CrossRefGoogle Scholar
  20. 20.
    Li J-R, Kuppler RJ, Zhou H-C (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504CrossRefGoogle Scholar
  21. 21.
    Mason JA, Veenstra M, Long JR (2014) Evaluating metal-organic frameworks for natural gas storage. Chem Sci 5:32–51CrossRefGoogle Scholar
  22. 22.
    Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894CrossRefGoogle Scholar
  23. 23.
    Getman RB, Bae Y-S, Wilmer CE, Snurr RQ (2012) Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev 112:703–723CrossRefGoogle Scholar
  24. 24.
    Yan Y, Yang S, Blake AJ, Schröder M (2014) Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Acc Chem Res 47:296–307CrossRefGoogle Scholar
  25. 25.
    Dincă M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47:6766–6779CrossRefGoogle Scholar
  26. 26.
    Wilmer CE, Farha OK, Yildirim T, Eryazici I, Krungleviciute V, Sarjeant AA, Snurr RQ, Hupp JT (2013) Gram-scale, high-yield synthesis of a robust metal-organic framework for storing methane and other gases. Energy Environ Sci 6:1158–1163CrossRefGoogle Scholar
  27. 27.
    Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954–963CrossRefGoogle Scholar
  28. 28.
    Cui Y, Yue Y, Qian G, Chen B (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162CrossRefGoogle Scholar
  29. 29.
    Takashima Y, Martínez VM, Furukawa S, Kondo M, Shimomura S, Uehara H, Nakahama M, Sugimoto K, Kitagawa S (2011) Molecular decoding using luminescence from an entangled porous framework. Nat Commun 2:168–175CrossRefGoogle Scholar
  30. 30.
    Almeida Paz FA, Klinowski J, Vilela SMF, Tomé JPC, Cavaleiro JAS, Rocha J (2012) Ligand design for functional metal-organic frameworks. Chem Soc Rev 41:1088–1110CrossRefGoogle Scholar
  31. 31.
    Carlos LD, Ferreira RAS, Bermudez VZ, Julián-López B, Escribano P (2011) Progress on lanthanide-based organic–inorganic hybrid phosphors. Chem Soc Rev 40:536–549CrossRefGoogle Scholar
  32. 32.
    Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940CrossRefGoogle Scholar
  33. 33.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352CrossRefGoogle Scholar
  34. 34.
    Heine J, Müller-Buschbaum K (2013) Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem Soc Rev 42:9232–9242CrossRefGoogle Scholar
  35. 35.
    Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273:76–86Google Scholar
  36. 36.
    Song F, Wang C, Falkowski JM, Ma L, Lin W (2010) Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. J Am Chem Soc 132:15390–15398CrossRefGoogle Scholar
  37. 37.
    Ma L, Abney C, Lin W (2009) Enantioselective catalysis with homochiral metal-organic frameworks. Chem Soc Rev 38:1248–1256CrossRefGoogle Scholar
  38. 38.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459CrossRefGoogle Scholar
  39. 39.
    Yoon M, Srirambalaji R, Kim K (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231CrossRefGoogle Scholar
  40. 40.
    Gao W-Y, Chen Y, Niu Y, Williams K, Cash L, Perez PJ, Wojtas L, Cai J, Chen Y-S, Ma S (2014) Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew Chem Int Ed 53:2615–2619CrossRefGoogle Scholar
  41. 41.
    Liu Y, Xuan W, Cui Y (2010) Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv Mater 22:4112–4135CrossRefGoogle Scholar
  42. 42.
    Zhao M, Ou S, Wu C-D (2014) Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Acc Chem Res 47:1199–1207CrossRefGoogle Scholar
  43. 43.
    Chen B, Wang L, Zapata F, Qian G, Lobkovsky EB (2008) A luminescent microporous metal-organic framework for the recognition and sensing of anions. J Am Chem Soc 130:6718–6719CrossRefGoogle Scholar
  44. 44.
    Chen B, Xiang S, Qian G (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124CrossRefGoogle Scholar
  45. 45.
    Lan A, Li K, Wu H, Olson DH, Emge TJ, Ki W, Hong M, Li J (2009) A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew Chem Int Ed 48:2334–2338CrossRefGoogle Scholar
  46. 46.
