Transition–Lanthanide Heterometal–Organic Frameworks: Synthesis, Structures, and Properties

  • Wei Shi
  • Ke Liu
  • Peng Cheng
Part of the Structure and Bonding book series (STRUCTURE, volume 163)


Transition–lanthanide heterometal–organic frameworks (HMOFs) have attracted increasing interests in recent decades because of their advantageous features as potential molecular materials, such as fascinating structural topologies, and their versatile and chemically tunable properties. Since the chemical and physical properties originated from d and f electrons are totally different, it is difficult to synthesize HMOFs in contrast to homometallic MOFs and it has showed that distinguishing characteristics with regard to structures and properties are observed in HMOFs. Herein the synthetic strategy, structures, and properties of luminescence, magnetism, adsorption, etc. are reviewed in this chapter to help readers to understand various aspects of HMOFs.


Adsorption Heterometallic MOFs Luminescence Magnetism Synthetic strategy 


  1. 1.
    Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674CrossRefGoogle Scholar
  2. 2.
    Long JR, Yaghi OM (2009) The pervasive chemistry of metal-organic frameworks. Chem Soc Rev 38:1213–1214CrossRefGoogle Scholar
  3. 3.
    Zhao B, Cheng P, Dai Y, Cheng C, Liao DZ, Yan SP, Jiang ZH, Wang GL (2003) A nanotubular 3D coordination polymer based on a 3d-4f heterometallic assembly. Angew Chem Int Ed 42:934–936CrossRefGoogle Scholar
  4. 4.
    Zhao B, Gao HL, Chen XY, Cheng P, Shi W, Liao DZ, Yan SP, Jiang ZH (2006) A promising MgII-ion-selective luminescent probe: structures and properties of Dy-Mn polymers with high symmetry. Chem Eur J 12:149–158CrossRefGoogle Scholar
  5. 5.
    Li HH, Shi W, Xu N, Zhang ZJ, Niu Z, Han T, Cheng P (2012) Structural diversity of four metal-organic frameworks based on linear homo/heterotrinuclear nodes with furan-2,5-dicarboxylic acid: crystal structures and luminescent and magnetic properties. Cryst Growth Des 12:2602–2612CrossRefGoogle Scholar
  6. 6.
    Zhou JM, Shi W, Xu N, Cheng P (2013) A new family of 4f-3d heterometallic metal-organic frameworks with 2,2′-bipyridine-3,3′-dicarboxylic acid: syntheses, structures and magnetic properties. Cryst Growth Des 13:1218–1225CrossRefGoogle Scholar
  7. 7.
    Yang TH, Silva AR, Shi FN (2013) Six new 3d-4f heterometallic coordination polymers constructed from pyrazole-bridged CuIILnIII dinuclear units. Dalton Trans 42:13997–14005CrossRefGoogle Scholar
  8. 8.
    Li CJ, Lin ZJ, Peng MX, Leng JD, Yang MM, Tong ML (2008) Novel three-dimensional 3d-4f microporous magnets exhibiting selective gas adsorption behavior. Chem Commun 44:6348–6350CrossRefGoogle Scholar
  9. 9.
    Wang Y, Cheng P, Chen J, Liao DZ, Yan SP (2007) A heterometallic porous material for hydrogen adsorption. Inorg Chem 46:4530–4534CrossRefGoogle Scholar
  10. 10.
    Zhao B, Chen XY, Cheng P, Liao DZ, Yan SP, Jiang ZH (2004) Coordination polymers containing 1D channels as selective luminescent probes. J Am Chem Soc 126:15394–15395CrossRefGoogle Scholar
  11. 11.
    Shi PF, Zhao B, Xiong G, Hou YL, Cheng P (2012) Fast capture and separation of, and luminescent probe for pollutant chromate using a multifunctional cationic heterometal-organic framework. Chem Commun 48:8231–8233CrossRefGoogle Scholar
  12. 12.
    Zhao B, Cheng P, Chen XY, Cheng C, Shi W, Liao DZ, Yan SP, Jiang ZH (2004) Design and synthesis of 3d-4f metal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe. J Am Chem Soc 126:3012–3013CrossRefGoogle Scholar
  13. 13.
    Fang M, Shi PF, Zhao B, Jiang DX, Cheng P, Shi W (2012) A series of 3d-4f heterometallic three-dimensional coordination polymers: synthesis, structures and magnetic properties. Dalton Trans 41:6820–6826CrossRefGoogle Scholar
  14. 14.