    Shustova NB, Cozzolino AF, Reineke S, Baldo M, Dincă M (2013) Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites. J Am Chem Soc 135:13326–13329CrossRefGoogle Scholar
  47. 47.
    Kreno LE, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125CrossRefGoogle Scholar
  48. 48.
    Wang C, Liu D, Lin W (2013) Metal-organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc 135:13222–13234CrossRefGoogle Scholar
  49. 49.
    Horike S, Umeyama D, Kitagawa S (2013) Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc Chem Res 46:2376–2384CrossRefGoogle Scholar
  50. 50.
    Shimizu GKH, Taylor JM, Kim S (2013) Proton conduction with metal-organic frameworks. Science 341:354–355CrossRefGoogle Scholar
  51. 51.
    Yamada T, Otsubo K, Makiura R, Kitagawa H (2013) Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem Soc Rev 42:6655–6669CrossRefGoogle Scholar
  52. 52.
    Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41:2673–2685CrossRefGoogle Scholar
  53. 53.
    Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang J-S, Hwang YK, Marsaud V, Bories P-N, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9:172–178CrossRefGoogle Scholar
  54. 54.
    Rocca JD, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968CrossRefGoogle Scholar
  55. 55.
    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112:1232–1268CrossRefGoogle Scholar
  56. 56.
    Kagan HB (2002) Introduction: frontiers in lanthanide chemistry. Chem Rev 102:1805–1806CrossRefGoogle Scholar
  57. 57.
    Roy S, Chakraborty A, Maji TK (2014) Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials. Coord Chem Rev 273:139–164Google Scholar
  58. 58.
    Huang Y-G, Jiang F-L, Hong M-C (2009) Magnetic lanthanide–transition metal organic–inorganic hybrid materials: from discrete clusters to extended frameworks. Coord Chem Rev 253:2814–2834CrossRefGoogle Scholar
  59. 59.
    Chen Y, Ma S (2012) Microporous lanthanide metal-organic frameworks. Rev Inorg Chem 32:81–100CrossRefGoogle Scholar
  60. 60.
    Bünzli J-C G (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110:2729–2755CrossRefGoogle Scholar
  61. 61.
    Eliseeva SV, Bünzli J-C G (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227CrossRefGoogle Scholar
  62. 62.
    Meyer LV, Schönfeld F, Müller-Buschbaum K (2014) Lanthanide based tuning of luminescence in MOFs and dense frameworks- from mono- and multimetal systems to sensors and films. Chem Commun 50:8093–8108Google Scholar
  63. 63.
    Kiritsis V, Michaelides A, Skoulika S, Golhen S, Ouahab L (1998) Assembly of a porous three-dimensional coordination polymer: crystal structure of {[La2(adipate)3(H2O)4]6H2O}n. Inorg Chem 37:3407–3410CrossRefGoogle Scholar
  64. 64.
    Reineke TM, Eddaoudi MO, Keeffe M, Yaghi OM (1999) A microporous lanthanide-organic framework. Angew Chem Int Ed 38:2590–2594Google Scholar
  65. 65.
    Reineke TM, Eddaoudi M, Fehr M, Kelley D, Yaghi OM (1999) From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites. J Am Chem Soc 121:1651–1657CrossRefGoogle Scholar
  66. 66.
    Pan L, Adams KM, Hernandez HE, Wang X, Zheng C, Hattori Y, Kaneko K (2003) Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. J Am Chem Soc 125:3062–3067CrossRefGoogle Scholar
  67. 67.
    Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518CrossRefGoogle Scholar
  68. 68.
    Devic T, Serre C, Audebrand N, Marrot J, Férey G (2005) MIL-103, a 3-D lanthanide-based metal organic framework with large one-dimensional tunnels and a high surface area. J Am Chem Soc 127:12788–12789CrossRefGoogle Scholar
  69. 69.
    Guo X, Zhu G, Li Z, Sun F, Yang Z, Qiu S (2006) A lanthanide metal–organic framework with high thermal stability and available Lewis-acid metal sites. Chem Commun 3172–3174Google Scholar
  70. 70.
    Lee WR, Ryu DW, Lee JW, Yoon JH, Koh EK, Hong CS (2010) Microporous lanthanide-organic frameworks with open metal sites: unexpected sorption propensity and multifunctional properties. Inorg Chem 49:4723–4725CrossRefGoogle Scholar
  71. 71.
    Mohapatra S, Hembram KPSS, Waghmare U, Maji TK (2009) Immobilization of alkali metal ions in a 3D lanthanide-organic framework: selective sorption and H2 storage characteristics. Chem Mater 21:5406–5412CrossRefGoogle Scholar
  72. 72.
    Li H, Shi W, Zhao K, Niu Z, Li H, Cheng P (2013) Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metal-organic framework containing 1D honeycomb-type channels. Chem Eur J 19:3358–3365CrossRefGoogle Scholar
  73. 73.
    Jiang H-L, Tsumori N, Xu Q (2010) A series of (6,6)-connected porous lanthanide-organic framework enantiomers with high thermostability and exposed metal sites: scalable syntheses, structures, and sorption properties. Inorg Chem 49:10001–10006CrossRefGoogle Scholar
  74. 74.
    Lin Z, Zou R, Xia W, Chen L, Wang X, Liao F, Wang Y, Lin J, Burrel AK (2012) Ultrasensitive sorption behavior of isostructural lanthanide–organic frameworks induced by lanthanide contraction. J Mater Chem 22:21076–21084CrossRefGoogle Scholar
  75. 75.
    Xue D-X, Cairns AJ, Belmabkhout Y, Wojtas L, Liu Y, Alkordi MH, Eddaoudi M (2013) Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. J Am Chem Soc 135:7660–7667CrossRefGoogle Scholar
  76. 76.
    Guo Z, Xu H, Su S, Cai J, Dang S, Xiang S, Qian G, Zhang H, O’Keeffed M, Chen B (2011) A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem Commun 47:5551–5553CrossRefGoogle Scholar
  77. 77.
    Biswas S, Jena HS, Goswami S, Sanda S, Konar S (2014) Synthesis and characterization of two lanthanide (Gd3+ and Dy3+)‑based three-dimensional metal organic frameworks with squashed metallomacrocycle type building blocks and their magnetic, sorption, and fluorescence properties study. Cryst Growth Des 14:1287–1295CrossRefGoogle Scholar
  78. 78.
    He Y, Furukawa H, Wu C, O'Keeffe M, Krishna R, Chen B (2013) Low-energy regeneration and high productivity in a lanthanide-hexacarboxylate framework for high-pressure CO2/CH4/H2 separation. Chem Commun 49:6773–6775CrossRefGoogle Scholar
  79. 79.
    Duan J, Higuchi M, Horike S, Foo ML, Rao KP, Inubushi Y, Fukushima T, Kitagawa S (2013) High CO2/CH4 and C2 hydrocarbons/CH4 selectivity in a chemically robust porous coordination polymer. Adv Funct Mater 23:3525–3530CrossRefGoogle Scholar
  80. 80.
    Luo J, Xu H, Liu Y, Zhao Y, Daemen LL, Brown C, Timofeeva TV, Ma S, Zhou H-C (2008) Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies. J Am Chem Soc 130:9626–9627CrossRefGoogle Scholar
  81. 81.
    He Y, Xiang S, Zhang Z, Xiong S, Fronczek FR, Krishna R, O’Keeffee M, Chen B (2012) A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. Chem Commun 48:10856–10858CrossRefGoogle Scholar
  82. 82.
    Duan J, Higuchi M, Krishna R, Kiyonaga T, Tsutsumi Y, Sato Y, Kubota Y, Takatae M, Kitagawa S (2014) High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chem Sci 5:660–666CrossRefGoogle Scholar
  83. 83.
    Jiang H-L, Makal TA, Zhou H-C (2013) Interpenetration control in metal-organic frameworks for functional applications. Coord Chem Rev 257:2232–2249CrossRefGoogle Scholar
  84. 84.
    He H, Yuan D, Ma H, Sun D, Zhang G, Zhou H-C (2010) Control over interpenetration in lanthanide-organic frameworks: synthetic strategy and gas-adsorption properties. Inorg Chem 49:7605–7607CrossRefGoogle Scholar
  85. 85.