    Benelli C, Gatteschi G (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102:2369–2387CrossRefGoogle Scholar
  15. 15.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  16. 16.
    Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658CrossRefGoogle Scholar
  17. 17.
    Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472CrossRefGoogle Scholar
  18. 18.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRefGoogle Scholar
  19. 19.
    Zhao B, Yi L, Dai Y, Chen XY, Cheng P, Liao DZ, Yan SP, Jiang ZH (2005) Systematic investigation of the hydrothermal syntheses of Pr(III)-PDA (PDA = pyridine-2,6-dicarboxylate anion) metal-organic frameworks. Inorg Chem 44:911–920CrossRefGoogle Scholar
  20. 20.
    Zhao XQ, Zhao B, Ma Y, Shi W, Cheng P, Jiang ZH, Liao DZ, Yan SP (2007) Lanthanide(III)-cobalt(II) heterometallic coordination polymers with radical adsorption properties. Inorg Chem 46:5832–5834CrossRefGoogle Scholar
  21. 21.
    Zhao XQ, Zhao B, Shi W, Cheng P (2009) Synthesis, structures and luminescent and magnetic properties of Ln-Ag heterometal-organic frameworks. Inorg Chem 48:11048–11057CrossRefGoogle Scholar
  22. 22.
    Zhao XQ, Zhao B, Shi W, Cheng P, Liao DZ, Yan SP (2009) Self-assembly of novel 3d-4f heterometal-organic framework based on double-stranded helical motifs. Dalton Trans 38:2281–2283CrossRefGoogle Scholar
  23. 23.
    Zhao B, Chen XY, Chen Z, Shi W, Cheng P, Yan SP, Liao DZ (2009) A porous 3D heterometal-organic framework containing both lanthanide and high-spin Fe(II) ions. Chem Commun 45:3113–3115CrossRefGoogle Scholar
  24. 24.
    Zhao XQ, Cui P, Zhao B, Shi W, Cheng P (2011) Investigation on structures, luminescent and magnetic properties of LnIII-M (M = FeII HS, CoII) coordination polymers. Dalton Trans 40:805–819CrossRefGoogle Scholar
  25. 25.
    Byrnes MJ, Chisholm MH (2002) Thienyl carboxylate ligands bound to M2 quadruple bonds involving molybdenum and tungsten. models for dimetallated polythiophenes. Chem Commun 38:2040–2041CrossRefGoogle Scholar
  26. 26.
    Abourahma H, Bodwell GJ, Lu J, Moulton B, Pottie IR, Walsh RB, Zaworotko MJ (2003) Coordination polymers from calixarene-like [Cu2(dicarboxylate)2]4 building blocks: structural diversity via atropisomerism. Cryst Growth Des 3:513–519CrossRefGoogle Scholar
  27. 27.
    Byrnes MJ, Chisholm MH, Clark RJH, Gallucci JC, Hadad CM, Patmore NJ (2004) Thienyl carboxylate ligands bound to and bridging MM quadruple bonds, M = Mo or W: Models for polythiophenes incorporating MM quadruple bonds. Inorg Chem 43:6334–6344CrossRefGoogle Scholar
  28. 28.
    Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518CrossRefGoogle Scholar
  29. 29.
    Jia HP, Li W, Ju ZF, Zhang J (2006) Synthesis, structure and magnetism of metal-organic framework materials with doubly pillared layers. Eur J Inorg Chem 15:4264–4270CrossRefGoogle Scholar
  30. 30.
    Brown DJ, Chisholm MH, Gribble CW (2007) Substitution chemistry of MM quadruply bonded complexes (M = Mo or W) supported by the anion of 2-hydroxy-6-methylpyridine. Dalton Trans 36:1793–1801CrossRefGoogle Scholar
  31. 31.
    Demessence A, Rogez G, Welter R, Rabu P (2007) Structure and magnetic properties of a new cobalt(II) thiophenedicarboxylate coordination polymer showing unprecedented coordination. Inorg Chem 46:3423–3425CrossRefGoogle Scholar
  32. 32.
    Zhang J, Chen S, Wu T, Feng P, Bu X (2008) Homochiral crystallization of microporous framework materials from achiral precursors by chiral catalysis. J Am Chem Soc 130:12882–12883CrossRefGoogle Scholar
  33. 33.
    Huang W, Wu D, Zhou P, Yan W, Guo D, Duan C, Meng Q (2009) Luminescent and magnetic properties of lanthanide-thiophene-2,5-dicarboxylate hybrid materials. Cryst Growth Des 9:1361–1369CrossRefGoogle Scholar
  34. 34.
    Chen Z, Zhao B, Chen P, Zhao XQ, Shi W, Song Y (2009) A purely lanthanide-based complex exhibiting ferromagnetic coupling and slow magnetic relaxation behavior. Inorg Chem 48:3493–3495CrossRefGoogle Scholar
  35. 35.
    Koh K, Wong-Foy AG, Matzger AJ (2010) Coordination copolymerization mediated by Zn4O(CO2R)6 metal clusters: a balancing act between statistics and geometry. J Am Chem Soc 132:15005–15010CrossRefGoogle Scholar
  36. 36.
    Takashima Y, Bonneau C, Furukawa S, Kondo M, Matsudabc R, Kitagawa S (2010) Periodic molecular boxes in entangled enantiomorphic icy nets. Chem Commun 46:4142–4144CrossRefGoogle Scholar
  37. 37.
    Xu J, Cheng J, Su W, Hong M (2011) Effect of lanthanide contraction on crystal structures of three-dimensional lanthanide based metal-organic frameworks with thiophene-2,5-dicarboxylate and oxalate. Cryst Growth Des 11:2294–2301CrossRefGoogle Scholar
  38. 38.
    Zhan CH, Wang F, Kang Y, Zhang J (2012) Lanthanide-thiophene-2,5-dicarboxylate frameworks: ionothermal synthesis, helical structures, photoluminescent properties, and single-crystal-to-single-crystal guest exchange. Inorg Chem 51:523–530CrossRefGoogle Scholar
  39. 39.
    Wang JG, Huang CC, Huang XH, Liu DS (2008) Three-dimensional lanthanide thiophenedicarboxylate framework with an unprecedented (4,5)-connected topology. Cryst Growth Des 8:795–798CrossRefGoogle Scholar
  40. 40.
    Li HH, Niu Z, Han T, Zhang ZJ, Shi W, Cheng P (2011) A microporous lanthanide metal-organic framework containing channels: synthesis, structure, gas adsorption and magnetic properties. Sci China Chem 54:1423–1429CrossRefGoogle Scholar
  41. 41.
    Wang H, Liu SJ, Tian D, Jia JM, Hu TL (2012) Temperature-dependent structures of lanthanide metal-organic frameworks based on furan-2,5-dicarboxylate and oxalate. Cryst Growth Des 12:3263–3270CrossRefGoogle Scholar
  42. 42.
    Decurtins S, Gross M, Schmalle HW, Ferlay S (1998) Molecular chromium(III)-Lanthanide(III) compounds (Ln = La, Ce, Pr, Nd) with a polymeric, ladder-type architecture: a structural and magnetic study. Inorg Chem 37:2443–2449CrossRefGoogle Scholar
  43. 43.
    Guillou O, Daiguebonne C, Camara M, Kerbellec N (2006) New 3D La(III)-Cu(II)-containing coordination polymer with a high potential porosity. Inorg Chem 45:8468–8470CrossRefGoogle Scholar
  44. 44.
    Ma JX, Huang XF, Song Y, Song XQ, Liu WS (2009) From metalloligand to interpenetrating channels: synthesis, characterization, and properties of a 2p-3d-4f heterometallic coordination polymer {[Na5Cu8Sm4(NTA)8(ClO4)8(H2O)22] · ClO4 · 8H2O}n. Inorg Chem 48:6326–6328CrossRefGoogle Scholar
  45. 45.
    Zhang SR, Du DY, Tan K, Qin JS, Dong HQ, Li SL, He WW, Lan YQ, Shen P, Su ZM (2013) Self-assembly versus stepwise synthesis: heterometal-organic frameworks based on metalloligands with tunable luminescence properties. Chem Eur J 19:11279–11286CrossRefGoogle Scholar
  46. 46.
    Niu Z, Ma JG, Shi W, Cheng P (2014) Water molecule-driven reversible single-crystal to single-crystal transformation of a multimetallic coordination polymer with controllable metal ion movement. Chem Commun 50:1839–1841CrossRefGoogle Scholar
  47. 47.
    Chen Z, Zhao B, Zhang Y, Shi W, Cheng P (2008) Construction and characterization of several new lanthanide-organic frameworks: from 2D lattice to 2D double-layer and to porous 3D net with interweaving triple-stranded helixes. Cryst Growth Des 8:2291–2298CrossRefGoogle Scholar
  48. 48.
    Edder C, Piguet C, Bünzli JCG, Hopfgartner G (2001) High-spin iron(II) as a semitransparent partner for tuning europium(III) luminescence in heterodimetallic d-f complexes. Chem Eur J 7:3014–3024CrossRefGoogle Scholar
  49. 49.
    Gao HL, Zhao B, Zhao XQ, Song Y, Cheng P, Liao DZ, Yan SP (2008) Structures and magnetic properties of ferromagnetic coupling 2D Ln-M heterometallic coordination polymers (Ln = Ho, Er; M = Mn, Zn). Inorg Chem 47:11057–11061CrossRefGoogle Scholar
  50. 50.
    Gao HL, Yi L, Ding B, Wang HS, Cheng P, Liao DZ, Yan SP (2006) First 3D Pr(III)-Ni(II)-Na(I) Polymer and a 3D Pr(III) open network based on pyridine-2,4,6-tricarboxylic acid. Inorg Chem 45:481–483CrossRefGoogle Scholar
  51. 51.
    Xiang SC, Hu SM, Sheng TL, Chen JS, Wu XT (2009) Structural diversity of infinite 3d-4f heterometallic cluster compounds driven by various lanthanide radii. Chem Eur J 15:12496–12502CrossRefGoogle Scholar
  52. 52.
    Zhuang GL, Chen WX, Zhao HX, Kong XJ, Long LS, Huang RB, Zheng LS (2011) Two three-dimensional 2p-3d-4f heterometallic frameworks featuring a Ln6Cu24Na12 cluster as a node. Inorg Chem 50:3843–3845CrossRefGoogle Scholar
  53. 53.
    Zhai B, Yi L, Wang HS, Zhao B, Cheng P, Liao DZ, Yan SP (2006) First 3D 3d-4f interpenetrating structure: synthesis, reaction and characterization of {LnCr(IDA)2(C2O4)}n. Inorg Chem 45:8471–8473CrossRefGoogle Scholar
  54. 54.
    Prasad TK, Rajasekharan MV, Costes JP (2007) A cubic 3d-4f structure with only ferromagnetic Gd-Mn interactions. Angew Chem Int Ed 46:2851–2854CrossRefGoogle Scholar
  55. 55.
    Wang Y, Fang M, Li Y, Liang J, Shi W, Chen J, Cheng P (2010) A porous 3d-4f heterometallic metal-organic framework for hydrogen storage. Inter J Hydro Energy 35:8166–8170CrossRefGoogle Scholar
  56. 56.
    Baggio R, Garland MT, Moreno Y, Peña O, Perec M, Spodine E (2000) Synthesis, structure and magnetic properties of the 2,2′-oxydiacetato-bridged Cu(II)-Ln(III) complexes [{Cu3Ln2(oda)8(H2O)8} · 12H2O]n (Ln = Y, Gd, Eu, Nd, Pr). J Chem Soc Dalton Trans 29:2061–2066CrossRefGoogle Scholar
  57. 57.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352CrossRefGoogle Scholar
  58. 58.
    Rocha J, Carlos LD, Filipe A (2011) Luminescent multifunctional lanthanide-based metal-organic frameworks. Chem Soc Rev 40:926–940CrossRefGoogle Scholar
  59. 59.
    Heffern MC, Matosziuk LM, Meade TJ (2014) Lanthanide probes for bioresponsive imaging. Chem Rev 114:4496–4539CrossRefGoogle Scholar
  60. 60.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  61. 61.
    Steemers FJ, Verboom W, Reinhoudt DN, Vander Tol EB, Verhoeven JW (1995) New sensitizer-modified calix[4]arenes enabling near-UV excitation of complexes luminescent lanthanide ions. J Am Chem Soc 117:9408–9414CrossRefGoogle Scholar
  62. 62.
    Zhou JM, Shi W, Li HM, Li H, Cheng P (2014) Experimental studies and mechanism analysis of high-sensitivity luminescent sensing of pollutional small molecules and ions in Ln4O4 cluster based microporous metal-organic frameworks. J Phys Chem C 118:416–426CrossRefGoogle Scholar
  63. 63.
    Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation fro the roles of zinc. Science 271:1081–1085CrossRefGoogle Scholar
  64. 64.
    Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2003) Selective detection of zinc ions with novel luminescent lanthanide probes. Angew Chem Int Ed 42:2996–2999CrossRefGoogle Scholar
  65. 65.
    Sorace L, Benelli C, Gatteschi D (2011) Lanthanide in molecular magnetism: old tools in a new field. Chem Soc Rev 40:3092–3104CrossRefGoogle Scholar
  66. 66.
    Kahn OM, Charlot MF (1980) Overlap density in binuclear complexes: a topological approach of the exchange interaction. Nouv J Chim 4:567–576Google Scholar
  67. 67.
    Bencini A, Benelli C, Caneschi A, Carlin RL, Dei A, Gatteschi D (1985) Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper (II) ions. J Am Chem Soc 107:8128–8136CrossRefGoogle Scholar
  68. 68.
    Kahn M, Mathonière C, Kahn O (1999) Nature of the interaction between LnIII and CuII ions in the ladder-type compounds {Ln2[Cu(opba)]3} · S (Ln = lanthanide element; opba = ortho-phenylenebis(oxamato), S = Solvent molecules). Inorg Chem 38:3692–3697CrossRefGoogle Scholar
  69. 69.
    Ma BQ, Gao S, Su G, Xu GX (2001) Cyano-bridged 4f-3d coordination polymers with a unique two-dimensional topological architecture and unusual magnetic behavior. Angew Chem Int Ed 40:434–437CrossRefGoogle Scholar
  70. 70.
    Bing YM, Xu N, Shi W, Liu K, Cheng P (2013) Two lanthanide(III)-copper(II) organic frameworks based on {OLn6} clusters that exhibited a large magnetocaloric effect and slow relaxation of the magnetization. Chem Asian J 8:1412–1418CrossRefGoogle Scholar
  71. 71.
    Shi PF, Zheng YZ, Zhao XQ, Xiong G, Zhao B, Wan FF, Cheng P (2012) 3D MOFs containing trigonal bipyramidal Ln5 clusters as nodes: large magnetocaloric effect and slow magnetic relaxation behavior. Chem Eur J 18:15086–15091CrossRefGoogle Scholar
  72. 72.
    Zou JY, Shi W, Xu N, Gao HL, Cui JZ, Cheng P (2014) Cobalt(II)-lanthanide(III) heterometallic metal-organic frameworks with unique (6,6)-connected Nia topologies with 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, structures and magnetic properties. Eur J Inorg Chem 23:407–412CrossRefGoogle Scholar
  73. 73.
    Zou JY, Xu N, Shi W, Gao HL, Cui JZ, Cheng P (2013) A new family of 3d-4f heterometallic coordination polymers assembled with 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, structures and magnetic properties. RSC Adv 3:21511–21516CrossRefGoogle Scholar
  74. 74.
    Huang YG, Wang XT, Jiang FL, Gao S, Wu MY, Gao Q, Wei W, Hong MC (2008) Cobalt-lanthanide coordination polymers constructed with metalloligands: a ferromagnetic coupled quasi-1D Dy3+ chain showing slow relaxation. Chem Eur J 14:10340–10347CrossRefGoogle Scholar
  75. 75.
    Li HH, Shi W, Zhao KN, Niu Z, Li HM, Cheng P (2013) Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metal-organic framework containing 1D honeycomb-type channels. Chem Eur J 19:3358–3365CrossRefGoogle Scholar
  76. 76.
    Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128:16876–16883CrossRefGoogle Scholar
  77. 77.
    Niu Z, Fang S, Ma JG, Zhang XP, Cheng P (2014) Enhancement of adsorption selectivity for MOFs under mild activation and regeneration conditions. Chem Commun 50:7797–7799CrossRefGoogle Scholar
  78. 78.
    Chae HK, Siberio-Pérez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRefGoogle Scholar
  79. 79.
    Inokuma Y, Yoshioka S, Ariyoshi J, Arai T, Hitora Y, Takada K, Matsunaga S, Rissanen K, Fufita M (2013) X-ray analysis on the nanogram to microgram scale using porous complexes. Nature 495:461–466CrossRefGoogle Scholar
  80. 80.
    Hu XL, Sun CY, Qin C, Wang XL, Wang HN, Zhou EL, Li WE, Su ZM (2013) Iodine-templated assembly of unprecedented 3d-4f metal-organic framework as photocatalysts for hydrogen generation. Chem Commun 49:3564–3566CrossRefGoogle Scholar
  81. 81.
    Niu JY, Zhang SW, Chen HN, Zhao JW, Ma PT, Wang JP (2011) 1D, 2D and 3D organic-inorganic hybrids assembled from Keggin-type polyoxometalates and 3d-4f heterometals. Cryst Growth Des 11:3769–3777CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wei Shi
    • 1
  • Ke Liu
    • 1
  • Peng Cheng
    • 1
  1. 1.Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinP. R. China

Personalised recommendations