    He Y-P, Tan Y-X, Zhang J (2013) Gas sorption, second-order nonlinear optics, and luminescence properties of a series of lanthanide-organic frameworks based on nanosized tris((4-carboxyl)phenylduryl)amine ligand. Inorg Chem 52:12758–12762CrossRefGoogle Scholar
  86. 86.
    He H, Ma H, Sun D, Zhang L, Wang R, Sun D (2013) Porous lanthanide-organic frameworks: control over interpenetration, gas adsorption, and catalyst properties. Cryst Growth Des 13:3154–3161CrossRefGoogle Scholar
  87. 87.
    Ma S, Wang X-S, Yuan D, Zhou H-CA (2008) Coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angew Chem Int Ed 47:4130–4133CrossRefGoogle Scholar
  88. 88.
    Ma S, Yuan D, Wang X-S, Zhou H-C (2009) Microporous lanthanide metal-organic frameworks containing coordinatively linked interpenetration: syntheses, gas adsorption studies, thermal stability analysis, and photoluminescence investigation. Inorg Chem 48:2072–2077CrossRefGoogle Scholar
  89. 89.
    Tang K, Yun R, Lu Z, Du L, Zhang M, Wang Q, Liu H (2013) High CO2/N2 selectivity and H2 adsorption of a novel porous yttrium metal-organic framework based on N,N′,N″-Tris(isophthalyl)-1,3,5-benzenetricarboxamide. Cryst Growth Des 13:1382–1385CrossRefGoogle Scholar
  90. 90.
    Liu B, Wu W-P, Hou L, Wang Y-Y (2014) Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu2+ ion and selective CO2 capture. Chem Commun 50:8731–8734Google Scholar
  91. 91.
    Ganguly S, Pachfule P, Bala S, Goswami A, Bhattacharya S, Mondal R (2013) Azide-functionalized lanthanide-based metal-organic frameworks showing selective CO2 gas adsorption and postsynthetic cavity expansion. Inorg Chem 52:3588–3590CrossRefGoogle Scholar
  92. 92.
    Lin Z-J, Yang Z, Liu T-F, Huang Y-B, Cao R (2012) Microwave-assisted synthesis of a series of lanthanide metal-organic frameworks and gas sorption properties. Inorg Chem 51:1813–1820CrossRefGoogle Scholar
  93. 93.
    Mu B, Li F, Huanga Y, Walton KS (2012) Breathing effects of CO2 adsorption on a flexible 3D lanthanide metal-organic framework. J Mater Chem 22:10172–10178CrossRefGoogle Scholar
  94. 94.
    Efthymiou CG, Kyprianidou EJ, Milios CJ, Manos MJ, Tasiopoulos AJ (2013) Flexible lanthanide MOFs as highly selective and reusable liquid MeOH sorbents. J Mater Chem A 1:5061–5069CrossRefGoogle Scholar
  95. 95.
    Duan J, Higuchi M, Foo ML, Horike S, Rao KP, Kitagawa S (2013) A family of rare earth porous coordination polymers with different flexibility for CO2/C2H4 and CO2/C2H6 separation. Inorg Chem 52:8244–8249Google Scholar
  96. 96.
    Huang S-L, Lin Y-J, Yu W-B, Jin G-X (2012) Porous frameworks based on carborane–Ln2(CO2)6: architecture influenced by lanthanide contraction and selective CO2 capture. ChemPlusChem 77:141–147CrossRefGoogle Scholar
  97. 97.
    Ibarra IA, Hesterberg TW, Holliday BJ, Lynch VM, Humphrey SM (2012) Gas sorption and luminescence properties of a terbium(III)-phosphine oxide coordination material with two-dimensional pore topology. Dalton Trans 41:8003–8009CrossRefGoogle Scholar
  98. 98.
    Park YK, Choi SB, Kim H, Kim K, Won B-H, Choi K, Choi J-S, Ahn W-S, Won N, Kim S, Jung DH, Choi S-H, Kim G-H, Cha S-S, Jhon YH, Yang JK, Kim J (2007) Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew Chem Int Ed 46:8230–8233CrossRefGoogle Scholar
  99. 99.
    He Y, Furukawa H, Wu C, O’Keeffed M, Chen B (2013) A mesoporous lanthanide-organic framework constructed from a dendritic hexacarboxylate with cages of 2.4 nm. CrystEngComm 15:9328–9331CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations